SystemC Tutorial

1 Introduction to SystemC

SystemC is a system written in C++ that is widely used to simulate archi-
tectures. It is a library of C++ classes, global functions, data types and a
simulation kernel that can be used for creating simulators for hardware. By
using C/C++ development tools and the SystemC library, executable models
can be created in order to simulate, validate, and optimize the system being
designed. An executable model is essentially a C++ program that exhibits the
same behavior as the system when executed.

2 (Getting Started

The SystemC library should already be installed on the lab computers.

The tar file psa2017_assignmentl _framework.tgz on the lab course site con-
tains a framework for the first assignment of the course, which has a Makefile
that is configured to use the SystemC installation of the lab computers.
However, if you want to configure and install SystemC yourself on your own
machine, see the Appendix: Installing SystemC.

3 Using SystemC

A SystemC system consists of a set of one or more modules. Modules provide
the ability to describe structure. Modules typically contain processes, ports, in-
ternal data, channels and possibly instances of other modules. All processes are
conceptually concurrent and can be used to model functionality of the module.
Ports are objects through which the module communicates with other modules.
In C++ terms modules, ports and channels are classes from which objects are
created. Processes are member functions of a module that, when registered as a
process to the simulation kernel, are executed every time an event is triggered.
Events are the basic synchronization objects. They are used to synchronize
between processes. Processes are triggered or caused to run based on their
sensitivity to events. That means that every time a module member function is
registered as a process, the events on which it is “sensitive” are also defined.
Access to all SystemC classes and functions is provided in a single header file
named “systemc.h”. This file includes other files, but the end user only needs

to use this. In order to use the SystemC classes this file must be included and
the application must be linked with the SystemC library.

4 Execution Semantics

SystemC is an event based simulator. Events occur at a given simulation time.
Time starts at 0 and moves forward only. Time increments are based on the
default time unit and the time resolution.

Every C/C++ program has a main() function. When the SystemC library
is used the main() function is not used. Instead the function sc_main() is the
entry point of the application. This is because the main() function is defined
in the library so that when the program starts initialization of the simulation
kernel and the structures this requires are performed, before execution of the
application code. The main() defined into the library calls the sc_main()
function after it has finished with the initialization process.

The sc_main() function is defined as follows:

int sc_main(int argc, char* argvl[])

which is the same as a main() function in common C++ programs. The values
of the arguments are forwarded from the main() defined in the library.

In the sc_main() function the structural elements of the system are created
and connected throughout the system hierarchy. This is facilitated by the C++
class object construction behavior. When a module comes into existence all
sub-modules this contains are also created. After all modules have been created
and connections have been established the simulation can start by calling the
function sc_start() where the simulation kernel takes control and executes the
processes of each module depending on the events occurring at every simulated
cycle. 1In the first cycle all the processes are executed at least once unless
otherwise stated with a call to the function dont_initialize() when the process
is registered.

5 The Memory Module

The following code creates a module which simulates a Random Access Memory.
How the code works is explained below.

static const int MEM_SIZE = 512;

SC_MODULE (Memory) {

public:
enum Function {
FUNC_READ ,
FUNC_WRITE
s

enum RetCode {
RET_READ_DONE ,
RET_WRITE_DONE,

b

sc_in<bool> Port_CLK;
sc_in<Function> Port_Func;
sc_in<int> Port_Addr;

sc_out<RetCode> Port_Done;
sc_inout_rv<32> Port_Data;

SC_CTOR (Memory) {
SC_THREAD (execute);
sensitive << Port_CLK.pos();
dont_initialize ();

m_data = new int [MEM_SIZE];

}

“Memory () {
delete [] m_data;
}

private:
int* m_data;

void execute() {
while (true) {
wait (Port_Func.value_changed_event ());

Function f = Port_Func.read();
int addr = Port_Addr.read();
int data = 0;
if (f = FUNC_WRITE) {
data = Port_Data.read().to_int ();
}
// Simulate Memory read/write delay
wait (100);
if (f = FUNC_READ) {
Port_Data.write((addr < MEM_SIZE) ?
m_data[addr] : 0);
Port_Done.write(RET_READ_DONE);
wait ();
Port_Data.write("ZZZZZZZZZZZZZZZZ2Z2Z22ZZ2Z2Z2222Z2222Z2Z"),
} else {
if (addr < MEM_SIZE) {
m_data[addr] = data;
}
Port_Done.write(RET_WRITE_DONE);
}

As can be seen from the above code, a definition of a module in SystemC
is the same as declaration of a class in C+4 and this is because it is exactly
that. The SC_.MODULE statement is just a macro that provides a simple form
of module definition. The macro is internally defined as follows:

#define SC_MODULE(user module name) \
struct user_module name : ::sc_core::sc_module

As can be seen from the definition of the macro, every module is a sub-class of
the “sc_module” class. SystemC uses many macros like SC_.MODULE in order
to simplify definitions and to be similar to SystemC terminology.

The first elements of the modules declaration are two enumeration types
that the module uses. The five lines that follow are the declarations of the
ports the module has in order to communicate with other modules. In order
to understand the concept of ports, first we must look briefly at interfaces and
channels.

In SystemC, interfaces define a set of member functions a channel that imple-
ments the interface must have. They only provide signatures of the functions and
not the implementation. In C++ terms they are classes with all their functions
being pure virtual functions. Channels define how the functions of an interface
are implemented. They are classes directly derived from the interface(s) they
implement and provide implementations for the functions of the interface(s).
SystemC provides a number of ready defined interfaces and channels which im-
plement them. If those do not provide the required functionality others can be
defined. The most common used interface is the sc_signal_inout_if and the
channel class that implements it is the sc_signal.

Finally, ports are objects through which a module can be connected into
one or more channels. Port objects are directly or indirectly derived from the
template class sc_port. This class is a template so that it can be customized
according to the interface the port can connect. That means that when a port
object is defined using this class, the interface (and consequently the channel) on
which it can connect must also be defined. The following is an example port dec-
laration that can connect to the sc_signal_inout_if interface mentioned earlier.

sc_port<sc_signal_inout_if<int>,1> port_name

In the above statement we can also see that the sc_signal_inout_if is also a
template class. SystemC makes extreme use of template classes, because that
mechanism gives the flexibility the class needs to be customized for a specific
data-type.

In our example though, we have not used such declarations to define the
ports of the module. This is because we have used what is called specialized
ports. Specialized ports are classes derived from the sc_port class, which are
customized with a particular (set of) interface(s). These classes also provide
additional support for use with a channel or for easier use. The ports used in
the example are: sc_in, sc_out and sc_inout_rv, which are ports specific for

the sc_signal_inout_if mentioned earlier. Again here we see that those classes
are also template classes. This gives the ability to define a port that can handle
data of any C++ or SystemC data-type.

The code which starts with the statement SC_CTOR is the code of the
constructor of the module.The SC_CTOR statement is also a macro used for
the constructor of the class.

At the beginning of this document it had been mentioned that a module also
has processes, which are member functions or threads registered as processes to
the simulation kernel and executed by it when an event is triggered.

The two types of SystemC processes are method processes and thread pro-
cesses. Method processes are registered with the macro SC.METHOD and
thread processes with SC_.THREAD and their behaviour is very different. A
method process is triggered for a static set of events and should be executed
from beginning to end without waiting for other events to occur. A thread pro-
cess on the other hand is started only once at the beginning of the simulation
and should never exit. It can be sensitive to a static set of events but can also
suspend and wait for certain event to occur to resume execution. The com-
mon coding pattern is have a infinite loop containing wait statements. Method
processes are often used in low level simulations and thread processes are more
suitable for high level simulation. For this assignment you will only need to use
thread processes as the simulation is at a relatively high level.

The first line of the constructors code registers to the simulation kernel that
the Memory module has a process which is a thread, the code of which is the
execute member function. The SC_.THREAD is also a macro that makes the
code more readable.

Processes have a list of events on which they are sensitive. If an event
happens on a process sensitivity list, they get woken up. The second line of
the constructors code sensitive << Port_CLK.pos() creates that list for the
process registered by the previous SC_.THREAD statement. It specifies that this
process will execute on the event when the signal on the Port_CLK port goes
positive (i.e. once per clock cycle). Ports trigger events owned by the channel
they are connected to, when the value of the port itself changes or the value
of another port also connected to the same channel changes. In simple terms:
when the Port_CLK port changes to positive the execute process will get woken
up. The rest of the constructor code allocates storage for the memory.

This is called static sensitivity because the list of events to respond to is
listed once and will not change. Both method processes and thread processes
can have static sensitivity. Only a thread process can suspend execution and
wait for an event to occur. It does this by calling the wait function. If the wait
function is called without arguments the thread process will suspend itself and
resume when one of the events in the static sensitivity list of that process has
occurred. The wait function also accepts a set of events to wait on. The event
can be a change on a port or a certain time period to elapse. This is called
dynamic sensitivity.

The execute member function defines the code for the thread that will run
for this module, as defined in the constructor. The thread continuously waits for

the Port_Func to get written and then serves the request. It reads the address
and also data if its a memory write, then waits 100 cycles to simulate memory
latency and finally writes the result back before waiting on the Port_Func again.

Note that a string of 32 Zs is written to the 32-bit bi-directional data port
a cycle after we write the data to the port. This is done because the data wires
are modeled by a special type of signal called a resolved signal that is used
when a signal has multiple writers. In our case the CPU writes the data on the
data wires during a CPU-write and the memory writes on the data wires when it
responds to a CPU-read with the requested data. A resolved signal will attempt
to resolve the values written to the signal by the different writers. When one
writer writes an actual value to the signal the other writers will need release the
signal. This called floating the wire, or leaving the signal in a high impedance
state. Writing Z’s to the signal puts the signal in this high impedance state so
the other side can write an actual value to the signal. If two or more writers
write actual values to the signal at the same time the signal cannot be resolved.
In our case the CPU writes data on the data wires, suspends for one cycle to
allow the memory to read the data value and then releases the data signal by
putting it in the high impedance state. This protocol is needed so that the CPU
and memory can share the data wires in a deterministic manner.

Task 1: Create the Memory Module

1. Enter the code of the example into a new C++ source code file. Do not
forget to include the systemc.h file at the beginning of the file.

2. Create an sc_main() function in the same file with the following code:

int sc_main(int argc, charx argv[]) {
try {
Memory mem("main_memory");
sc_start ();
} catch (exception& e) {
cerr << e.what () << endl;
}

return O;

3. Compile and run the program (and note that it gives an error).

6 The CPU Module

As you can see, the above program does nothing when run. This is because there
are no events triggered. When there are no more events the simulation kernel,
started by sc_start(), stops the simulation and the program ends. Actually, in
this example errors about port binding are thrown because the modules ports

are not connected. These errors are thrown when sc_start is called, and caught
and displayed by the try/catch block.

The absence of events is because even though we create an instance of the
Memory module we have not connected anything to its ports and no change
to the ports values is taking place to trigger any events. In order to test our
module we need a second one that will be connected to it and make changes to
its ports. Such a module can be created with the following code:

SC_MODULE (CPU) {

public:
sc_in<bool> Port_CLK;
sc_in<Memory ::RetCode> Port_MemDone;
sc_out<Memory ::Function> Port_MemFunc;
sc_out<int> Port_MemAddr;
sc_inout_rv<32> Port_MemData;

SC_CTOR(CPU) {
SC_THREAD (execute);
sensitive << Port_CLK.pos ();
dont_initialize ();

}

private:
void execute() {
while (true) {
wait ();
Memory ::Function f = (rand() % 10) < 5
? Memory :: FUNC_READ
Memory :: FUNC_WRITE;

int addr (rand () % MEM_SIZE);;

Port_MemAddr .write (addr);
Port_MemFunc.write(f);

if (f = Memory:: FUNC_WRITE) {
Port_MemData.write(rand());
wait ();

Port_MemData.write ("ZZZZZZZZZZZZ2ZZ2ZZ22222Z2Z22222Z2Z22Z2Z");

}

wait (Port_MemDone.value_changed_event ());

// Advance one cycle in simulated time
wait ();

This module simulates a CPU that has the appropriate ports to connect to
our Memory module and make read/write requests for random addresses. First
thing to note in the above code is that the CPU module uses a sc_in port for
every sc_out port of the Memory module, and a sc_out for every sc_in. The
constructor and execute member function of the module is similar to the one of
the Memory module.

Task 2: Add the CPU module

1. Add the above code of the CPU module to your previous program and
then modify the sc_main() function to have the following code:

int sc_main(int argc, charx argv[]) {
try {
// Instantiate Modules
Memory mem("main_memory");
CPU cpu("cpu");

// Signals

sc_buffer<Memory :: Function> sigMemFunc;
sc_buffer<Memory::RetCode> sigMemDone;
sc_signal<int> sigMemAddr;
sc_signal_rv<32> sigMemData;

// The clock that will drive the CPU and Memory

sc_clock clk;

// Connecting module ports with signals
mem.Port_Func(sigMemFunc);
mem.Port_Addr (sigMemAddr);
mem.Port_Data sigMemData);
mem.Port_Done(sigMemDone)

Py

)

cpu.Port_MemFunc (sigMemFunc);
cpu.Port_MemAddr (sigMemAddr);
cpu.Port_MemData(sigMemData);
cpu.Port_MemDone (sigMemDone);

mem.Port_CLK(clk);
cpu.Port_CLK(clk);

cout << "Running (press CTRL+C to exit)... " << endl;
// Start Simulation
sc_start ();
} catch (exception& e) {
cerr << e.what() << endl;
}

return O;

2. Compile and run the program.

What the code in the sc_main function does is to create instances of the
modules, four channels of type sc_signal and sc_buffer and connect the two
modules through their ports to those signals. It also creates an instance of
the sc_clock class and connects that to the Port_CLK ports of the CPU and
Memory modules. The sc_clock class is a predefined primitive channel derived
from the class sc_signal and is intended to model the behavior of a digital clock
signal. In effect an instance of sc_clock triggers an event in regular intervals
(there are constructor overloads that can be used to set certain properties to the

clock) so when a modules port is connected to the clock the process sensitive to
the port is executed.

Finally the sc_start() statement tells the simulation kernel to start the
simulation.

Task 3: Understand!

Although the simulation is now running, there is no output (if everything went
ok). So, print details in locations of interest in the code to see how the modules
behave and which code gets executed when. When building more complex
simulations, these concepts should be basic knowledge. SystemC data types
support the stream insertion operator so they can be printed like regular types.
The name of an instance can be obtained with the name() method.

7 Conclusion

Until now we have seen how a basic simulator can be built using SystemC and
the basic aspects of the framework. A complete implementation of this example
can be downloaded from:

http://staff.fnwi.uva.nl/s.polstra/psa2017/

More detailed information on the topics described here and many others can be
found in the document: 1666-2011 IEEE Standard SystemC Language Reference
Manual, which can be downloaded from http://accellera.org/downloads/
standards/systemc| or from the lab course site. Use this reference manual to
look up the difference between a sc_buffer and a sc_signal. Can you explain
why the code used sc_buffers for the sigMemFunc and the sigMemDone channels
instead regular sc_signals?

http://staff.fnwi.uva.nl/s.polstra/psa2017/
http://accellera.org/downloads/standards/systemc
http://accellera.org/downloads/standards/systemc

A Installing System C

The SystemC library can be downloaded from:

http://accellera.org/downloads/standards/systemnc|or
http://staff.fnwi.uva.nl/s.polstra/psa2017/

Documentation and User Guides can also be downloaded from the latter site.
SystemC comes in source code, thus in order to use it, it must be compiled after
you downloaded and extracted the package.

A.1 Linux

e Execute the command: “./configure —enable-shared=no”
e Execute the command: “make”

e Execute the command: “make install”

After doing the above a file named “libsystemc.a” will be created in the
directory <SystemC Installation Directory>/lib-linux/. This file must be linked
with the application.

10

http://accellera.org/downloads/standards/systemc
http://staff.fnwi.uva.nl/s.polstra/psa2017/

	Introduction to SystemC
	Getting Started
	Using SystemC
	Execution Semantics
	The Memory Module
	The CPU Module
	Conclusion
	Installing System C
	Linux

