Algebraic modal logic
Summer 2013

Homework 2
(due Friday, 21 June at the beginning of the lecture)

1. Show that the set of filters of Boolean algebra \(\mathcal{B} \) form a distributive lattice (under \(\subseteq \)) where, for filters \(F_1, F_2 \)
 (a) \(F_1 \land F_2 = F_1 \cap F_2 \),
 (b) \(F_1 \lor F_2 = \{ a \in B : a \geq a_1 \land a_2 \text{ for some } a_1 \in F_1, a_2 \in F_2 \} \). [10 pts]

2. If \(U \) is an ultrafilter of a Boolean algebra \(\mathcal{B} \), show that \(\bigwedge U \) exists, and is an atom \(b \) or equals 0. In the former case show \(U = \{ b \} \uparrow \) (principal ultrafilter generated by \(b \)). [8 pts]

3. If \(\mathcal{B} \) is the Boolean algebra of finite and cofinite subsets of an infinite set \(I \), show that there is exactly one non-principal ultrafilter of \(\mathcal{B} \). [8 pts]

4. Show that a finite topological space \((X, \tau)\) is a Stone space iff it is discrete (i.e., every subset of \(X \) is open, or \(\tau = \mathcal{P}(X) \)). [8 pts]

5. MacNeille completions and Canonical extensions

 Definition 0.1 (MacNeille completion). A MacNeille completion of a lattice \(L \) is any complete lattice \(C \) containing \(L \) as a sublattice, with \(L \) both join-dense and meet-dense in \(C \) (that is, each element of \(C \) is both a join of elements of \(L \) and a meet of elements of \(L \)), and such that if \(C' \) is another such lattice then there is a unique isomorphism from \(C \) to \(C' \) fixing \(L \).

 Definition 0.2 (Canonical extension). The canonical extension of a lattice \(A \) is a complete lattice \(A^\delta \) containing \(A \) as a sublattice, such that
 (a) Every element of \(A^\delta \) can be expressed both as a join of meets and as a meet of joins of elements from \(A \) (
 denseness);
 (b) For all \(S, T \subseteq A \) with \(\bigwedge S \leq \bigvee T \) in \(A^\delta \), there exist finite sets \(F \subseteq S \) and \(G \subseteq T \) such that \(\bigwedge F \leq \bigvee G \) (compactness).

 Consider the infinite chains \(L = \mathbb{N} \oplus \mathbb{N}^\partial, \bar{L} \text{ and } L^\delta \), in Figure 1 on the next page. Show that
 (a) \(\bar{L} \) and \(L^\delta \) are MacNeille completions of \(L \) \([4 pts]\)
 (b) \(\bar{L} \) is not a canonical extension of \(L \). \([4 pts]\)
 (c) \(L^\delta \) is a canonical extension of \(L \) (define a dense and compact embedding \(\eta : L \hookrightarrow L^\delta \)) \([4pts]\)

6. (Exercise 5.2.3 B, deR, V) Let \(A \) be a collection of finite and co-finite subsets of \(\mathbb{N} \). Define \(f : A \to A \) by
 \[
 f(X) = \begin{cases}
 \{ y \in \mathbb{N} \mid y + 1 \in X \} & \text{if } X \text{ is finite} \\
 \mathbb{N} & \text{if } X \text{ is co-finite}
 \end{cases}
 \]

 Prove that \((A, \cup, -, \emptyset, f)\) is a boolean algebra with operators. [10 pts]
7. Let \mathbb{N}_∞ be the set of natural numbers with an additional point ∞. Define $\mathcal{T} \subseteq \mathcal{P}(\mathbb{N}_\infty)$ as follows: a subset U of \mathbb{N}_∞ belongs to \mathcal{T} if, either (1) $\infty \notin U$, or (2) $\infty \in U$ and $\mathbb{N}_\infty \setminus U$ is finite.

(a) Show that $(\mathbb{N}_\infty, \mathcal{T})$ is a topological space. [5 pts]

(b) Show that $(\mathbb{N}_\infty, \mathcal{T})$ is a Stone space, that is, compact and totally disconnected. (Hint: the clopen subsets of $(\mathbb{N}_\infty, \mathcal{T})$ are finite sets not containing ∞, and their complements.) [5 pts]

8. (Bonus exercise) **Algebraic completeness of modal mu-calculus** [16 pts]

For a lattice L and a map $f : L \to L$, an element $x \in L$ is a fixed point of f if, $f(x) = x$. The least fixed point is the least element in the set of fixed points of f. The following theorem gives a method to compute the least fixed point of a monotone map on a complete lattice.

Theorem 0.3 (Knaster-Tarski Theorem). Let (L, \leq) be a complete lattice and $f : L \to L$ be a monotone map, that is, for each $a, b \in L$, we have $f(a) \leq f(b)$. The Knaster-Tarski theorem states that f has a least fixed point $\text{LFP}(f)$, which can be computed as

$$\text{LFP}(f) = \bigwedge \{a \in L : f(a) \leq a\}$$

Modal mu-calculus is an extension of basic modal logic with a least fixed point operator, which interprets the least fixed point of a formula, seen as a map on a modal algebra. The syntax of the logic is given as

$$\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \mu x \varphi$$

where $p \in \text{Prop}$ and x occurs positively in φ. The formulas of the modal mu-calculus are interpreted over a modal algebra. The interpretation of $\mu x \varphi$ is given as $\text{LFP}(\varphi)$ (read section 3.3 of Yde’s lecture notes on algebraic semantics of mu-calculus available at http://staff.science.uva.nl/~yde/teaching/ml.)
Definition 0.4 (Modal mu-algebra). A modal algebra is a modal mu-algebra if the interpretation of $\mu x \varphi$ exists for all formulas φ (where x occurs positively in φ and all algebra assignments.

Definition 0.5. Kozen’s axiomatization of mu-calculus consists of the following axiom and rule for the least fixed point operator, in addition to the axioms and rules of modal logic

$$\vdash \varphi[\mu x \varphi/x] \rightarrow \mu x \varphi$$ \hspace{1cm} (Fixed point axiom)

If $\vdash \varphi[\psi/x] \rightarrow \psi$, then $\vdash \mu x \varphi \rightarrow \psi$ \hspace{1cm} (Fixed point rule)

Show the completeness of Kozen’s axiomatization of mu-calculus with respect to modal mu-algebras (Hint: Use the Lindenbaum-Tarski algebra method).