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Abstract

In the present paper, the algorithmic correspondence theory developed in (Conradie and Palmi-
giano, 2012) is extended to mu-calculi with a non-classical base. We focus in particular on the
language of bi-intuitionistic modal mu-calculus. We enhance the algorithm ALBA introduced
in (Conradie and Palmigiano, 2012) so as to guarantee its success on the class of recursive mu-
inequalities, which we introduce in this paper. Key to the soundness of this enhancement are
the order-theoretic properties of the algebraic interpretation of the fixed point operators. We
show that, when restricted to the Boolean setting, the recursive mu-inequalities coincide with
the “Sahlqvist mu-formulas” defined in (van Benthem, Bezhanishvili and Hodkinson, 2012).
Keywords: Sahlqvist correspondence, algorithmic correspondence, modal mu-calculus, intuition-
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Introduction

Modal mu-calculus [17] is a logical framework combining simple modalities with fixed point oper-
ators, enriching the expressivity of modal logic so as to deal with infinite processes like recursion.
It has a simple syntax, an easily given semantics, and is decidable. Modal mu-calculus has become
a fundamental logical tool in theoretical computer science and has been extensively studied [3], and
applied for instance in the context of temporal properties of systems, and of infinite properties of con-
current systems. Many expressive modal and temporal logics such as PDL, CTL, CTL* can be seen
as fragments of the modal mu-calculus [3, 15]. It provides a unifying framework connecting modal
and temporal logics, automata theory and the theory of games, where fixed point constructions can be
used to talk about the long term strategies of players, as discussed in [23].

Correspondence theory studies the relationships between classical first- and second-order logic,
and modal logic, interpreted on Kripke frames. A modal and a first-order formula correspond if they
define the same class of structures. Specifically, Sahlqvist theory is concerned with the identifica-
tion of syntactically specified classes of modal formulas which correspond to first-order formulas.
Sahlqvist-style frame-correspondence theory for modal mu-calculus has recently been developed in
[22]. Such analysis strengthens the general mathematical theory of the mu-calculus, facilitates the
transfer of results from first-order logic with fixed points, and aids in understanding the meaning of
mu-formulas interpreted over frames, which is often difficult to grasp.

The correspondence results in [22] are developed purely model-theoretically. However, they can
be naturally encompassed within the existing algebraic approach to correspondence theory [5, 9, 10],
and generalized to mu-calculi on a weaker-than-classical (and, particularly, intuitionistic) base.



There are three types of reasons for studying (bi-)intuitionistic mu-calculi. Firstly, the correspon-
dence results obtained in this setting project onto those obtainable in the classical setting of [22].
Conceptually, this means that the correspondence mechanisms for mu-calculi are intrinsically inde-
pendent of their being set in classical logic, and hence the non-classical mu-calculi provide clearer
insights into their nature, by abstracting from unneeded assumptions.! Secondly, these mu-calculi
also bring practical advantages, since their greater generality means of course wider applicability. Fi-
nally, it can be argued that such a study is now timely, given that closely related areas of logic such
as constructive modal logics and type theory are of increasing foundational and practical relevance in
such fields as semantics of programming languages [12], and intuitionistic modal mu-calculi can be a
valuable tool to these investigations.

Our contribution.  As motivated above, we work on a non-classical base, and our setting of choice
is bi-intuitionistic modal logic [18, 16]. Besides being interesting in its own right, the bi-intuitionistic
modal logic also lends itself to certain types of more systematic analysis. For instance, it provides
a methodologically useful setting for the order-theoretic analysis of correspondence theory. Indeed,
its array of connectives is representative of the various order-theoretic behaviours one is likely to
encounter, and hence provides a blueprint for transferring this analysis to other logics. Moreover,
this analysis includes as a special case the correspondence theory for classical modal mu-calculus
of [22]. Following the methodology developed in [10], the algebraic and order-theoretic principles
underlying these results are isolated. This forms an intermediate level of analysis which is added to
the model-theoretic analysis in [22].

In fact, this intermediate level of analysis makes it possible to recognize that even the lattice-
distributivity plays no essential role for the crucial order-theoretic preservation properties of fixed
points; accordingly, these properties are stated in the vastly more general setting of complete (not
necessarily distributive) lattices, paving the way to the development of correspondence theory for
substructural mu-calculi.

The fact that the intermediate level of analysis is conducted on algebras makes it possible to
develop the crucial part of correspondence theory independently of the specific way the relational
semantics is defined, given that different relational semantics can be associated with a given non-
classical (fixed point) logic.

In the present paper, we extend the algorithm ALBA of [9] to the language of bi-intuitionistic
modal mu-calculus. ALBA is an algorithm, based on a calculus of rewrite rules which, if successful,
effectively calculates first-order correspondents for formulas of distributive, intuitionistic and classical
modal logics. We define the class of recursive inequalities (see Definition 3.2) for the bi-intuitionistic
modal mu-calculus which is the bi-intuitionistic counterpart of the Sahlqvist mu-formulas defined in
[22]. We prove that the enhanced ALBA is successful on all recursive mu-inequalities, and hence that
each of them has a frame correspondent in first-order logic with least fixed points (FO+LFP) [13] .

It is worth stressing that all the results and in particular all the practical reductions developed for
bi-intuitionistic modal mu-calculus are immediately applicable to the classical case.

'In particular, the bi-intuitionistic setting accounts for the projection over the classical setting more naturally than the
intuitionistic one, for various technical reasons which will be expanded upon in Remark 3.6.



Structure.  Within the preliminary section, 1.1 collects some details about the algebraic and rela-
tional semantics of bi-intuitionistic modal logic. In 1.2, algebraic-algorithmic correspondence theory
is illustrated by means of an extensive example, and in 1.3 the calculus for correspondence for bi-
intuitionistic modal logic is introduced and discussed. In Section 2, the stage is set for extending
correspondence theory to mu-calculus: in 2.1, the relevant order-theoretic preservation properties of
extremal fixed points are stated, in a general setting of complete (not necessarily distributive) lattices.
In 2.2, the language and semantics of the bi-intuitionistic modal mu-calculus is introduced, together
with the expanded language which facilitates the algebraic correspondence reductions. In 2.3 and
2.4, the formal tools for the enhanced version of ALBA are introduced, in the form of so-called ap-
proximation and adjunction rules for fixed point binders, and the soundness of these rules is proven
in terms of the order-theoretic properties of 2.1. In 2.5 the limitations of these rules are discussed,
which motivates the developments of Sections 4 and 5. In Section 3, the recursive mu-inequalities are
defined in the same uniform style discussed and advocated in [5], which pivots on the order-theoretic
properties of the algebraic interpretation of the logical connectives. This class is compared with other
Sahlqvist-type classes in the literature. In Section 4, we define certain syntactic shapes of formulas,
the (normal) inner formulas, which guarantee the applicability of the approximation rules as stated in
Section 2.3, and of a special rephrasing of the adjunction rules, given in Section 5. In Section 6, we
show the execution of the algorithm on two examples. In Section 7, the relation between inner formu-
las and recursive inequalities is unfolded, which serves as a technical device in the proof that ALBA,
augmented with the rules defined in the previous sections, is successful on all recursive inequalities.

1 Preliminaries

In this section we collect some preliminaries on the semantic structures with which we will be working
and we illustrate the algebraic-algorithm approach to correspondence theory.

1.1 Perfect modal bi-Heyting algebras

An element ¢ # L of a complete lattice C is completely join-irreducible iff c = \/ S implies ¢ € S
for every S C C; moreover, c is completely join-prime if ¢ # L and, for every subset S of the lattice,
c <V S iff ¢ < sforsome s € §. Completely meet-irreducible and completely meet-prime elements
re defined order-dually. If ¢ is completely join-prime (resp. meet-prime), then c is completely join-
irreducible (resp. meet-irreducible). If C is frame distributive (i.e. finite meets distribute over arbitrary
joins) then the completely join-irreducible elements are completely join-prime. The collections of all
completely join- and meet-irreducible elements of C are respectively denoted by J*°(C) and M*(C).

A bi-Heyting algebra is an algebra (A, A,V,—,—, T, L) such that both (A,A,V,—,T,L) and
A, A, V,—, T, J_)a are Heyting algebras. In particular, the operation — (referred to as ‘subtraction’,
‘exclusion’ or ‘disimplication’) is uniquely identified by the following property holding for every
a,b,c € A:

a-b<ciff a<cvb.

In the special case of Boolean algebras, a — b = a A =b. A modal bi-Heyting algebra is an algebra
(A,A,V,—,—,T,1,0,¢) such that (A, A, V,—,—, T, L) is a bi-Heyting algebra and 0O and < preserve
finite meets and joins, respectively.



Definition 1.1. A perfect lattice is a complete lattice C such that J*(C) join-generates C (i.e. every
element of C is the join of elements in J*°(C)) and M*°(C) meet-generates C (i.e. every element of C is
the meet of elements in M*(C)). A perfect distributive lattice is a perfect lattice which is completely
distributive, and hence J*(C) coincides with the set of all completely join-prime elements of C and
M*™(C) coincides with the set of all completely meet-prime elements of C. A perfect bi-Heyting
algebra is a bi-Heyting algebra the lattice reduct of which is a perfect distributive lattice. A perfect
modal bi-Heyting algebra is a modal bi-Heyting algebra the bi-Heyting reduct of which is a perfect
bi-Heyting algebra, and moreover such that O and ¢ preserve arbitrary meets and joins, respectively.

A Stone-type duality on objects (extending the finite Birkhoff duality) holds between perfect bi-
Heyting algebras and posets, which is defined as follows: every poset X is associated with the lattice
PT(X) of the upward-closed? subsets of X, on which the implication and the subtraction are defined
asY > Z=uUZz)|and Y - Z = (Y N Z°)1 for all ¥, Z € PT(X); here (-)° denotes the complement
relative to W; conversely, every perfect bi-Heyting algebra C is associated with (J*(C), >) where > is
the reverse lattice order in C, restricted to J*(C).

Just in the same way in which the duality between complete atomic Boolean algebras and sets
can be expanded to a duality between complete atomic modal algebras and Kripke frames, the duality
between perfect bi-Heyting algebras and posets can be expanded to a duality between perfect modal bi-
Heyting algebras and posets endowed with arrays of relations, each of which dualizes one additional
operation in the usual way, i.e., n-ary operations give rise to n + 1-ary relations, and the assignments
between operations and relations are defined as in the classical setting. We are not going to report on
this duality in full detail (we refer e.g. to [19, 14, 9]), but we limit ourselves to mention that dual frames
to perfect modal bi-Heyting algebras can be defined as relational structures ¥ = (W, <, R¢, Rp) such
that (W, <) is a nonempty poset, R, and Ry are binary relations on W, and the following inclusions
hold:

>o0Rs0> C Ry <oRpo< C Rp.
The complex algebra of any such relational structure ¥ (cf. [14, Sec. 2.3]) is
F* = PIW), 0,0, 2, W,(Ro). [Ra),
where, for every X € W,

[RolX
(Ro)X

{we W|Rglw] C X}
{fwe W|Rs[wlNX # @}

(R5'[XD°
R[X].

Here R[x] = {w | w € W and xRw} and R™'[x] = {w | w € W and wRx}. Moreover, R[X] = | J{R[x] |
xeX}and R7[X] = U{R'[x] | x € X).
1.2 Algebraic-algorithmic correspondence

The contribution of the present paper is set in the context of order-theoretic algorithmic correspon-
dence theory [9, 5]. Correspondence theory originates from the observation that relational structures

2A subset Y of a poset X is upward-closed if x € Y and x <y € X impliesy € Y. We write YT = {x € X | Iy(y e Y & y <
x)}. Dually for downward-closed subsets and Y |.



interpret both classical first- and second-order logic, and modal logic. A modal and a first-order for-
mula correspond if they define the same class of structures. Sahlqvist theory aims at characterizing
(sub)classes of modal formulas admitting first-order correspondents, and at effectively calculating
their correspondents.

This theory goes back to the very well-known Sahlqvist-van Benthem algorithm (see [2]), with the
same core motivation and strategy. Namely, the effective computation of first-order frame correspon-
dents for modal formulas through the elimination of monadic second-order universal quantification
from the conditions expressing the (local) validity of these formulas. This is typically done by instan-
tiating propositional variables with first-order definable ‘minimal valuations’. We refer the reader to
[2] for a basic introduction and to [20] for a broader overview.

As mentioned in the introduction, this strategy can be developed in the context of the algebraic
semantics of modal logic, and then generalized to various other logics. The algebraic setting helps
to distill the essentials of this strategy. We refer the reader to [10] for an in-depth treatment linking
the traditional and algebraic approaches, and to [9] for a fully-fledged treatment of the algebraic-
algorithmic approach. Before giving a more detailed account of this theory, we will guide the reader
through the main principles which make it work, by means of an example.

The algorithm illustrated. Let us start with one of the best known examples in correspondence
theory, namely ¢Op — OCp. It is well known that for every Kripke frame & = (W, R),

FroaOp » aop iff FE Yxyz(Rxy A Rxz — Ju(Ryu A Rzu)).

As is discussed at length in [9, 5], every piece of argument used to prove this correspondence on
frames can be translated by duality (see Section 1.1) to complex algebras®. We will show how this is
done in the case of the example above.

As is well known, complex algebras are characterized in purely algebraic terms as complete and
atomic BAOs where the modal operations are completely join-preserving. These are also known as
perfect BAOs [24, Definition 40].

First of all, the condition F I+ ¢Op — OOp translates to the complex algebra A = ¥+ of ¥ as
[¢opll € [O¢p] for every assignment of p into A, so this validity clause can be rephrased as follows:

A E Vp[oop < Oop], (L.1)

where the order < is interpreted as set inclusion in the complex algebra. In perfect BAOs every element
is both the join of the completely join-prime elements (the set of which is denoted J*°(A)) below it
and the meet of the completely meet-prime elements (the set of which is denoted M*(A)) above it*.
Hence, taking some liberties in our use of notation, the condition above can be equivalently rewritten
as follows:

ARVPI\/lie (&) |i<oop) < \lme M (4) | 0op < m)].

By elementary properties of least upper bounds and greatest lower bounds in posets (cf. [11]), this
condition is true if and only if every element in the join is less than or equal to every element in the

3¢f. [2, Definition 5.21] and also page 4.
4In BAOs the completely join-prime elements, the completely join-irreducible elements and the atoms coincide. More-
over, the completely meet-prime elements, the completely meet-irreducible elements and the co-atoms coincide.



meet; thus, condition (1.1) above can be rewritten as:
AEVYpYiYm[i <<oOp & OO0p<m)=i<m] (1.2)

where the variables i and m range over J(A) and M*(A) respectively. Since A is a perfect BAO,
the element of A interpreting Op is the join of the completely join-prime elements below it. Hence, if
i€ J”(A)and i < OOp, because ¢ is completely join-preserving on A, we have that

i<o(\/ljes~@ | j<op)=\/(0jlje &) and j <oOp),

which implies that i < ¢ jy for some jo € J*(A) such that jo < Op. Hence, we can equivalently
rewrite the validity clause above as follows:

AEVYpYivm[(Jji<<Qj & j<Op) & OOp<m)=i<m] (1.3)
and then use standard manipulations from first-order logic to pull out quantifiers:
AEVpYIVMVj[i<O) & j<Op & OOp<m)=i<m] 1.4)

Now we observe that the operation O preserves arbitrary meets in the perfect BAO A. By the gen-
eral theory of adjunction in complete lattices, this is equivalent to O being a right adjoint (cf. [11,
Proposition 7.34]). It is also well known that the left or lower adjoint (cf. [11, Definition 7.23]) of
O is the operation 4, which can be recognized as the backward-looking diamond P, interpreted with
the converse R™! of the accessibility relation R of the frame # in the context of tense logic (cf. [2,
Example 1.25] and [11, Exercise 7.18] modulo translating the notation). Hence the condition above
can be equivalently rewritten as:

AEVpYIiVMVYj[(i<Oj & ¢j<p & OOp<m)=>i<m] (1.5
and then as follows:
AEViVmVj[i<<¢) & dp(@j<p & OOp<m)) = i<m] (1.6)

At this point we are in a position to eliminate the variable p and equivalently rewrite the previous
condition as follows:
AEVYiVvmYj[(i< ¢j & 00ej<m)=i<m]. (L.7)

Let us justify this equivalence: for the direction from top to bottom, fix an interpretation V of the
variables i, j, and m such that i < ¢j and OO 4j < m. To prove that i < m holds under V, consider the
variant V* of V such that V*(p) = #j. Then it can be easily verified that V* witnesses the antecedent
of (1.6) under V; hence i < m holds under V. Conversely, fix an interpretation V of the variables i,
jand m such thati < ¢j & dp(®j < p & OCp < m). Then, by monotonicity, the antecedent of
(1.7) holds under V, and hence so does i < m, as required. This is an instance of the following result,
known as Ackermann’s lemma ([1], see also [6]):

Lemma 1.2. Fix an arbitrary propositional language L. Let a,B(p), y(p) be L-formulas such that «
is p-free, B is positive and vy is negative in p. For any assignment V on an L-algebra A, the following
are equivalent:



1. A,V EBa/p) <yla/p);
2. there exists a p-variant V* of V such that A,V* = a < pand A,V* E B(p) < y(p),
where B(a/p) and y(a/ p) denote the result of uniformly substituting a for p in 8 and y, respectively.

The proof is essentially the same as [9, Lemma 4.2]. Whenever, in a reduction, we reach a shape in
which the lemma above (or its order-dual) can be applied, we say that the condition is in Ackermann
shape. If we relax the requirement that p does not occur in @ and are willing to admit fixed point
operators in our (correspondence) language, we can formulate the following more general version of
the Ackermann lemma (see also [7]):

Lemma 1.3. Let a(p), B(p), and y(p) be L-formulas, with a(p) and B(p) positive in p, and y(p)
negative in p. For any assignment V on a complete L-algebra A, the following are equivalent:

1. A,V E Bup.a(p)/p) < yup.a(p))/p);
2. there exists a p-variant V* of V such that A, V' = a(p) < p, and A, V' E B(p) < v(p),
where up.a(p) denotes the least fixed point of a(p), and need not be an expression in the language L.

Proof. We begin by noting that, since we are working in a complete lattice, least fixed points of mono-
tone operations exist by the Knaster-Tarski theorem. As regards ‘1 = 2, let V'(p) := V(up.a(p)).
As regards 2 = 1°, A,V’ E a(p) < p implies that V'(p) is a pre-fixed point of a(-),°> and hence
pp-a(p) < V'(p). Therefore, B(up.a(p)/p) < BV (p)) < y(V'(p)) < y(up-a(p)/p). O

Taking stock, we note that we have equivalently transformed (1.1) into (1.7), which is a condition
in which all propositional variables (corresponding to monadic second-order variables) have been
eliminated, and all remaining variables range over completely join- and meet-prime elements. Via
the duality, the latter correspond to singletons and complements of singletons, respectively, in Kripke
frames. Moreover, 4 is interpreted on Kripke frames using the converse of the same accessibility
relation used to interpret O. Hence, clause (1.7) translates equivalently into a condition in the first-
order correspondence language. To facilitate this translation we first rewrite (1.7) as follows, by
reversing the reasoning that brought us from (1.1) to (1.2):

A EVj[O) < Ooejl.
By again applying the fact that O is a right adjoint we obtain

A EVjedj < Cejl. (1.8)
Recalling that A is the complex algebra of ¥ = (W, R), this gives Yw(R[R™'[w]] € R '[R[w]].
Notice that R[R™![w]] is the set of all states x € W which have a predecessor z in common with w,
while R~1[R[w]] is the set of all states x € W which have a successor in common with w. This can be
spelled out as
VaxVYw(dz(Rzx A Rzw) — Ay(Rxy A Rwy))

or, equivalently,
VZVxVw((Rzx A Rzw) — dy(Rxy A Rwy))

which is the familiar Church-Rosser condition.

SHere a(-) is obtained from the term function « by leaving p free and fixing all other variables to the values prescribed
by V.



1.3 The basic calculus for correspondence and recursive Ackermann rules

The example in Section 1.2 illustrated the main strategy for the elimination of second order variables.
We transformed the initial validity condition into a shape to which Ackermann’s lemma was applicable
(i.e., into Ackermann shape). Two order-theoretic ingredients were used to reach Ackermann shape,
namely:

(a) The ability to approximate elements of the algebra from above or from below using completely
join-prime and completely meet-prime elements;

(b) the fact that O is a right adjoint. More in general, in perfect distributive lattices with operators,
all the operations interpreting the logical connectives are either residuals or adjoints.

We can repackage these two observations, together with Ackermann’s lemma, in the form of
proof rules, grouped in the following types: the approximation rules, residuation/adjunction rules and
Ackermann rules. These rules, together with the strategy governing the order of their application, as
illustrated in Section 1.2, constitute the algorithm ALBA, a rigourous specification if which can be
found in [9, Section 6]. ALBA takes an inequality in input, preprocesses it and transforms it into
one or more expressions known as quasi-inequalities: given a propositional language £, an L-quasi-
inequality is an expression of the form ¢ < Y1 & -+ & ¢, < ¥, = ¢ < where the ¢;, i, ¢ and ¥
are L-formulas.

ALBA’s goal is to transform all the obtained quasi-inequalities into (sets of) pure quasi-inequalities,
i.e., into quasi-inequalities in which no propositional variables occur. If such a state is reached, we
say ALBA succeeds on the input inequality.

First approximation rule. This rule is applied only once to transform an inequality into a quasi-
inequality (as in (1.2)) after some possible preprocessing.

gy
Vivm[(j< ¢ & ¢y <m) =i <m]

(FA)

Approximation rules. Each of the following rules can be proved sound with an argument similar to
that used in Section 1.2 to justify the transition from (1.2) to (1.3). For more details, see [9, Lemma
8.4].

Of <m j< oy
A
InOn<m &y <n) (DAppr) FG<oi&i<y) (CAppr)
X ¢g<m ¥ —>@<m
A A
FGop=m&ijsp PP Sy S nsm&gsm (PP
EXCY (=Appr1) L 4 (—Apprz)

dji<j-e&j<y Ini<y-n&¢<n)



Adjunction and residuation rules. Each of the following rules can be proved sound with an ar-
gument similar to that used in Section 1.2 to justify the transition from (1.4) to (1.5), cf. [9, Lemma
8.4].

VY <Y p<xVy p<x =Y
o<y x<y (VLA) X<y (VRR) PAX <Y (=RR)
UV<pAx XANY <@ X—y<op
— =7t (ARA) 2" =F (ALR) +—"=F (-LR
Y<e Y<x (ARA) X<¢Yy—p (ALR) Xswvso( )

Specifically, the rules in the left column above are justified by the fact that V and A are respectively
the left and the right adjoint of the diagonal map A, defined by the assignment a — (a, a); the ones in
the middle and right hand columns above are justified by V and A being respectively the right residual
of — and the left residual of —. For ¢ and O we have:

Qo Y

T (OLA)

% (ORA)

*p <y

Ackermann rules. The soundness of the following rules is justified by Lemma 1.2 and its symmetric
version.

&L i < p & &1 Bi(p) < vi(p)] A L&' Bi(p) < vi(p)]
&L BV, ailp) < vi (VL @il p) &'\ Bi(L/p) < vi(L/p)

& p < ai & &y vi(p) <Bi(p)] A &, 7i(p) < Bi(p)]
&' i\, @il p) < BN, @il p) &' vi(T/p) < Bi(T/p)

The rules above are subject to the restrictions that the a; are p-free, and that the y; and the §; are
respectively negative and positive in p. Notice that the rules (L) and (T) can be regarded as the
special case of (RA) and (LA) in which @ := L and « := T, respectively.

Unlike the rules given in the previous paragraphs which apply locally and rewrite individual in-
equalities, the Ackermann rules involve the set of inequalities in the antecedent of a quasi-inequality
as a whole. A quasi-inequality to which one of these rules is applicable is said to be in Ackermann
shape. In particular, this requires that either all positive occurrences of p occur in display in inequali-
ties of the form a; < p (in the case of (RA)), or that all negative occurrences of p occur in display in
inequalities of the form p < @; (in the case of (LA)).

The interested reader may find many examples of correspondence reductions making use of these
rules in [9] and [5].



Recursive Ackermann rules. Lemma 1.3 proves the soundness of the following more general re-
cursive Ackermann rules, which allow us to eliminate a propositional variable p even if the a; are
not p-free. Note that the recursive Ackermann rule is not part of the original specification of ALBA
as given in [9]. However, it can be incorporated into ALBA executions as illustrated in [5, Section
36.8.1] and also in Section 6, below.

L&, ailp) < p & &L Bi(p) < ¥i(p)]
&'y BiuX [V ai(X)]/p) < v(uX. VL, ai(X)]/p)

(RAvec)

L&, p < aip) & &Ly vi(p) < Bi(p)]
&L v X AL @i(X]/p) < Bi(vXINL, ai(X)]/p)

(LAVEC)

The rules are applicable subject to the restrictions that the a;(p) and ; are positive in p, that the y; are
negative in p, and X is a fresh fixed point variable. Notice that these define a generalized Ackermann
shape.

2 ALBA for bi-intuitionistic modal mu-calculus: setting the stage

The machinery reviewed above works as it stands also for the reduction of some mu-inequalities. For
instance, the inequality vX.O(p A X) < p (cf. [22, Section 5.3]) can be reduced as follows:

YplvX.o(p A X) < p]
iff VpVivm[(i<vXOpAX)& p<m)=i<m]
(%) iff Vivm[@{<vX.omA X) = i<m]
iff Ym[vX.Om A X) < m].

The equivalence marked with () is an application of the rule (LA), which can be applied because
the term function B(p) = vX.O(p A X) is monotone in p. So all the steps in the previous chain of
equivalences can be justified purely in terms of the principles of order-theoretic algorithmic corre-
spondence we have seen above, without the need for any new rule dealing specifically with the fixed
point binders. This is possible because the quasi-inequality is already in Ackermann shape after first
approximation, and hence we did not need to extract any occurrences of p from under fixed point
binders. We will return to this inequality in Example 3.3 and Section 4.2.

Our aim in this paper is to extend these techniques to a larger class of mu-inequalities, including
those defined in [22], in which fixed point binders occur in more essential ways. In order to do this
we will need to

1. analyze the order-theoretic properties of the term functions associated with mu-calculus formu-
las, which we do in Section 2.1.

2. define the bi-intuitionistic syntactic and semantic settings for mu-calculus, which we do in
Section 2.2.

3. on the basis of the analysis in Section 2.1 formulate approximation and adjunction rules for
fixed point binders. This we do in Sections 2.3 and 2.4.
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To complete our account it would be sufficient to define a syntactic class of bi-intuitionistic mu-
inequalities, as is done in Section 3, and then show that the algorithm enhanced with the rules above
succeeds on all its members. However, some non-trivial further justification needs to be given as to
how the rules of Sections 2.3 and 2.4 are applicable to the syntactic specifications of Section 3. This
is further discussed in Section 2.5.

2.1 Preservation and distribution properties of extremal fixed points

For L and M complete lattices and G : M X L — L, let uy.G : M — Land vy.G : M — L be
the maps respectively given by b — LFP(G(b,y)) and b — GFP(G(b,y)) for each b € M such that
LFP(G(b,y)) and GFP(G(b,y)) are defined, where LFP(G(b,y)) and GFP(G(b,y)) denote the least
and greatest fixed points of the map G(b,y) : L — L, respectively.

For each such G, and every ordinal «, let G* (b, y) be defined by the following induction: G%(b, y) =
y, G*Y(b,y) = G(b, G¥(b,y)) and for A a limit ordinal, G¥(b,y) = A,<, G*(b,y). Also, for a map
F : L — L we define F¥' (x) for all ordinals « by induction as follows: F¥(x) = x, F**'(x) = F(F{(x))
and FU(y) = V) FY(0).

Lemma 2.1. Let L, M and G be as above.

1. If G : M X L — L is completely meet-preserving, then the map g : M — L defined by the
assignment b — G*(b, T) is completely meet-preserving for every ordinal k.

2. If F : L - M X L is the left adjoint of G, and F1 : L - M and F, : L — L are such that
F = (F1, Fy), then F| and F, are completely join-preserving.

3. If F, F| and F, are as in the previous item, then for every ordinal k, the left adjoint of g* is the
map defined by the assignment a — Fi(aV \/ v F g "(@)).

4. If G is completely meet-preserving, then vy.G : M — L is defined everywhere on M, and is
completely meet-preserving.

5. If G is completely meet-preserving, then the left adjoint of vy.G is the map defined by the as-
signment a — Fi(aV uy.Fay(aVy)).

Proof. 1. Let S € M. We proceed by induction on x: we have G'(A S, T) = G(\S,T) =
GN(s,T) | s €S} = AG(s,T) | s € S} = AN{G'(s,T) | s € S}, where the penultimate
equality holds by the assumption that G : M X L — L is completely meet-preserving and the
fact that the second coordinate is T.

Assume the claim holds for « and consider the case for « + 1:

G DA S, T) G(\S.GH(\S,T)

= G(AS,A\G*(s,T)|s€S}) (Induction hypothesis)

= G(M\(s,G*(s, T) | s €S}

= AG(s,G(s,T)) | s€ S} (G completely meet-preserving)

= AGK D5, T) | ses).

If A is a limit ordinal, then

11



GYA\S,T) =

Aeca GHAS. T)
Ni<a /\{GKL(s, T)|seS} (Induction hypothesis)
Ases NMGY(s, T) | k < A} (Associativity and commutativity)

Nses GU(s, T).

2. Let S C L. The inequality \/{F(s) | s € S} < F1(\V/ S) follows immediately from the fact that
F is order-preserving and hence F| and F, are. Conversely, fix b € M arbitrarily, suppose that
V{Fi(s)| s €S} < band let us show that F{(\/ S) < b:

V{Fi(s)|seS}<b iff Fi(s)<bforeachseS

iff F(s)<(b,T)foreachseS
iff s<Gb, T)foreachse S
iff VS <GOb,T)

iff F(\/S)<(b,T)

iff Fi(\V/S)<b.

The case for F, can be proved similarly.

3. We proceed by induction on «. If x = 1, then for every a € L and b € M, we have that
a<GMb,T)iff F(a) < (b, T)iff Fi(a) < b and Fy(a) < T iff Fi(a) < b, which proves the base

case.

Assume the claim holds for « and consider the case for « + 1:

a<G¥Op 1) iff a<Gb,GHb,T))

iff  F(a) < (b,G¥(b,T))

iff Fi(a) < band Fa(a) < G(b, T)

iff  Fi(a) < band Fi(Fa(a)V Vo Fi (F2(@) < b
it Fi(a) V Fi(Fa(@) V Vo F5 (F2(@) < b

iff  Fi(a)V Fi(Fa(a) V \yceapsr Fi (@) < b

iff  Fi(aV F2(a) V Voco ot FiN @) < b

iff  Fi(aV Ve F5'(@) < b,

Let A be a limit ordinal and assume that the claim holds for all ¥ < A:

a<GYb,T) iff
iff
iff
iff
iff
iff

a < A<t GV, T)

a < G*(b, T) for every k < A

Fi(aV V<« Fglr(a)) < bforevery k < A

Ve FiaV Voo Fs (@) < b

Fi@aV Ve Vea FE @) < b (by item 2 above)
Fi(aV V. F§(a) <b.

4. Since G is completely meet-preserving, G is monotone in each coordinate. Hence, by the
Knaster-Tarski theorem, vy.G is everywhere defined. By the general theory of fixed points (see
[13]), for all b € M, we have vy.G(b,y) = A G*(b, T). Hence,

12



vy.G(A\S,y)

5. Forallae Landb € M,

a <vy.G(b,y) iff
iff
iff
iff
iff
iff
iff

/\KZI GKL(/\ S7 T)
Aes1 MG (s, T) | s €S} (item 1 above)
Ases MG (s, T) | k > 1} (Associativity and commutativity)

Nses vy.G(s,y).

a < N1 G, T)

a < G%(b, T) for every k > 1

FiaV V< F;lr(a)) < bforeveryk > 1 (byitem 3 above)
Va1 FiaV Voo Fy (@) < b

Fi(aV V1 Ve Fg,r(a)) <b (by item 2 above)
Fi(@V Ve Fy(@) < b

Fi(aV py.Fa(aVy)) <b.

O

Remark 2.2. In the following sections we will use the lemma above with M = L¢ for some order type

e over n. In such a setting the map F| : L — L€ takes the form (Fy,..

., F1,) where Fy; : L — L€

for each 1 < i < n. Hence the left adjoint of vy.G(x,y) : L* — L is the map defined by the assignment

a (Fii(aVvuy.Faavy)),...

,Fia(a Vv uy.Fa(a Vv y))), ie., foralla € L and belLs,

a<vy.G(b,y) iff 1§l£n FiiaV uy.Fa(aVy) < b;.

Lemma 2.3. Let L, M| and M, be complete lattices.

1. If f : L — L preserves all finite non-empty joins and g; : M; — L, i € {1,2}, then

px.[f(0) VvV (g1(x1) V g20x2))] = ux.[f(x) V g1(x)] V ux.[f(x) V g2(x2)].

2. If f: L — L preserves all finite non-empty meets and g; - M; — L, i € {1,2}, then

vx.[f(x) A (g1(x1) A g2(x2)] = vx.[f(x) A g1(x)] A vx.[f(x) A ga(x2)].

Proof. We only prove item 1, item 2 being order dual.
px.Lf () V (g1(x1) V g2(x2))]
Vi (F41 L)V f4g1001) V 2(x2)))
Vo (FHLD Y F4G1GDN) V Vieso (£41(L) V A (82(x2))

pxLf(0) V gr(xD)] V px.[f(x) V g2(x2)].

O

In applying the lemma above, M| and M, will typically be powers of L. Accordingly, x; and x;
will tuples of variables which we will write as x| and x;.
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2.2 The bi-intuitionistic modal mu-language and its semantics

Syntax. Let AtProp and FVar be disjoint sets of propositional variables and of fixed point variables
(the elements of which are respectively denoted by p,q,r and by X, Y, Z). Let x,y, z be general pur-
pose variables, which can be either used as place-holder variables, or as generic variables ranging in
AtProp U FVar. Let us define, by simultaneous recursion,

(a) the set £ of bi-intuitionistic modal mu-formulas® over AtProp and FVar,

(b) their signed (positive or negative) generation trees, and

(c) the set FV(¢p) of their free variables,

as follows: T and L are bi-intuitionistic modal mu-formulas; their *-signed generation trees (for
* € {+,—}) consist of the single nodes *T and =L, respectively, and FV(T) = FV(L) = @. Any
X € AtProp U FVar is a bi-intuitionistic modal mu-formula; its *-signed generation tree (for * € {+, —})
consists of one node, labelled by *x, and FV(x) = {x}. If ¢ and ¢ are modal mu-formulas, then so
are o Ay, Vi, o — U, — Y, 0p, Op; for © € {A, V, 0O, O}, their *-signed generation tree consists
of a root node, labelled by *®, whose only child (children) is (are) the root(s) of the *-signed gen-
eration tree(s) of the immediate subformula(s); the =-signed generation tree of ¢ — i consists of a
root node, labelled by * —, whose only children are the roots of the #°-signed generation tree of ¢
and of the *-signed generation tree of ¢ (where *° = + if * = — and *? = — if * = +); the *-signed
generation tree of ¢ — ¢ consists of a root node, labelled by *—, whose only children are the roots
of the *-signed generation tree of ¢ and of the *’-signed generation tree of ¢; for © € {O, ¢}, we let
FV(©p) = FV(p), and for © € {A,V,—,—}, we let FV(p O y) = FV(p) U FV(p). If every free oc-
currence of X in the positive generation tree of ¢ is labelled positively, then uX.¢ and vX.¢ are modal
mu-formulas; for ® € {uX, vX}, the =-signed generation tree of ©.¢ consists of a root node, labelled by
*©, whose only child is the root of the #-signed generation tree of ¢; we let FV(0.¢) = FV(p) \ {X}.
An occurrence of X in ¢ is bound if X ¢ FV(p). A sentence is a modal mu-formula with no free fixed
point variables. The symbol ¢(py, ..., pn, X1, ..., Xi) indicates that the propositional variables and free
fixed point variables in ¢ are among p1, ..., p, and X1, ..., X, respectively; in @(p1, ..., Pn, X1, --es Xim)»
which we will typically abbreviate as ¢(p, )_(), the variables p1, ..., pu, X1, ..., X;y Will be understood as
pairwise distinct. For modal mu-formulas ¢ and ¢ and x € AtProp U FVar, the symbol ¢(i/ x) denotes
the mu-formula obtained by replacing all free occurrences of x in ¢ by .

Semantics and the expanded language £*. The non-fixed point fragment of this language can be
interpreted on several types of relational structures such as those described in the Section 1.1; each
interpretation yields a different corresponding definition of complex algebra. Irrespective of these
differences, the complex algebras of these relational structures are always perfect modal bi-Heyting
algebras (see Definition 1.1 in Section 1.1). Each operation in such a perfect algebra is either a
residual or an adjoint (see e.g. [11]). The core of the theory presented in this paper can (and will)
be developed only on the basis of these properties, hence independently of any particular choice of
relational dual semantics.

Term functions are associated with £-formulas in the usual way, see e.g., [4, Definition 10.2]. In
particular, as to the interpretation of fixed point binders, if ¢(p, Y, )_() is positive in Y, then its associated
term function is monotone in Y and hence, by the Knaster-Tarski theorem, for every given assignment

SHenceforth we will sometimes refer to bi-intuitionistic modal mu-formulas as modal mu-formulas, mu-formulas, or
simply formulas.
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of elements to p and X, the resulting function in Y has a greatest and a least fixed point, which are,
respectively, the values for vY.¢(p, Y, X) and uY.¢(p, ¥, X) under the given assignment.

As discussed in [9] for the case of distributive and intuitionistic modal logic, the special properties
of perfect (distributive) lattices make it possible to define an interpretation for the following expanded
modal mu-language L, which is built over AtProp U FVar U NOM U CNOM, where the variables
i,j € NOM (called nominals) and m,n € CNOM (called co-nominals) are respectively interpreted in
any perfect bi-Heyting algebra C as elements of J*(C) and of M*°(C) (see Section 1.1), additionally
closing under the modal operators ¢ and m (respectively interpreted in C as the left adjoint of o®
and as the right adjoint of ©©). The *-signed generation tree and set FV(¢) of any £*-formula ¢ are
defined as in the case of £-formulas. A formula of L7 is pure if it contains no p € AtProp.

Notational conventions. For every formula ¢, let =¢ and ~¢ abbreviate ¢ — L and T — ¢ re-
spectively. An order-type over n € N is an n-tuple € € {1,0)". For every order-type e, let €’ be
its opposite order-type, i.e., e? = 1iff = 0 for every 1 < i < n. In what follows we will find it
convenient to use the following conventions: we write T' and T? for T and L respectively; likewise,
we write 1! and 12 for 1 and T respectively. Analogous conventions will hold for A, V,u, v, <; in
particular, A9 VO, ua, v, <9 will respectively denote V, A, v, i, >. The exponent in these conventions
will typically be a generic ¢ for some order-type €. Hence, for instance, L% will denote L if = 1
and T if ¢ = 0. Similarly, j¥ denotes a nominal if ¢ = 1 and a conominal if ¢ = d, and dually,
n denotes a conominal if ¢, = 1 and a nominal if ¢ = d. We will use the symbols &, %, and =,
interpreted as conjunction, disjunction, and implication, respectively, to combine .L*-inequalities into
quasi-inequalities. Given two tuple of variables x and y, denote by x @ y their concatenation.

A glimpse at the first-order correspondence language. Pure formulas can be equivalently trans-
lated over the relational semantics (see Section 1.1) via a well known standard translation process,
similar to the one defined in [7], see also [9] and [5]. This translation targets the associated first-order
correspondence language augmented with least fixed points (see [13]). Since there are many options
when it comes to relational dual semantics for non-classical logics of this type, we have chosen not
to commit to a specific translation, but to focus only on the reduction process up to the elimination
of propositional variables, as this remains invariant, irrespective of the choice of the specific rela-
tional semantics. Depending on this choice, the final propositional variable-free clause above will
then receive different translations.

2.3 Approximation rules and their soundness

Let € be an order-type on an n-tuple x. Recall that j¥ denotes a nominal if ¢ = 1 and a conominal if
€ = 0. Dually, n“ denotes a conominal if ¢, = 1 and a nominal if = . We let i,-e be the n-tuple
whose i-th coordinate is i¥ and whose j-th coordinate is L% for all j # i. Dually, we let n;® be the
n-tuple whose i-th coordinate is n and whose j-th coordinate is T¢ for all j # i.”

i < uXy@/% X,2)
D@6 < uXy( /7 XD & § <G ¢])

(ue-A)

70f course, if we fix a value for i, then i,-E denotes the element in J*(A€) corresponding to i in the i-th coordinate.
Dually, n;° ranges in M®(A€) in an analogous way.
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vX.o/%,X,7) <m
X (A [vX.oM /X, X,7) < m & ; < n])

(5-A)

where

1. in each rule, the tuples x and 7 are disjoint, and the variables X € Var do not occur in any
formula in ¢ or in g;

2. in (u°-A) the associated term function of ¥(x, X, z) is completely \/-preserving in (x, X) € C*XC,
for any perfect modal bi-Heyting algebra C;

3. in (¥*-A) the associated term function of ¢(, X, 7) is completely A-preserving in (x, X) € C*XC,
for any perfect modal bi-Heyting algebra C.

The soundness of (u€-A) is proven in the following proposition and that of (v¢-A) is dual.

Proposition 2.4. Let (X, X,7), ¢ € L* such that X and 7 are disjoint and the term function associated
with Y(x, X, 7) is completely \/-preserving in (x,X) € C¢ X C. Let V be an assignment on C. Then the
following are equivalent:

2 CV Ei< uX.w(jiE/i, X,7) and C,V' E j9 <% o; for some j-variant V' of V, and some
1<i<n

Proof. (2) = (1) follows by e-monotonicity. Conversely, assume that C, V E i < uX.(p/x, X, 7). The
assumption implies, by the order dual of Lemma 2.1.1 with M = C€ and L = C, that the term function
associated with uX.y(x, X, z) obtained by fixing z according to V is completely join-preserving in C€.
Since C, and hence C¢, is a perfect modal bi-Heyting algebra, we have:

HXY@/%,X,2) = \/ Xy X D) | j € I (C) & j < ).

Since V(i) € J*(C), this implies that V(i) < uX.(jo, X,7) for some jo € J*(C®) such that jy < .
Notice that j is an n-tuple which is equal to L= except for exactly one coordinate, the i-th say, which
is equal to some jo; € J7(C%). Let V’ be the j%-variant of V which sends j to jy; € J*(C%). Then
(2) holds under this choice of i and V’. O

Example 2.5. Consider the inequality uX.[~vY.[(Y A g) A =(X V ~p)] ATOOp] < O(p A O-g). After
first approximation we get:

VpVgvivm[(i < uX.[~vE[(Y AQ) A ~(XV ~p)l AOOPpl & O(p AO-g) <m) =>i<m]. (2.1

The formula on the left-hand side of the inequality is a substitution instance of uX.y¥/(p/x, q/y, X,00p/z),
where = ~vY.[(Y Ay) A =(X V ~x)] A z. The term function associated with i is completely join-
preserving in (x,y, X) for the order-type € = (9, 1) on (x,y). Hence, we can apply (u-A) to the first
inequality in the antecedent of the quasi-inequality above, which transforms it into:

Fji < uX.[~VY[(Y A L) A =(X V ~j)] A OOp] & j& <& p)
¥ Jjol < uX[VE[(Y AJO) A ~(X V ~LE)] A DOP] & j& <5 q),
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which, recalling that €, = d and €, = 1, becomes

In, (i < uX.[~VY[(Y A L)A=~(XV ~n)] AOOp] & p < ny)
®  dj(i < puX[VY[Y Ajy) A(XV~T)]ADOOp] &y < ),

which can be further simplified to

dn,i<oOp & p<ny)
% djy(i < puX[~vY[(Y Ajy) A=X]TADOOp] &y < ).

Substituting the clause above into (2.1), and distributing first & and then = over %, we obtain the
conjunction of the following two quasi-inequalities, on each of which we can proceed separately:

VpVgVivmVn, [ <o0p & p<n, & O(p AO-g) <m) =i <m]. (2.2)

VpVg¥ivmVj, [ < uX.[~vY.[(Y A J) A-X]IADOOp]l & jy < q & O(pAO-g) <m) = i<m]. (2.3)

In the quasi-inequality (2.2), the variable ¢ can be eliminated by an application of (T), which trans-
forms &(p A O—g) < m into Op < m; now, after applying the adjunction rule (OLA) to the latter
inequality, we get

VpYivmyn,[i<oOp & p<n, & p <mm) =i <mj,
which is in Ackermann shape for (LA), applying which yields
VivmVyn,[i < 00(ny A mm) = i < m],

from which all remaining occurrences of propositional variables have been eliminated. The quasi-
inequality (2.3) is in Ackermann shape with respect to g; applying (RA) yields:

YpVivmVj,[(i < uX.[~VvY.[(Y A j,) A =X] ADOOp] & O(p AO=jy) <m) = i <mj.
Applying (OLA) and then (ALR) to &(p A O=j,) < m yields
VpVivmVj,[(i < uX.[~vY[(Y Ajy) A =X] ADOOp] & p < O-jy, — EmM) = i <m],
which is in Ackermann shape; applying (LA) yields
VpVivmVj,[i < uX.[~vY[(Y A jy) A =X] A OO(O-j, — Em)] = i < m],

from which all remaining occurrences of propositional variables have been eliminated.

2.4 Adjunction rules and their soundness

X S vXp(@/x, X,7)
&?:1 Fii(xVuY.Fo(y vV Y,2),2) <% ¢;

(v°-Adj)

where ¢, ¢,y € L*, the arrays of variables x and 7z are disjoint, X has arity n, the term function
associated with ¢(X, X, 7) is a right adjoint in (x, X) € C¢ x C for any perfect modal bi-Heyting algebra
C,and F = ((F1,(;,2)",, F2(y,2)) : C = C¢ x C s its left adjoint.

=1’
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uX YW /%,X,7) < x
& i <6 G1i(x AvYGa(y A Y,2),2)

(ue-Adj)

where i, :Z, x € L%, the arrays of variables x and 7 are disjoint, X has arity n, the term function
associated with ¥ (X, X, 7) is a left adjoint in (¥, X) € C* x C for any perfect modal bi-Heyting algebra
C, and G = ((G1,;(y,2)",, G2(y,2)) : C — C* x C s its right adjoint.

i=1’
The next proposition formally states and proves the soundness of (v¢-Adj). The soundness of the
rule (u€-Adj) can be proven similarly using an order-dual version of Lemma 2.1.

Proposition 2.6. Let (X, X,7), x, and F be as in (v¢-Adj). Let C be a complete modal bi-Heyting
algebra and let V be an assignment on C. Then the following are equivalent:

1. C,V E x <vX.o(@/x,X,2),
2. C,VE &L Fiix VuY.Fyy VvV Y,2),2) < ¢,

Proof. The statement immediately follows from Lemma 2.1.5 with M = C¢, L = C, and G the term
function (X, X, V(2)), cf. Remark 2.2. O

2.5 From sematic to syntactic rules

The conditions of applicability of the rules defined in Sections 2.3 and 2.4 are given in terms of the
order-theoretic properties of the term functions associated with the argument of the fixed point binder.
This makes the present formulation of these rules unsuitable for inclusion in an extended calculus
for correspondence, which is supposed to be a purely syntactic tool. This also makes the practical
application of these rules very inconvenient, since the order-theoretic properties have to be verified
each time. These difficulties are further compounded by the fact that, unlike other approximation
and adjunction rules that apply to a single connective at a time, here we need to consider an entire
subformula as a whole. Another serious difficulty is posed by the conclusions of the adjunction rules,
which give no information as to how the F; and G; are to be computed, or whether they are expressible
as L*-term functions at all. It is therefore highly desirable to have syntactic versions of these rules.

In Section 4, a syntactic class of formulas, called the inner formulas, is defined which is shown
to verify the assumptions for the applicability of the approximation and adjunction rules. In Section
5, an effective procedure is given for computing the corresponding F; and G; as £"-term functions
when the adjunction rules are applied to inner formulas. In Section 7, the inner formulas are used to
show that the extended ALBA successfully computes FO+LFP correspondents for all the recursive
mu-inequalities as defined Section 3.

3 Recursive mu-inequalities and Sahlqvist mu-formulas

In the present section, the definition of recursive inequalities for the signature of bi-intuitionistic modal
mu-calculus is introduced. The style of this definition closely follows that of [9], in that is grounded on
a certain classification of the nodes in the signed generation trees of formulas (cf. Table 1). However,
one major difference with [9] is that the classification of nodes adopted in the present paper is based on
the order-theoretic properties which the operations interpreting the logical connectives enjoy, rather
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than on those they lack. This is reflected in the names of the groupings in Table 1: SLA, SRA, SLR
and SRR stand for syntactically left adjoint, syntactically right adjoint, syntactically left residual and
syntactically right residual, respectively. For further discussion see [5, Section 36.7]. In order to
establish connections with the model-theoretic analysis conducted in [22], nodes are firstly classified
as inner and outer skeleton nodes and PIA nodes, cf. Table 1. This order-theoretic classification is
then applied within these categories.

Note that in Table 1 an array of signed connectives wider than that of the language of bi-intuitionistic
modal mu-calculus is classified. This serves as a template for extending the definition of e-recursive
inequalities to different languages. Specifically, the extra connectives o, x, <, and > serve as generic
connectives which respectively are (completely) join-preserving in each coordinate, (completely)
meet-preserving in each coordinate, (completely) meet-reversing®, and (completely) join-reversing.
Notice, in particular, that the order-theoretic behaviour of the defined connectives ~ and — matches
that of < and >, respectively, and hence they will be classified in the same way as < and .

3.1 Recursive mu-inequalities

Recall that an order-type over n € N is an n-tuple € € {1,9}". For every order-type e, let €’ be the
opposite order-type, i.e., ela =1liffg =0forevery 1 <i<n.

For any L-sentence ¢(p1,... pn), any order-type € over n, and any 1 < i < n, an e-critical node
in the signed generation tree of ¢ is a (leaf) node +p; with ¢; = 1, or —p; with € = 0. An e-critical
branch in the tree is a branch terminating in an e-critical node. The intuition, which will be built upon
later, is that variable occurrences corresponding to e-critical nodes are fo be solved for, according to €.
Sometimes, abusing terminology, we will talk about order-types € over arrays x of variables, meaning
that for every x; in x there is an ¢ in € which applies to it.

For every L-sentence ¢(p1, ... pn), and every order-type €, we say that +¢ (resp. —¢) agrees with
€, and write e(+¢) (resp. €(—y)), if every leaf node in the signed generation tree of +¢ (resp. —¢)
which is labelled with a propositional variable is e-critical. In other words, e(+¢) (resp. e(—¢)) means
that all propositional variable occurrences corresponding to leaves of +¢ (resp. —¢) are to be solved
for according to e. We will also make use of the sub-tree relation y < ¢, which extends to signed
generation trees, and we will write e(y) < *¢ to indicate that y, regarded as a sub- (signed generation)
tree of x¢p, agrees with e.

Definition 3.1. Nodes in signed generation trees will be called skelefon nodes and PIA nodes accord-
ing to the specification given in Table 1. A branch in a signed generation tree =, for * € {+,—},
ending in a propositional variable is an e-good branch if, apart from the leaf, it is the concatenation
of three paths P, P,, and P3, each of which may possibly be of length 0, such that Py is a path from
the leaf consisting only of PIA-nodes, P, consists only of inner skeleton-nodes, and Pz consists only
of outer skeleton-nodes. Moreover,

1. The formula corresponding to the uppermost node on P is a mu-sentence.

2. On any SRR-node in P; of the form y ® 8, where 8 is the side where the branch lies, vy is a
mu-sentence and €’ (y) < *¢p (see above for this notation).

8For any complete lattices P, Q, amap f : P — Q is completely join-reversing if f(\/ S) = A{f(s) | s € S} for any
S C P, and completely meet-reversing if f(A S) = V{f(s)| s€ S} forany S C P.
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Outer Skeleton Inner Skeleton PIA
A-adjoints Binders Binders
+ VvV A + u + v
- AV -V - M
SLR SLA SRA

+ & 4 o - + O <V + O > A

- o > *x - - o > A - O <V
SLR SRR

+ A o - + VvV *x -

-V *x = - AN o —

Table 1: Skeleton and PIA nodes.

Unravelling the condition €?(y) < ¢ specifically to the £-signature, we obtain:
a) if y © B is +(y x B), +(y V B), +(B = ¥), or =(5 — y), then €’(+y);
b)if y ©Bis +(y = B), =(y AB), =(y o B), or —(y = B, then e(+y), i.e., €(~y).

3. On any SLR-node in P; of the form y ® 5, where 8 is the side where the branch lies, vy is a
mu-sentence and €’ (y) < *¢ (see above for this notation).
Unravelling the condition €?(y) < *¢ specifically to the £-signature, we obtain:
a)if y © Bis ~(y * B),~(y V B), =(B = ¥), or +(B — y), then e(+y), i.e., €(=y);
b)if y 0 Bis —(y = B), +(y A B), +(y o B), or +(y — B), then € (+).

Definition 3.2. Given an order-type €, the signed generation tree #¢, with * € {—, +}, of an L-sentence
@(p1,...pn) is e-recursive if every e-critical branch is e-good. Such a signed generation is non-
trivially e-recursive if contains at least one e-critical branch.

An L-inequality ¢ < i is e-recursive if the signed generation trees +¢ and —y are both e-recursive.
An L-inequality ¢ < is recursive if it is e-recursive for some order-type €.

The signed generation tree *p, with = € {—, +}, is e-PIA if it is e-recursive and all e-critical
branches consist only of PIA-nodes. Such a signed generation is non-trivially e-PIA if contains at
least one e-critical branch.

Example 3.3. The inequality vX.O(p A X) < p, corresponding to the formula vX.0(p A X) — p from
[22, Section 5.3] was discussed at the beginning of Section 2. This inequality is e-recursive for € = (1)
and € = (). In Section 2 we gave the ALBA-reduction according to € = (d). In Section 4.2 we discuss
how to do a reduction according to € = (1).

Example 3.4. The inequality vX.—(p A =X) < <Op is not e-recursive for any order-type €. Indeed, if
€, = 0 then, on the critical branch in +vX.—(p A =X), the —A is an SRR node which separates the p
and the fixed point variable X. If €, = 1 then the critical branch in —¢Op is clearly not good. On the
other hand, the unfolding of the fixed point stabilizes after the first step as T, hence the inequality is
equivalent to T < ¢Op which is e-recursive for €, = d. In fact, the first-order definability of T < &Op
already follows from the fact that it is monotone in p.
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Example 3.5. Consider the inequality
QuX.[(pVX)V ~vY[OXV ~(Y A p) A uZ~(Op A =Z))) — <Opl] < <Op.

This is e-recursive with €, = 1. Indeed, in the positive generation tree of the left-hand side, there are
two critical branches, respectively corresponding to the first and third occurrences of p in the formula,
counting from the left. The branch leading from the firstis +p, +V, +V, +uX, +<, and partitioning this
as Py =@, P, = +V,+V,+uX, and Pz = +¢ satisfies the requirements of Definition 3.2. The branch
leading from the third occurrence of p is

+p,+0, +A, —~, —/JZ,—/\,+~,+\/,+<>,— -, =Y, +~,+\/,+ﬂX, +5 ,
——

P Py P3

and partitioning it as indicated satisfies the requirements of Definition 3.2. In particular, there are no
SRR nodes, and the only occurring SLR node is — —, which satisfies condition 3(a) of the definition
since Op is a sentence and €2(—oOp).

Remark 3.6. Definition 3.2 implies that on a good branch, within P, and within P, occurrences of
nodes — and — where the branch goes through the child corresponding to the antitone coordinate need
to be in strict alternation. This can be seen, e.g., in Example 3.5 in the P,-part of the displayed branch.
This implies that, if we restrict to the signature of intuitionistic modal logic by removing —, we would
be able to change polarity at most once within the P, and P parts of a good branch. Given the further
restrictions imposed by Definition 3.1.2 and 3.1.3, this would imply that no good branch could go
through the antitone coordinate of — within the scope of a fixed point binder, thus severely restricting
the diversity of order-theoretic behaviour within the resulting class of recursive mu-inequalities. This
brings with it the added inconvenience that, when projecting onto the classical setting (see Section
3.2.2 below) we would have to restrict the range to formulas in negation normal form.

3.2 General syntactic shapes and a comparison with existing Sahlqvist-type classes

The aim of the present subsection is to position the e-recursive mu-inequalities with respect to the gen-
eral syntactic shape of Sahlqvist/Inductive/Recursive inequalities discussed in [5, Subsections 36.6.1
and 36.7.2], and to compare them with the Sahlqvist mu-formulas defined in [22, Definition 3.4].

3.2.1 Recursive mu-inequalities and the general Sahlqvist/Inductive/Recursive shape

In a series of papers including [9], [5], [8] and [10], we have been developing a general, unified theory
of correspondence, which is designed to be uniformly applicable across languages. Functional to
this purpose, general shapes of Sahlqvist-type conditions on inequalities have been developed, which
are based on the order-theoretic properties of the algebraic interpretations of the logical connectives.
These shapes are discussed in an intuitive an non-technical way in the survey paper [5, Section 36.7,
36.8.2]. In the discussion below we will therefore make reference to that paper.

It can be straightforwardly checked that the outer-skeleton nodes (see Table 1) of an e-recursive
mu-inequality satisfy the same order-theoretic requirements of the nodes of an e-Sahlqvist inequality
[5, definitions 36.6.2 and 36.6.3] in which the length of the P; paths of e-critical branches is 0. It is
also straightforward to see that, in any e-recursive mu-inequality, the e-PIA subtrees are defined in
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such a way that at most one e-critical branch may pass through any given SRR-node; as discussed
in [5, Subsection 36.7.2], this is the defining feature of e-Recursive inequalities across languages.
The specific definition of the PIA-subtrees for mu-languages incorporates extra conditions regulating
the relative positions of free fixed point variables and e-critical variables in each subtree; as we will
see further, these conditions ensure that formulas in the scope of binders have the appropriate order-
theoretic properties, ultimately guaranteeing the applicability of the u- and v-adjunction rules.

The inner skeleton essentially arises by the addition of fixed point binders, in the appropriate po-
larity, to the ‘outer skeleton’ shape. This introduction blocks the application of the A-rules (A RA)
and (V LA) (and, more generally, also the possibility of applying rules to single connectives), leaving
us with only u- and v-approximation rules. Hence, in inner skeletons, all the nodes are reclassified
according to the properties which they enjoy and which are now relevant. Similar to the PIA-subtrees,
the inner-skeleton shape incorporates extra conditions regulating the relative positions of free fixed
point variables and e-critical variables; as we will see in the remainder of the paper, these conditions
ensure that formulas in the scope of binders have the appropriate order-theoretic properties guarantee-
ing the applicability of the - and v-approximation rules.

The shape of e-recursive mu-inequalities provides a uniform ‘winning strategy’ for the success
of ALBA, analogous to the one described for e-inductive and e-Sahlqvist inequalities in [9, Section
10] and [5, Subsection 36.6.1]. Indeed, as we will show in Section 7, the order-type € tells us which
occurrences of a given variable we need to solve for so as to reach Ackermann shape, and the e-
recursive shape guarantees that this is always possible. Specifically, going down a critical branch, we
can surface the PIA-subtree, containing the e-critical occurrences of propositional variables, by means
of applications of approximation rules to the skeleton nodes. Then adjunction/residuation rules such
as (u-Adj) and (v-A) are applied to the PIA-subtrees so as to display the e-critical occurrences, and
to simultaneously calculate the minimal valuation for them. Finally, notice that the remaining occur-
rences of variables are of the opposite order-type: this guarantees that they have the right polarity to
receive the calculated minimal valuations, as prescribed by (LA), (RA) or their recursive counterparts.
An exhaustive and formal account of this procedure will be given in Section 7.

Finally, as hinted above, notice that the winning strategy outlined so far does not provide informa-
tion about which version of the Ackermann rule will actually be applied in the reduction procedure.
Should we want to guarantee that either (LA) or (RA) will be applied, and not their recursive coun-
terparts, we need to strengthen Definition 3.2 so as to guarantee that, when displaying the critical
occurrences in inequalities of the form @ < p or p < @, the formula « is p-free. This requirement can
be enforced by introducing the (€, €)-inductive mu-inequalities along the lines of the (€2, €)-inductive
DML/IML inequalities of [9, Definition 3.1]: namely, by imposing a partial ordering € upon the vari-
ables in Recursive inequalities, and demanding not only that at most one e-critical branch pass through
any given SRR-node, but also that if an e-critical branch passes through an SRR-node, all variables
occurring on other branches passing through it have to be strictly Q-smaller than the variable on the
critical branch.

3.2.2 Recursive mu-inequalities and Sahlqvist mu-formulas
In [22], the following notions are introduced in the language of classical modal mu-calculus:

Definition 3.7. The class of PIA formulas is recursively defined as follows:
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pu=plX|ler Ap | Op [ vXe |-V,

where p € AtProp, X € FVar, and 7 is a positive sentence. The class of Sahlgvist mu-formulas is
recursively defined as follows:

x=Xnl-plxyiAx2 | Oy I vXx|aVylor Vo,

where p € AtProp, X € FVar, ¢ is a PIA sentence, « is a positive sentence, and 0| and o are Sahlqvist
mu-formulas which are sentences.

Let us consider the mapping 7 from the language of classical modal mu-calculus to the language of
bi-intuitionistic modal mu-calculus recursively defined as expected (in particular, 7(=¢) := 7(§) — 1);
let us also translate formulas as inequalities by the mapping 7/(¢) := T < 7(£). Conversely, consider
the mapping A recursively defined as expected on the connectives which have a primitive classical
counterpart, and such that:

A1 —> &) = —AED) V AE)
Aé - &) A1) A —A(&E)
AVX.E(X) pX.—~&(=X/X).

Let us also translate bi-intuitionistic inequalities into classical formulas by the mapping A'(£; < &) =
—A(€1) V A(&2). We omit the proof of the following proposition, which is straightforward but tedious.

Proposition 3.8. 1. Every formula & of modal mu-calculus is logically equivalent to A’ (7' (£));

2. for every Sahlqvist mu-formula x, the inequality T < 7(x) is an €-recursive inequality with
e=1;

3. for every 1-recursive inequality & < &, the formula —A(&)) V A(&) is a Sahlgvist mu-formula.

The analysis of PIA-formulas conducted in [22] can be summarized in the slogan “PIA formulas
provide minimal valuations”. In this respect, the crucial model-theoretic property possessed by PIA-
formulas is the intersection property, isolated by van Benthem in [21], which means that a formula,
seen as an operation on the complex algebra of a frame, commutes with arbitrary intersections of
subsets. The order-theoretic import of this property is clear: a formula has the intersection property
iff the term function associated with is completely meet-preserving. In the complete lattice setting in
which we find ourselves, this is equivalent to it being a right adjoint; this is exactly the order-theoretic
property guaranteeing the soundness of adjunction/residuation rules like (u-Adj) and (v-Adj).

4 Inner formulas and their normal forms

As discussed in Section 2.5, the aim of the present section is to introduce and study a class of mu-
formulas, the inner formulas, the syntactic shape of which guarantees that their associated term func-
tions enjoy the order-theoretic properties which in turn guarantee that the approximation and adjunc-
tion rules are systematically applicable to them.
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This is the most technically involved section of the paper; for the sake of clarity, it is organized as
follows: in Subsection 4.1, inner formulas are defined, and is shown that their associated term func-
tions indeed satisfy the mentioned order-theoretic requirements; in Subsection 4.2, two case studies
are discussed, which focus in particular on how to effectively calculate the adjoints of inner formulas;
this discussion motivates the introduction, in Subsection 4.3, of the notion of inner formulas in normal
form, and its ensuing normalization proposition; finally, in Subsection 4.4, a lemma is proven which
provides the effective computation of the adjoints of inner formulas in normal form.

4.1 Inner formulas

Definition 4.1. Let y,Z C Var and X C FVar be tuples, each consisting of pairwise different variables,
such that y and 7 are disjoint. Let ¥ = y® X and let § be an order-type on X = (x)7_,- The 6-0 and 6-¢
(%, 2)-inner formulas ((x, Z)-IF(‘?| and (x, Z)-IF(?), the free variables of which are contained in (X, 7), are
given by the following simultaneous recursion (for the sake of readability, the parameters x and z are
omitted):

’

IFj>¢ =
IFSs ¢

| xi | Qg | ¢rA@x | VYo' | m—>e | aVve | Yy >
l xi | O | yn Vo | pYy/ | v—n | any | m—¢°

where
1. 6; = 1 in the base of the recursion, for 1 <i < n,
2. misn(z) e LY,

3. ¢ =¢GeX,Dandy = /' (F@®X ,7) are IF and IFS, respectively, with X = X @ ¥ and
§ =01,

4. y° € (%, 2)-IF, and ¢° € (%,2)-1F},.
5. All other formulas have their free variables among (X, 7).

With similar side conditions we can define the §-m and 6- © (%, z)-inner formulas ((x, 2)-IF5 and
(x,2)-IF g) by the following simultaneous recursion:

IF?> ¢ Tlx | Op | Mo | oprAg | V0 | =@ | ave | ¥ —>r
IFsy o= L | x| O | &y | yaVn | p¥y/ | y—m | any | m—¢°

In what follows, the letter ¢ and i (possibly with superscripts or indexes) will denote IF°- and IF®-
formulas, respectively.

Note that every IF°-formula is an IF?-formula and that every IF®-formula is a IF®-formula.

Remark 4.2. The above definition is tailored to ensure that for any perfect modal bi-Heyting algebra
L (cf. Definition 1.1), the term function associated with a IFE (respectively, IF?) formula is a right
(respectively, left) adjoint from L° — L fixing the variables Z as parameters (see lemma below).

In particular this requires that in the associated generation tree, on each branch ending in an x;
the nodes corresponding to the negative sides of — and — are in strict alternation. Moreover, any
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alternation between IF? and IF® is accompanied by a change of polarity. Finally, these considerations
imply that, in the signature of intuitionistic modal logic, where the subtraction symbol is removed,
change of polarity on these ‘critical’ branches can occur at most once.

Lemma 4.3. For any perfect modal bi-Heyting algebra C,

1. the term function associated with any IF} -formula ¢(X,7) is completely meet-preserving as a
map C° — C, fixing the variables 7, and

2. the term function associated with any IF(?-formula W(x,z) is completely join-preserving as a
map C° — C, fixing the variables Z.

Proof. By simultaneous induction on ¢ and ¢. The base cases are clear, as are the cases correspond-
ing to the third, fourth and fifth columns in the recursive definition above. The case for ¢ of the form
vYe' (Y@ X, z) follows by the induction hypothesis and Lemma 2.1.4. Analogously the case for ¢ of
the form uYy/'(y & X',2) follows by the induction hypothesis and the order-dual of Lemma 2.1.4. The
cases corresponding to the fifth and sixth columns in the recursive definition follow from the induc-
tion hypothesis, the fact that — and Vv are completely meet-preserving in their positive coordinates,
while — and A are completely join-preserving in their positive coordinates, and the fact that variables
from X appear in at most one coordinate of each, which are moreover positive. Similarly, the cases
corresponding to the last column follow from the fact that — and — are respectively completely meet
and join-reversing in their negative coordinates, and the fact that variables from X appear in at most
their negative coordinates. O

4.2 Towards syntactic adjunction rules

The lemma above guarantees that the approximation rules (u°-A) and (v°-A) can be respectively ap-
plied in particular to inequalities of the form i < uX.¥(y, X,7) and vX.¢(y, X,7) < m, such that uX.ys
and vX.g are (3, Z)—IF:;— and (y, z)-IF; -sentences respectively. For the same reasons, also the general
adjunction rules can be applied to inequalities featuring -0 and -& (¥, 7z)-inner sentences as main
formulas on the appropriate sides. However, the general adjunction rules do not provide any infor-
mation as to how the adjoint map can be effectively computed as term functions. Indeed, in what
follows, we will work towards new adjunction rules which explicitly incorporate such computations.
These new rules will be given in terms of a syntactic refinement of inner formulas, introduced in the
next subsection. In order to motivate this refinement, it will be useful to consider the following pair
of examples.

Consider the inequality vX.O(p A X) < p, which we already solved towards the end of Section 1.2.
Notice that vX.O(x A X) is an (x, @)—IF(E| formula, with 6 = (1). An alternative and more instructive
reduction proceeds as follows: after first approximation we get

YpVivm[(i < vX.OpAX)& p<m)=i<m].

Trying to solve for the occurrence of p ini < vX.O(p A X), we unfold the fixed point (see, e.g., [13])
and obtain i < A, O“p. This is equivalent to i < O“p for every k > 1. By general adjunction, each
such inequality is equivalent to i < p. Hence we have:

i< Nop it \/ei<p.

k>1 k>1
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Noticing that \/,; “iis the unfolding of uX.#(X V i), the quasi-inequality displayed above is equiv-
alent to
VpVivm[(uX.¢(X Vi) <p)& p<m)=i<m],

which is in Ackermann shape and yields
Yivm[uX. ¢(X Vi) <m =i <m],

This example illustrates an effective computation of the left adjoint of an IFj-formula, with § con-
stantly 1. Consider now the analogous computation of the adjoint of an IFy-formula, where ¢ is not
constantly 1; for instance the left adjoint of vX.=O(p vV ~X). It is easy to see that, unfolding this
fixed point, one gets to a conjunction A > >«(p), where for every ordinal «, the symbol >,(p) denotes
an L*-term which is (completely) join-reversing in p. Hence, proceeding as we did in the previous

computation we obtain:
i< Ao iff p< A\»d
k>0 k>0

The main difference between this clause and the analogous clause displayed in the previous com-
putation is that we are not yet in a position to recognize A .| »i as the unfolding of some fixed
point. In particular, for this, we would need to see the parameter « explicitly as the exponential ()*
applied to some term. This term can be calculated either inductively for each «, or observing that
vX.—O(pV ~X) = vX.[-Op A=O~X], unfolding which yields A o(—O~)(=Op). Now the displayed
clause above becomes:

i< /\(—'<>~)K(—|<>p) iff \/(~l—-)"(i) <-op iff p<mn \/(~l—-)"(i).

k>0 x>0 x>0

Notice that the term vX.[-Op A =O~X] which was obtained by distributing —=<¢ over V can be seen
as the result of substituting =< p for x in vX.[x A =O~X], and that the latter is an IF?, -formula with
¢’ constantly 1. This neatly breaks the computation of the adjoint into two steps, the first of which
calculates the adjoint of the ‘right-side-up’ fixed point, and the second composes it with the adjoint of
the negative term —<p. This is the basic idea underlying the notion of normal forms in the following
subsection.

4.3 Normal forms and normalization

Definition 4.4. The normal (%,7)-IF;- and (%, Z)-IF(?-formulas are given by the same simultaneous
recursion as in Definition 4.1, subject to the following additional constraints:

1. if ¢ is of the form vY.¢' (¥, Z), where ¥ = y®X and X = X@&Y, then there exists an (7 ©X , 2)-
IF -formula ¢”, where ¢” is the order-type over y’@X which is constantly 1 over y” and restricts

O

to & over X, such that o' xX',2) = ¢ (@Y, X',7) where the @ are normal (y,2)-IF5,

where ¢” is the restriction of § to y.

-sentences,

2. if ¢ is of the form uY/(¥',7), where ¥ = y®X and X = X @Y, then there exists an (¥ ®X , 7)-
IFf;, -formula "/, where &' is the order-type over y’ ®X which is constantly 1 overy’ and restricts
to 6 over X , such that ¢/(¥, %) = ¢”’(¥/¥, X ,Z) where the ¥ are normal (3, 2)-IF§,-sentences,
where ¢” is the restriction of ¢ to y.
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Lemmad4.5. I. Every (x,2)-IFj-formula ¢ with x1, x € X is equivalent to an (X,7)-I1F5-formula
of the form ¢1(x1,2) N ¢2(x2,2), where x1 = x \ {x2} and x, = x \ {x1}.

2. Every (X, Z)-IF(?-formula W with x1,x; € X is equivalent to an (X, Z)-IF;> -formula of the form
Y1(x1,2) V Y2(x2,2), where x1 = x \ {x2} and x, = x \ {x;}.

Proof. By simultaneous induction on ¢ and . The base cases when ¢ € {x, T} and ¥ € {x, L} follow
by noting that ¢ = ¢ A T and ¥ = ¢ V L, respectively. The case ¢ = O¢’ follows by the induction
hypothesis and the distributivity of O over A. The case ¢ = ¢ A, follows by the induction hypothesis
and associativity and commutativity of A. The case ¢ = ¢ — 7 follows by the induction hypothesis
on the IF?;, -formula ¢¢ and the fact that — turns V into A in its first coordinate. Consider the case ¢ =
vY.¢'(x',7) withX" = x®Y and &’ = 6@1. By induction hypothesis ¢’ (x’,7) = ¢1(X1®Y,2) Ap2(X28Y, 7),
where x; = X \ {x2} and X, = X\ {x;}. By applying the induction hypothesis again to ¢;(x; & Y,2)
(w.r.t. x; and Y) and @2 (2 @ ¥, 7) (w.r.t. xp and ¥) we obtain

¢ (x',2)
[o1(X] @ Y,2) A @) (X1, D] A [05(X5 @ V,2) A 95 (3%2,2)]
[|(X] ®Y.2) A ps(X5 @ Y, D] A [¢] (X1,2) A @5 (%2, 2)],

where X = x;\{x1} and ¥, = %2\ {x2}. Note that ¢} (X} ®Y,2) A} (X, ®Y,Z) is an (x®Y, 2)-IF} -formula,
and hence, by Lemma 4.3, it is a right adjoint in X @ Y. Therefore, it preserves non-empty joins in
Y. Hence, by Lemma 2.3, applied to f(¥) = ¢|(X] ® Y¥.2) A ¢5(x; ® Y.2), g1(x1) = ¢}/ (x1,2), and
22(X2) = ¢% (x2,2), we have

vY.o' (¥',2)

vY([p|(X] @ Y,2) A @y (X5 ® Y, D] A [9] (%1,2) A @5 (%2,2)])

vY[p|(X] @ V,2) A b (X5 ® ¥, 2) A ¢ (X1,2)]
A VY[Q (X @ Y,2) A @) (%) @ Y,2) A ¢ (32,21,

where x, does not occur in the first conjunct, and x; does not occur in the second.
The other cases are analogous and are left to the reader. O

By repeated application of the lemma above we obtain the following Corollary:

Corollary 4.6. 1. Every (X,2)-IFy-formula ¢ is equivalent to an (X,7)-IF-formula of the form
©1(X1,2) A @a(x2,7), where X1, Xp form a partition of x.

2. Every (%, Z)-IF;> -formula  is equivalent to an (X, Z)-IF;> -formula of the form yr, (X1, 2) V2 (X2, 2),
where X1, X, form a partition of x.

Proposition 4.7. Every IF} formula, = € {&, 0}, is equivalent to an IF formula in normal form.

Proof. Notice that if a (%, 7)-IF;-formula ¢ is non-normal, it must contain a subformula of the form
vY.¢' which violates Definition 4.4.1, and where ¢’ is an (Y & X & Y,2)-IFy -formula. If in ¢’, every
variable y € y occurs only positively, the trivial substitution given by the identity on y in ¢ itself
would witness the normality. This means that, in the positive generation tree +¢’, there is at least
one leaf —y with y € y. Le., on the branch from each such —y to the root there is an odd number of
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order-reversing nodes which, as per Definition 4.1, need to be positive occurrence of — and negative
occurrences of —, in strict alternation. Thus the first order-reversing node above each such leaf —y is
a positive occurrence of —. By the assumption that ¢ is not in normal form, it follows that at least
one of the subformulas rooted at such a node + — is not a sentence. (Indeed, if all the subformulas
{ = y¢ — mrooted at such nodes were sentences, then replacing each of them with a fresh variable
y’ €y would give us the required formula ¢’ of Definition 4.4.1). Let a defect of ¢ be an occurrence
of a + — node in the scope of a +vY node in +¢ such that the corresponding subformula = ¢ — &
is not a sentence and contains negative occurrences of variables in y. Dually, we define a defect of
a (x, Z)—IFg—formula Y as a positive occurrence of — in the scope of a +uY node in +i such that the
corresponding subformula { = m — ¢° is not a sentence and contains negative occurrences of variables
iny.

The proof now proceeds by induction on the set (defect(y), y) ordered lexicographically, where
X is an inner formula and defect(y) is the number of defects occurring in y. The base case is trivial.
As for the induction step, we proceed by cases depending on the form of y. If the main connective
of y is not a fixed point binder, then the claim follows by the induction hypothesis applied to the
immediate subformulas. Now suppose ¢ is a (X, z)-IFy-formula of the form vY.¢’. Let { = ¢ — m be
a defect of ¢. Since, by Definition 4.1, 7 must be a sentence, all the free variables of £ occur only in

the IF:;,B -formula y/°(y ® X @ Y,7). By Corollary 4.6.2, the formula y° is equivalent to one of the form

v1(,7) vV (//2()_( ® Y,7), where  and y, are IFf;,a—formulas. Hence, ¢ is equivalent to — and hence
can be replaced by — (¥/1(3,2) — 7) A (J2(X @ Y) — 7). Let ¢’ be the formula resulting from this
replacement in ¢. Notice that ((y,z) — =) is an IF;,-sentence, where §” is the restriction of 6 to y,
and hence, within ¢, no subformula of (¥(y,2) — 7) A (y2(X @ Y) — ) constitutes a defect. Hence
¢’ has at least one defect less that ¢, so by the inductive hypothesis ¢”, and hence ¢, is equivalent to

a (x, Z)—IF(‘? formula in normal form. O

Remark 4.8. We observe that an effective procedure for transforming any inner formula into an
equivalent one in normal form can be extracted from the proof of Proposition 4.7. In Section 7 we
will exploit the fact that such a procedure exists, although we will not describe it in any further detail,
limiting ourselves to illustrate it by means of the examples below.

Example 4.9. The formula vX.—(x vV ~X) is an (x, @)—IFE—formula for 6 = (d), and it is not in normal
form, the subformula —(xV ~X) being its only defect. The normalization procedure on this subformula
amounts to distributing — over V, so as to obtain vX.[-x A =~X], which is in normal form: indeed, the
latter is a substitution instance of vX.[y" A =~X] which is a (y’, @)-IF;, with 6" = (1); moreover, y" has
been substituted for the IF” sentence —x.

Example 4.10. The formula vX.0(X A =uY.O(~X V (Y V x))) is an (x, @)-IF; formula for 6 = (9), and
it is not in normal form, the subformula —uY.O(~X V (Y V x)) being its only defect. The normalization
procedure on this subformula involves surfacing the innermost V node, by applying associativity of v
and distributivity of ¢ over V, so as to obtain —uY.¢Y vV (O~X V Ox), to which Lemma 2.3.1 applies
with f(Y) := ¢Y, g1(X) := O~X and g»(x) := <Ox, yielding

Y [OY V (O~X V Ox)] = ~pY [OY V O~X] A —uY.[OY V Ox].
Hence the original formula can be equivalently rewritten as

vX.OX A (FuY[OY V O~X] A ZuY[OY V Ox])),
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which is in normal form: indeed, it is a substitution instance of the formula vX.O(X A (—uY.[OY V
O~X]AY')) whichis a (y', @)—IFE‘, with ¢’ = (1); moreover, y” has been substituted for the IF”-sentence
—uY.[OY V Ox].

4.4 Computing the adjoints of normal inner formulas

By Lemma 4.3 we know that the term functions associated with IF°- and IF®-formulas are completely
meet- and join-preserving, respectively. In the setting of perfect bi-Heyting algebras this implies that
they have left- and right-adjoints, respectively. In the present section we are going to show that these
adjoints can be represented, componentwise, as term functions of IF®- and IF?-formulas. In fact,
in the following lemma we will effectively construct these term functions. To this end, we need to
introduce the following notation:

Definition 4.11. For any formula ¢(X, ¥,z) we define cp"r(}, y,7) and goKL(}, v,7) for every ordinal «,
as follows: ¢”(x,y,2) = y = ¢"(x, L,7). Assuming that ¢*'(X,y,7) and ¢*(X,y,7) have been de-
fined, we let o**I(x,y,2) = o, (%, y,2),2) and ¢*“tD(x,y,2) = o, ¢4 (X,y,2),7). Assuming
that ¢ (%, y,7) and ¢ (X, y,7) have been defined for every x < A, where A is a limit ordinal, we let
¢ @22 = Vi @Ry, 2 and 9 (%,5,2) = Aecd 97 (%, 3, 2)-

Lemma 4.12. Let ¢(x,7) and ¥ (X, 7), respectively, be an (X, E)-IF? and an (x, Z)-IF;> -formula in normal
form, where the arity of X is n. Then:

1. there exists an n-array y(u, ), where u is a fresh variable, given componentwise by L*-formulas
Vi(u,z) forany 1 <i < n, such that

(a) foreveryl <i < n, the formula y;(u,z) is an IF,-formula with n the order type over 1 with
n = 0;, and moreover Y;(u,z) is an IF,?—formula ifo; =1 and an IF;l -formula if 6; = 0;

(b) in any perfect modal bi-Heyting algebra C and for all a,b,c € C
b<e@o) if ybo<"a if  Eyibo) < a

2. there exists an n-array ¢(u,7), where u is a fresh variable, given componentwise by L*-formulas
wi(u,z) foany 1 <i < n, such that

(a) foreveryl <i < n, the formula ¢;(u,7) is an IF,-formula with 1 the order type over 1 with
m = 0i, and moreover ¢;(u,7) is an IFy -formula if 6; = 1 and an IF,?-formula ifo; =0;

(b) in any perfect modal bi-Heyting algebra C and for all a,b,c € C

n
p@oy<b iff a<’@be) iff  Eai<” eib,o).
Proof. Fix a,b,c € C. The proof proceeds by simultaneous induction on ¢ and . As to the base
cases: if ¢ is T, the the claim holds if we let ; = L for every 1 < j < n. Dually, if ¢ is L, then the
claim holds if we let ¢; = T forevery 1 < j < n. If pis x; for some 1 < j < n such that 6; = 1, then
the claim holds if we let i/ ; be equal to the variable u, and ; be the constant 1% fori # j. Similarly, if
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Y is xj for some 1 < j < n for which §; = 1, then the claim holds if we let ¢; be equal to the variable
u, and ¢; be the constant T% for i # j.
If ¢ is of the form ¢ (%, 2) A ¢@(F,2) we let ¢; = ¥V (u,2) VO P (,7) for 1 < i < n. Indeed, we
have
b<eW@o)neP@rc) if b<eP@rc),j=1,2
iff yb,e)<bia;, j=1,2,1<i<n
it y\"b,0) Vi yPb,e) Va1 <i<n
iff Wb, o) <’a.

Moreover, if 6; = 1, then by the inductive hypothesis wl(.l) and lﬁgz) are IF,? -formulas with = (1), and
hence wgl)(u,Z) Vo ;bl(.z)(u, 7) is wgl)(u,Z) v wgz)(u,Z) which is an IF,?—formula. If 6; = 9, then by the
inductive hypothesis lllgl) and 1//52) are IF;‘ -formulas with = (d), and hence 1,051) (u,7) VO ngz)(u, 7)is
lﬁgl)(u, 2)A wl@(u, z) which is an IF -formula.

If ¢ is of the form O¢’(x,z) we let ¢; = . (®u/u,z) for 1 <i < n. Indeed, we have

b<oy(a,c) iff eb<¢'(arc)
iff  y/(®b,0) <% a;,1<i<n.

Moreover, if 6; = 1, then by the inductive hypothesis ¢} (u, 7) is an IF,? -formula with n = (1), and then,
using Definition 4.1, it is not difficult to show that y//(#u/u,7) is an IF,? -formula. If §; = 0, then by
the inductive hypothesis ¢(u,7) is an IF-formula with n = (9), and then, using Definition 4.1, it is
not difficult to show that v/ (#u/u,7) is an IF;‘ -formula.

Let ¢ be of the form vY.¢”(X',7) with X’ = y® X ® Y, where m and k are the lengths of y and
X, respectively. Let 6(1) and 6(2) be the restrictions of & to y and X, respectively. By normality
we can assume that ¢ = ¢’(¢/y, X, Y,7), where ¥ is an {-tuple of variables, ¢'(y & X @ ¥,7) is an
IF?,—formula with ¢’ constantly 1 on ¥’ and Y, and restricting to & on X, and with ¢ = (¢1,...,¢¢)
and ¢; a (,2)-IF§ sentence for every 1 < j < . Let a,b,c € C be fixed as above. Let a =
(©1@@,0), ..., 0@, c) ® T°®. Then by induction hypothesis on ¢’'(y @ X @ Y,7), we have formulas
V(302 (0,2) and ¥ (3, 2), - -, ¥y (9, 2) such that

(//;.(b, c) < gja,c) forl1<j<{, and
b<¢'@,T,0) iff qu/(b,e) <°@n TP for1 <h<k, and
Yl (b,o) < T.

Moreover, ¥/, ,(y,7) and w;.(y, Z)forl < j< €are IFg—formulas with 7 = (1).

In the following calculation we will abuse notation and write ¢*(@’, T,¢) for (¢(@’, w, ) [T /w],
and y"*(b, ©) for (¥’ (u, ©))“[b/u].
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b <vY¢'(@,Y,0)

iff b <vYy'(d,hY,0)

iff b < Neso @™ (@, T,0) (Definition 4.11)

iff b <@, T,¢) forallk >0

iff WbV Ve W r(b,0),0) <! i@ forall 1 < j<landallk >0  (Lemma2.1.3)
and bV Ve U K]f(b 0),¢) <O@n 0@ forall 1 <h <kandallk >0
and y,  (bVV, <K¢””(b 0,0 <! T, forallk > 0

iff WbV V< w,’(’flf(b 0),0) <! pj(@c)forall 1 < j< fandallk >0

iff \/KZO WbV Ve W rl(b,e),0) <! i@ forall 1 < j<

iff WbV Vo Vs WKl (b,2),0) <! pj@, 0 forall 1 < j<¢ (%)

iff WbV Vs ¢,;’+K1 (b,0),¢) <! pj@c)forall1 < j< ¢

iff WbV pYyy, (b V Y,0),0) <! ¢;(@c) forall 1 < j< ¢

To see that the starred equivalence holds, recall that :,l/}(u, z)is an IF,? -formula with n = (1), hence by
Lemma 4.3 its associated term function is completely join-preserving in C. Applying the induction
hypothesis to ¢;, we obtain formulas v ;;(u,z), for 1 < i < n, such that

WbV uYyy, (b V Y,0),0) <' ¢;(@.c)
iff WG WbV uYy, (b V Y,0),0),0) <% q;, forall 1 <i<n.

This shows that, for every 1 < i < n, we can take y;(u, z) to be

\/* o v Yl v Y995 1< j <), .1

which proves part (b) of the claim. As to part (a), we begin by recalling that ¢/ , (y,z) and 1// (¥,2)
for1 < j< Care IF° formulas with 7 = (1). Hence ¢/(u v ¥y, (uV ¥,2),7) is also an IF° formula
By the induction hypothe51s applied to ¢;, each formula Wi, z) 1s an IF° formula w1th n = (1)if

6; = 1, or an IFE-formula with o = (9) if §; = d. Therefore, reasoning about \/% in a way analogous
to the inductive step for A above, we see that (4.1) is an IF,?—formula withn’ = (1) if §; = 1, or an
IF;‘,—formula with ’ = (9) if §; = 9.

If ¢ is of the form 71(z) — ¢'(%,2), we let ¢; = ¥ ((u A 7(z))/u, 7). Indeed, we have

b<n()— ¢'(a,c) iff bAn()<¢'(a,c)
iff  Yi(bAR(©),0) <% a;,1<i<n.
Moreover, if 6; = 1, then by the inductive hypothesis ¢/} (u, z) is an IF,? -formula with = (1), and then,
using Definition 4.1, it is not difficult to show that ¥/ ((u A 7(2))/u,7) is an IF,? -formula. If §; = 9, then
by the inductive hypothesis /(x,7) is an IF7 -formula with 7 = (9), and then, using Definition 4.1, it
is not difficult to show that y/((u A 71(z))/u,7) is an IF,?' -formula.
If ¢ is of the form n(z) V ¢’ (x,2), we let ¢; = ¥ ((u — 71(2))/u, ). Indeed, we have

b<n@ V¢ (arc iff b-n() <¢(a,c)
iff (b —n(c),0) <%iag,l<i<n,

Moreover, if 6; = 1, then by the inductive hypothesis ¢} (u, 7) is an IF,?—formula with = (1), and then,
using Definition 4.1, it is not difficult to show that ¢/ ((u — 7(z))/u, z) is an IF,? -formula. If §; = 9, then
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by the inductive hypothesis /}(, 7) is an IF-formula with 7 = (9), and then, using Definition 4.1, it
is not difficult to show that y/((u — 7(2))/u,z) is an IF,? -formula.
If ¢ is of the form “(x, z) — (%), then by clause (4) of Definition 4.1 ¥“(x,z) is an IF:;a -formula, and
hence by the inductive hypothesis there are formulas ¢ (u,z), 1 < i < n such that for every a, ¢ and
b’, we have y“(a,c) < b’ iff a; S‘s? @i(b',c) for 1 <i<n. Welety; = ¢f((u — n(z))/u, 7). Indeed, we
have
b<y‘ac)—-n) iff y“arc)<b— n©)

iff a4 <0 @b - n(@),0), 1<i<n

iff (b — n(c),0) <% a;, 1 <i<n.
Moreover, if 6; = 1 (hence 6? = 0), then by the inductive hypothesis applied to (¥, z), which we
recall is an IFga—formula, gol?(u,Z) is an IF;,—formula with ;7‘7 = (0), and then, using Definition 4.1, it is
not difficult to show that gol?((u — m(z))/u,7) 1s an IF,?—formula with n = (1). If 6; = d (hence 6? =1),
then by the inductive hypothesis ¢{(u,7) is an IF;'a-formula with 7° = (1), and then, using Definition

4.1, it is not difficult to show that ¢ ((u — 7(z))/u,z) is an IF;‘ -formula with n = (9).
Similar proofs can be given in the remaining cases for . m]

5 Adjunction rules for normal inner formulas

The following definition is extracted from the proof of Lemma 4.12.

Definition 5.1. For ¥ = ¥ @ X of arity n, for each order-type 6 over X, and each 1 < i < n, we
define maps LA? and RA?, sending normal (X, Z)—IF?— and (x, Z)—IF(?—formulas into (u, Z)—IF&)— and
(u, Z)—IF(”&;formulas respectively, by the following simultaneous recursion:
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LAG(T) = L

LAY(x;) = uforue Var—(xU2);
LA2(x;) = 1% wheni# j;
LAY(Dp(X,2) = LAY (p)(eu,2);
LAY (01 (XD A @a(%,2) = LAX@)(1,2) VO LAY (02)(u,2) ;
LAY 0Ye@® DY, YD) = VHLAN@)LAT (@) v pYLAY ((@)u Vv Y,2),2),D) | 1 < j< 0
LAY(n(@) = ¢(X,2) = LAY@)(u A n(),2);
LA’ (r@) V ¢(%,2) = LAX@)u-nr(2).2);
LA (%,2) —» 7)) = RAY W) - n(2),3);
RAY(L) = T
RA(x)) = wuforue Var—(XU2);

RA?(x))
RA(Oy(%,2))
RAY(1(X,2) V ¥2(X,2))

T9 wheni # j;
RA?(y)(mu, 2);
RA(¥1)(u,2) A% RAY (¥2)(u, 2);

RAY WYy (X 2)/7.%2) = AYRAJWHRAT @)u AvYRAL (DA Y2, 1 <j<t);
RAWR,2 -n(2) = RAWGTE) Vu,2);
RAY(r@) AY(x,2) = RAYW@QR) — u,2);
RAS (@) - ¢“(%,2) = LAY (¢)n(@) - 1,2).

By normality, formulas with v¥Y as main connective are of the form vY.¢(¢(¥,2)/y ., X, Y,Z) where
0y, X,Y,7) is an IF?,—formula, the length of y’ is ¢, the length of ' @ X @ Y is k + 1, &’ constantly
1 on Yy and Y and restricting to § on X, and @(y,2) = (¢1(3,2),...,¢(y,2)) is such that ¢;(y,2)
is a (y,2)-IFj-sentence for every 1 < j < (. Likewise, formulas with u¥ as main connective are
of the form uYy(y(y,2)/y, X, Y,7) where y(¥,X,Y,7) is an IF§ -formula, the length of ' is ¢, the
length of Yy ® X @ Y is k + 1, ¢ constantly 1 on y" and Y and restricting to 6 on X, and ¥(y,7) =
W1(3,2),...,¥¢(y,2)) is such that ; is a (y, Z)—IFg—sentence forevery 1 < j <.

The following lemma is just a direct consequence of the definition, but is very useful in simplifying
computations.

LemmaS5.2. 1. Let ¢ be a (X,2)-IF;-formula forx =y & X of arity n. If x; does not occur in ¢ for
some i, then LA?(QD) =19,

2. Lety be a (x, Z)—IFg—formulafor X =y ® X of arity n. If x; does not occur in y for some i, then
RA(y) = T

Proof. By simultaneous induction on ¢ and . The base cases hold by definition. If ¢ is of the form
vYo(@(x,2)/Y, Y,7), then by definition

0; ’ ’ = = .
LAY @) = \/ " (LAY @) (LAY ()(u v Y LAY, (@) v .2, | 1 < j < ¢).
Since x; does not occur in any formula in ¢, by induction hypothesis LAf(go ;) = Lo forevery 1 < j<¢.

Hence LA%(p) = \/% 1% = 1% The remaining cases are left to the reader.
O
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We are now in a position to give versions of the adjunction rules tailored to normal (X, 7)-IF§- and
(x, Z)—IFg—formulas, for which the adjoints are expressible as L*-term functions:

n < o(x,2)

IF
& LAY (@)[n/ul <% x; ©

where ¢ € £, n € L7, the arrays X and 7 are disjoint, the arity of X is n, and ¢ € (X, 2)-IF§.

Y(x,z) <n
&y x; <% RAY(y)[n/ul

(IFz)

where ¢ € £, n € L*, the arrays x and 7 are disjoint, the arity of X is n, and ¥ € (X, Z)—IFg. The
soundness of these rules immediately follows from Lemma 4.12.

The rules above are closed under substitution. In particular, the following reformulations are
sound for any propositional variables p and any sentences 7:

n<e(p/xy/2) o
n — (IFR)
&y LAY (@) n/u, ¥/7] <% p;

where ¢ € £, 7 € L, the arrays X and Z are disjoint, the arity of X is n, and ¢ is a normal (%, 2)-IF}-
sentence, i.e., X = Y.

W(p/%,7/7) <1 -
. —(IF9)
&, pi <% RAW)[n/u, /7]

where € L, n € L7, the arrays X and 7 are disjoint, the arity of X is n, and  is a normal (X, Z)-IF(?-
sentence, i.e., X = .

As discussed earlier, the maps LA; and RA; explicitly compute the term functions corresponding
to the adjoints of normal (X, z)-inner formulas. By construction, this adjunction is parametric in z. The
next lemma states the syntactic version of order-theoretic facts that hold in such situations generally,
and which will be useful in the proof that u-ALBA is successful on all e-recursive inequalities.

In what follows we will say that is formula ¢ is ¢;-positive in a variable u if ¢ is positive in # when
0; = 1 and negative in u when ¢; = 0.

Lemma 5.3. 1. Let ¢(X,7) be a normal IF-formula in which each z € Z occurs at most once.
Then, for each 1 <i < n, LAf(go)(u, 7) is 0;-positive in u, and for each z € 7, the polarity of z in
F) - . . . . . _ .
LAY (p)(u,7) is the opposite of (respectively, the same as) its polarity in ¢ if 6; = 1 (respectively,
if 6; = 0).

2. Let Y(x,7) be a normal IFf;—formula in which each z € 7 occurs at most once. Then, for each
1<i<n, RA?(:,&)(M, 7) is 0;-positive in u, and for each z € 7, the polarity of z in RA?(!//)(M, 2)is
the opposite of (respectively, the same as) its polarity in y if 6; = 1 (respectively, if 6; = 0).

Proof. By simultaneous induction on ¢ and . The base cases are trivially true. The cases in which
the main connective is O or A immediately follow from the induction hypothesis. For ¢ of the form
vY.¢'(¢(x,71)/y’, Y, 2>) as in Definition 4.4, we have
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LA (vY.' (@, 2)/7, ¥, 22))
= VO LAY (@)(LAY (@) v HYLAY, (@) V 22 22). 2 | 1 < j < ¢,

with ¢ constantly 1 on y" and Y and restricting to § on X, and o(x,71) = (p1(x,71),. ..,gog(} Z1))
such that ¢; is a (X,7)-IF;-sentence for every 1 < j < . By induction hypothesis, LA® LW, z1)
is ¢;-positive in u’, LAk +1(g0 )(u,72) is 6, ,-positive (hence positive) in u, and LAf. (¢’ )(u, Z2) is 6].—
positive (hence positive) in u for every 1 < j < ¢. Hence LAf(chp’@()_c,Zl)/y’, Y,2,)) is d;-positive
in u. If z € 7y, then z occurs in ¢; for some 1 < j < £, hence the statement follows by application
of the induction hypothesis to ¢;. Let z € Z,. Since ¢’ is constantly 1 on )" and Y, by induction
hypothesis on ¢’, it follows that z has the opposite polarity in LA;S.' @)V pY.LAY, ()W V Y, %), %)
to that which it has in ¢’. If §; = 1, then LA?((p (', Z1) is positive in u’, and hence the polarity of
zin LAY(vY.¢' (@(%,71)/¥ . ¥, Z2)) is the opposite to that it has in ¢’. If §; = 4, then LA(p ), 1) is
negative in u’, and hence the polarity of z in LAf(vKgp’(g_a(E,Zl)/y’, Y,7»)) is the same to that it has in
¢

For ¢ of the form 71(Z1) — ¢'(%,7>) we have LA%(p) = LA?(¢")((u A m(Z1))/u’, Z2). Then the claims
about the polarities of u and z € z, follows by the inductive hypothesis applied to ¢’. If z € 7; then
we distinguish two cases: if 6; = 1 then LA?(<p’)(u’,Zz) is positive in #’ by the induction hypothesis,
and since 71(z1) occurs negatively in ¢, the polarity of z in LAf(go’)((u AT(z1))/u' ,72) is the opposite of
its polarity in ¢. If §; = 0 then LAf(tp’)(u’, 7») is negative in u’ by the induction hypothesis, and since
7(z1) occurs negatively in ¢, the polarity of z in LAf(go’)((u A m(z1))/u’,z2) is the same as its polarity
in .

For ¢ of the form y*(%,Z2) — n(Z1) we have LA%(p) = RAf” W) (u — n(z1))/u',72). If §; = 1, then

= 0, and by the inductive hypothesis F{Af(a W', zp) is negative in u’, and hence F{A;Sa W((u —
n(z1))/u’, z2) is positive in u. If §; = 0, then 6? = 1, and by the inductive hypothesis RA?a(wC)(u’,Zz)
is positive in ’, and hence RAfa(wc)((u — m(Z1))/u’,72) is negative in u. If z € 7, and 6; = 1, then

= 0 and hence, by the induction hypothesis, the polarity of z in RA‘SH(W)(M’ 72) is the same as its
polarlty in ¢, and since ¥¢ occurs negatively in ¥“(x,z2) — 7(z1), we have that the polarity of z in
RA5 W), zp), and hence in RA5 W((u — n(z1))/u’,72), is the opposite of its polarity in ¢. The
case where z € 7o and 6; = 0 follows by an order-dual argument. If z € z; and ¢; = 1 then 613 0,

. . . 59 . ;) = . . . , —
and hence by the induction hypothesis, RAai W) (', zp) is negative in u’. So because m(z;) occurs
positively in ¢, it occurs negatively in F‘IA;.s W)((u — m(z1))/u',72), and hence the polarity of z in

RAfﬁ(wc)((u — 7(z1))/u’,72) is the opposite of its polarity in ¢. The case in which z € 7; and 6; = 9
follows by an order-dual argument.
The remaining cases are left to the reader. O

6 Examples

In the ensuing examples, for the sake of clarity, we will often write LAi((p) instead of LAf(go) where
@ is some (X, Z)—IF(‘?—formula. Similarly for RAii(w).

Example 6.1. Consider the inequality vX.[OX A —uY.[C(~X V (Y V p)])] < &O-p, which is e-
recursive for €, = 0. Its left-hand side has been discussed in Example 4.10. After first approximation
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we have:
YpVivm([(i < vX.[OX A =uY.[O(~X V (Y V p)D] & OO-p <m) = i < m]. 6.1)

No approximation rules are applicable, thus we work toward the application of an appropriate ad-
junction rule to display the p in the first inequality in the antecedent of the quasi-inequality above.
As discussed in Example 4.10, the left-hand side of this inequality is not in normal form, and its
normalization was computed there. We thus apply the adjunction rule (IFy) to its normalization

@ = vX.[OX A (=Y. [OY V O~X] A =Y. [OY V Op))].

Recall that ¢ is a substitution instance of the formula vX.¢" = vX.[OX A (—uY.[OY V O~X] A Y))],
where ¢’ is a (y/ & X, @)-IFE—formula with § = (1,1). Moreover, y’ has been substituted for the
(p, @)-IF2-sentence - = —uY.[OY V Op]. Thus,

LAS () LAS (~)[(LAD, (@) v X [LAS (@) v X)/u/T)/u'])/u]
LAS (—)ILAS, (@) V X LAL(¢")(u V X)),

where
LAS (i) = RAS @) (~u/u)

and ¢ = uY.[OY V Op] is of the form uY.y/'(p/y', Y, @) such that ' (y', Y, @) = &Y Vv Oy’ is an IF(?,—
formula with ¢” being the order-type constantly 1 on y’ & Y. Hence ¢ is already in normal form.
Thus,

RAS (LY.[OY V Op])(u)

= RAY (p)(RAY(W)(u A vYRAL () A Y)))
= RA;:(p)(RA§I W)U A vY.m@u A Y)))

= RA;7 (p)(m(u A vYm(u AY)))

= munrvYm(uAY))),

RAS (4)(u)

and hence,
LAS-y)w) = RASW)(-ufu) = ®(~uAvYm(=uAY)).

Next,

LAL(@)@) = LAL@X A (~pY[0Y V O~X] A Y))u)

LAY, (X A (muY.[OY V O~XT A y))(®ufu)

(LA;%,(X) % LAf,,(—u,uY.[OY V O~XTAY))(®u/u)

(L V (LA (—uY[0Y V O~X]) V LAS (v)))(#u/u)  (lemma 5.2)
(LV(LV LA‘yS, O"))(®u/u) (lemma 5.2)
= LALO ) (@u/u)

= u(eu/u)

= &u.
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LAS(@(X A (~uY.[OY V O~X] A y))(1)

LAS(X A (muY.[OY V O~X] A Y))(®u/u)

(LAS(X) V LAS(—uY.[OY V O~X] A Y))(®u/u)

(u V (LAS(~pY.[OY V O~X]) V LAS(Y)))(®u/u)

(u V (LAY (=Y. [OY V O~X]) V L)) (®u/u) (lemma 5.2)
(u V LAY (~pY.[OY V O~X]))(u/u)

ouV LAY (—uY.[OY V O~X])(®u/u).

LAS (¢")(w)

LAS(~)) =  RAY W) (-~u/u)

and ¢y = uY[OY vV O~X] is of the form uYy’'(~X/y', Y, @) such that ¥'(y',Y,2) = &Y vV &y is an
IFf;,—formula with ¢’ being the order-type constantly 1 on y’ @ Y. Hence y is already in normal form.
Thus,

RAYW)w) = RAYWY[OYV O~X])(u)
= RAY (~X)(RAZ (W) A VYRAY (W)(u A Y)))
= RA‘;)(~X)(I(u AvYm(uAY))) (cf. calculation of RA;ﬁ(zﬁ)(u) above)
= (~u)(muAvYm(uAY))/u) (%)

~B(u AvYm(uAnY))

The starred equality above is justified as follows:

RAY (~X)u) = RAY(T - X)(w)
= LASX)(T - u/u)
= (W(T —u/u)
= T-u

~U

Thus,

LAS (¢ (1)

®u V LA (=Y [OY V O~X])(®u/u)

®u v (RAY (W)(~uu/u))(®u/u)

ou VN (~mu AvYm(u A Y))(—u/u))(®u/u)
ouV (~m(—u Av¥m(-uAY)))(eu/u)
ouV ~m—-Qu AvYH(—-®uANY)

Finally,

LAS()(u)

LAZ(ﬂlﬁ)[LAf,,(w')(M V uX LAY (¢)(u v X))]
LAS(—y)[@(u V uX.(# V X) V ~m-@u V X) A vIm(-#(u V X) A Y)))]
B-w AvY.R(—-w A Y))(@uV uX.(¢uvX)V ~m—euVv X)Avim(—-euVv X)AY))/w).

Thus, applying (IFy) to the normalized inequality transforms (6.1) into

VpYivm[(LA(¢)(i/u) < p & OO-p <m) = i <m],
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which is in Ackermann shape, since LA} (¢)(i/u) is p-free. Now applying (RA) yields the quasi-
inequality
Vivm[OO-LA (¢)(i/u) < m = i <m],

from which all propositional variables have been eliminated, and which can be further rewritten as
Vi[i < OO-LA()(/w)].
Example 6.2. Consider the inequality
SuX.[(p VX))V ~VY[OXV ~((Y A p) AuZ~Op A —Z))) — <SOdp]] < ©Op.
which, as discussed in Example 3.5, is e-recursive with €, = 1. After first approximation we have:
VpvVivm([( < OuX.[(pVX)V~VY.[OXV~(YAp)AUZ.~(OpA—=Z))) — oOodp]]l & OOp <m) = i < m].

Applying (& Appr) to surface the inner skeleton of the first inequality in the antecedent of the quasi-
inequality above yields:

VpVivijVm[i < 0j & j<y & ¢Op <m) = i <m], (6.2)

with = uX.[(p V X) V ~vY[O(X V ~((Y A p) A uZ~@p A =Z))) — O0p]]l. Now notice that
=y (1/x1,¢2/x2,7/z), where

U(x1,x,2) = pX[x1 VX))V ~VY[OXV~(YAPp)Ax)) — zll,
1T = D,
¢ = pZ~@OpA-Z),
vy = <oOop.

O
(1.0)

completely join-preserving as a map A x A% — A, for any perfect modal bi-Heyting algebra A; that is,
the inequality j < y satisfies the appropriate order-theoretic conditions for the application of the rule
(u-A). Hence, after this application, the inequality j < y is equivalently replaced with the following
disjunction:

Moreover, ¥’ is an (x1, xp, 2)-IF formula. Hence, by Lemma 4.3, its associated term function is

WG <G /x, T/xy/2) & <] Inlj </ (L/x1,0/x2,7/2) & ¢2 < 1]

At this point we transform the quasi-inequality obtained from (6.2) by performing the replacement
above, into the conjunction of two quasi-inequalities, by distributing &s over % in the antecedent so
as to make % the main connective of the antecedent, and then distributing = over %. This gives us:

VpVivivivm[(i < Oj & j < ¥/ /x1, T/x2,¥/2) & j < 1 & 0Op <m) = i < m], (6.3)
and

YpYivivmVYn[(i < Oj & j < ¢/ (L/x1,n/x2,7/2) & ¢, <n & ¢Op <m) = i < m]. (6.4)
Recalling that ¢; = p and y = ¢OOp, the quasi-inequality (6.3) is

YpYivivi'vm[(i < 0j & j < /(' /x1, T/x,000p/2) & j < p & <0Op <m) = i <m],
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which is in Ackermann shape (cf. page 7), hence we can apply (RA) to it and obtain
Vivivi'vm[(i < 0j & j < ' (' /x1, T/x2, 000§ /z) & ©0§ <m) = i <m],

where all propositional variables have been eliminated, and hence can be translated into FO+LFP as
discussed in Section 1.2. Turning our attention to (6.4), we note that only occurrence of p for which
we want to solve is in the inequality ¢» < n. Recalling that ¢, = uZ.~(@Op A =Z) we work towards
the application of an appropriate adjunction rule. As it stands, ¢, is not a substitution instance of a
normal IF;}, -formula, thus we need to normalize it. Indeed, the normalization consists in distributing
~ over A, transforming ¢, into uZ.[~Op V ~=Z] = uZy"' (~ap/y’) with ¢’ (y',Z) = y' V ~=Z which
is a normal IFﬁ)—formula. Hence we may apply (IF]) which yields

p < RAY (92)[n/ul,

where

RAY (02)(u) RAY uzy" (~oply, Z))

RAL (~0p)(RAL (") AVZIRAL W/ )(u A Z))),

and

RAY )W) = RAY( V~=Z)w)
(RAZ’() A RAY (~=2))(w)
(T A RAD (~=2Z))(u) (Lemma 5.2)
RAY (T — ~Z)(u)
= LAY -2)(T - u)/u)
= (RAY@)(-u/u)((T = u)/u)
= (u(-u/u))(T = w)/u)

= ~U.

RAVW w) = RAVG V~-2Z)w)
= (RAY(Y) A RAY (~=2)(u)
= (uAT)(u) (Lemma 5.2)
= U

RAY (~ap)(u) RAY (T — op)(w)

= LAY @p)(T - uw)/u)

= (LAY (p)(@u/w)(T - w)/u)
= (u(®u/u)(T —u)/u)

= eul(T-uw/u)

= &~u.
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Therefore,

RAL (¢2)() = RAL (~Op)(RAD (W) A vZIRAD W )u A 2)D),
= O&~wuAVZ~~(uAZ).
Thus (6.4) becomes

YpYiviVmVYn[(i < Oj & j < ¥/ (L/x1,n/x2,7/2) & p < ¢~MAVZ.~~(NAZ)) & OOp <m) = i <m],

which is in Ackermann shape. Applying the Ackermann rule (LA) and recalling that y = &0O0Op, we
obtain

YivjVmVn[(i < Oj & j < ¢/ (L/x1,n/x;, OO0®~(MAVZ.~~(0AZ))/7) & CO®~(MAVZ.~~(MAZ)) <m) = i< m],

where all occurring propositional variables have been eliminated.

7 Success on recursive y-inequalities

The aim of the present section is to show that the enhanced version of ALBA is successful on e-
recursive inequalities.

7.1 Preprocess, first approximation and approximation

Indeed, let 7 < 8 be an e-recursive inequality. We proceed as in ALBA and preprocess this inequality
by applying splitting and (T) and (L) exhaustively. This might produce multiple inequalities, on each
of which we proceed separately. On each such inequality, denoted again n < 8, we proceed to first
approximation, which yields the following quasi-inequality:

VpYivm[i <n & B <m)=1i<m]. 7.1

Because its consequent is always pure, we only concentrate on its antecedent. Since the outer skeleton
of 8 and 7 is built exactly as the outer part of an inductive modal formula, the ordinary approximation
rules can be applied so as to surface the inner skeleton. So we can equivalently rewritei <7 & 8 <m
as the conjunction of a set of inequalities which, whenever they contain critical variables in the scope
of fixed points occurring as skeleton nodes, are of the form

i<uXy'(p) and vX.¢'(p)<m, (7.2)

where uX.¢/'(p) and vX.¢'(p) are sentences. (For the critical branches which do not contain such fixed
points, we further proceed by exhaustively applying the approximation rules as in ALBA).

Proposition 7.1. 1. The inequality i < uX.y/' in (7.2) is of the form i < uXy(p/y,y/z), where
uXyw(y,X,z) is an (3, Z)—IF;> -formula for some order-type 6 overy;

2. the inequality vX.¢' <min (7.2) is of the form vX.o(/y, X,7/Z) < m, where vX.¢(y, X,7) is an
(9, 2)-IF§-formula for some order-type 6 overy.
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Proof. Notice that preprocessing, first approximation and ordinary approximation rules do not involve
fixed points. Hence a proof very similar to that given for [9, Lemmas 10.4 and 10.6] proves that
+uX.y’ and —vX.¢' are non trivially e-recursive. Hence the statement immediately follows from
Lemma 7.2 below. O

Lemma 7.2. 1. If +¢/ is non-trivially e-recursive, and the P3-paths of all critical branches are
of length O, then ' is of the form y(p/y,X,v/7), where Yy(X,z7) is an (X, Z)—IF5O -formula for
X =Y ® X, some order-type & over X, and @ and y L-sentences.

2. If —¢’ is non-trivially e-recursive, and the P3-paths of all critical branches are of length 0,
then ¢’ is of the form (¥ [y, X,¥/Z), where ¢(x,7) is an (%, 2)-IFy-formula for x =y ® X, some
order-type § over X, and  and y L-sentences.

Proof. Let us define the skeleton depth of an e-recursive generation tree *£, with * € {+, —}, to be the
maximum length of the P, paths in *£ leading to critical variables. The proof proceeds by simultane-
ous induction on the skeleton depths of +¢" and —¢’.

If the depth of +y¢’ is O, then the critical branches will consist only of PIA nodes, i.e., +¢’ is
non-trivially e-PIA, and by Definition 3.1.1 ¢’ is a sentence; hence we let = x; which is IF;> with
6 = (1), and ¢ = ¢’. Analogously for the base case of —¢’.

As for the induction step, let us suppose that the depth of +i’ is k + 1, and that the statement is
true for generation trees satisfying the assumptions and of depth not greater than k. We proceed by
cases, depending on the form of +y/".

If +y is of the form +uX.y}, then by the induction hypothesis applied to +i|, we have that ¢ is
of the form v1(¢/7, X ¥/Z) where X = X @ X and (¥, 7) is an (¥, 2)-IFS-formula for X' =y & X =
X ® X and some order-type &' = d @ 1 over x & X, and the ¢ and y are sentences. Hence we let
¥ = uX(x, X,z) which is an (x, Z)-IFg—formula.

If +y/ is of the form +(y] Vv ), then, by the induction hypothesis applied to +¢ and +y, we
have that | and v, are of the form ¥ (¢/y, X,5/2) and ¥»(¢/y, X,¥/7), respectively, satisfying the
statement for some order-types § over X = y ® X. We let ¢ = y/1(X,2) V ¥ (X, 7), which is IF(?. Hence
Y’ is of the form ¥ = 1 (@/y, X, 7/2) V Y2(@/y, X, ¥/7), as required.

If +y is of the form +(y — ¢’) with y a sentence and €’(+y), then —¢’ is e-recursive, and hence,
by the induction hypothesis, ¢’ is of the form ¢(y/y, X,%/7), where ¢(%,7) is an (X, Z)—IF?ﬁ -formula
for some order-type 8 over X = y @ X, and the i and ¥ are sentences. Then we let ¢ = z — ¢|(X,2),
which is (X,Z @ 2)-IFS, where z is a fresh variable. Hence ¢ is of the form (z — o(¥/y, X, 7/z1)[x/z]
as required.

If +y’ is of the form +( — y) with y a sentence and e(+y), then +y’ is e-recursive, and hence
by the induction hypothesis ¢’ is of the form y/(¢/y, X, v/z) where (%, 7) is an (X, Z)-IFf;—formula for
some order-type § over X = y® X, and the ¢ and ¥ are sentences. Then we let = (X, Z) — z which is
(%,Z ® 2)-IF¢, where z is a fresh variable. Hence ¢ is of the form (y(¢//y,7/Z) — 2)[x/z] as required.

The remaining cases are left to the reader. O

Remark 7.3. Actually, Lemma 7.2 can be strengthened to the following:
1. Let ¢’ be such that +y is non-trivially e-recursive, and the Ps-paths of all critical branches

are of length 0. Then ¢’ is of the form ¥(¢/y, X,7/z) where ¥(x,7) is an (%, Z)—IFg—formula,
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for X = y @ X and some order-type & over X, and the @ and ¥ are sentences. Moreover, if
y = 1,...,yn) then, foreach 1 < i < n, +¢; is e-PIA if §; = 1 and —¢; is e-PIA if §; = 0.
Finally e’ (+4/(x,7/2).

2. Let ¢’ be such that —¢’ is non-trivially e-recursive, and the P3-paths of all critical branches
are of length 0. Then ¢’ is of the form go@/}, X, y/z) where ¢(x,7) is an (X, Z)—IF?-formula,
for X = y @ X and some order-type & over X, and the @ and ¥ are sentences. Moreover, if
Yy =1,...,yn) then, foreach 1 < i < n, —y; is e-PIA if §; = 1 and +y; is €-PIA if §; = 0.
Finally €9(-¢(%,7/2)).

Hence, Proposition 7.1 can be strengthened in an analogous way.

The proof of the enhanced Lemma 7.2 is essentially a refined version of the induction in the
original proof. The base case as it stands already verifies this strengthening. In particular, for +¢’ we
have ¥(X,7/7) = x; and €(x)).

We illustrate the rest of the induction by considering the case when +y’ is of the form +(y — ¢’)
with y a sentence and €’(+y). Then —¢’ is non-trivially e-recursive, and hence, by the strengthened
induction hypothesis, ¢’ is of the form (¥ /y, X,7/7), where ¢(x,Z) is an (%, Z)—IF?a-formula for some
order-type 6 over X = y ® X, and the ¥ and ¥ are sentences. Moreover, y = (y,.. ., y,) and for every
1 < i < n, the generation tree —y; is non-trivially e-PIA if 6%; = 1 (i.e., 6; = d) and +i; is non-
trivially e-PIA if 6? =0 (i.e., 6; = 1). Then we let ¢ = z — (X, 7), which is (X,Z @ z)-IF¢, where zis a
fresh variable. Moreover, for 1 < i < nwelet¢; = ¢;. Hence ¢/ is of the form (z—o(//y, X, 7/2)lx /2],
with i1 ..., playing the role of ¢ ... ¢,. Finally, €’(y — ¢(%,¥/z)), since €’(+x), and the induction
hypothesis implies that e(+¢(x, y/7)).

Proposition 7.1 and Lemma 4.3 together say that the approximation rules (4°-A) and (v°-A) can be
applied to the inequalities (7.2), respectively.” In addition to this, by the enhancement of Proposition
7.1 discussed in remark 7.3, we can assume w.l.o.g. that any inequality sitting in the antecedents of
the quasi-inequalities produced by these rule applications and containing a critical branch is of the
form

j<¢ or Y<n, (7.3)

where ¢ and ¢ are sentences (see Definition 3.1.1), and moreover +¢ and —¢ are non-trivially e-PIA.
Lemma 7.4 in the next subsection, together with the fact that ¢ and i are sentences, ensures that the
appropriate adjunction rules (IFg) and (IF) are respectively applicable to these inequalities.

7.2 Application of adjunction rules

If € and ¢ are order-types over p and x respectively, and p is not longer than x and has length #, then
we abuse terminology and say that § restricts to € if ¢, = ¢; foreach 1 <i < n.

Lemma 7.4. Let € be an order-type over p.

°Note that applying one of these approximation rules within the antecedent of a quasi-inequality may split that quasi-
inequality into the conjunction of several quasi-inequalities, on each of which we proceed separately. See e.g. Example
25.
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1. Let ¢'(p,X) be such that +¢' is non-trivially e-PIA. Then ¢’ (p, X) is of the form ¢(p/y, X, 7/7)
where ¢(X,7) is a normal (%, 7)-IF; -formula with x = y & X and 6 is an order-type over X which
restricts to € over y. Moreover, €(y) < +¢’ for eachy € y. Finally each z € 7 occurs at most
once in ¢(X, 7).

2. Let W/ (p, X) be such that —/' is non-trivially e-PIA. Then W' (p, X) is of the form w(p/y, X,V /?)
where Y(x,7) is a normal (X, Z)-IF;> -formula with X = y® X and § is an order-type over X which
restricts to € overy. Moreover, €(y) < =y’ for eachy € y. Finally each z € Z occurs at most
once in Y(x,7).

Proof. 1t is sufficient to show that the formulas ¢(x,7) and ¥(,z) in the statement of the lemma are
(x,2)-1F;- and (%, Z)—IFg—formulas, respectively, since normality will then follow from Proposition
4.7.

Let us define the PIA depth of a non-trivial e-PIA generation tree =&, with = € {+, —}, to be the
maximum length of its critical branches. The proof proceeds by simultaneous induction on the PIA
depths of +¢’ and —y/’.

If the depth of +¢” is 0, then ¢” = p; such that €; = 1, so we let ¢ = y; which is IFj with 6 = (1).

Analogously for the base case of —y/’.

As for the induction step, let us suppose that the depth of +¢’ is k + 1 and that the statement is true
for generation trees satisfying the assumptions and of depth not greater than k. We proceed by cases
depending on the form of +¢’.

If +¢’ is of the form +vX.¢|(p, )_(,) for X = X ® X, then by the induction hypothesis applied
to +¢7, we have that ¢} (p, XY is of the form o1(p/y, )_(/,7/2), where ¢ (¥',%) is an (x',2)-IF}, for
X = ?697 = x®X with ¢’ = 0@ 1 where ¢ is an order-type over x which restricts to € over y, and each
z € Z occurs at most once. Moreover, €/(y) < +¢| for each y € y. Hence we let ¢ = vX.01(X ® X, 2),
which is an (x, Z)—IFE—formula, in which each z € 7 occurs at most once.

If +¢’ is of the form +(¢} (P, X) A o5 (P, X)), then by the induction hypothesis applied to +¢| and
+¢), we have that go} is of the form ¢ ;(¢/y, X, ¥/7) which satisfies the statement for some order-type &
over X = y & X which restricts to € over y. We let ¢ = ¢(X,2) A ¢2(xZ), which is IF;. Hence ¢’ is of
the form ¢, (/3. X, 7/2) A ¢2(p/3, X, 7/%), as required.

If +¢ is of the form +(¥/(p,X) — x) with €’(+x), then —¢’ is non-trivially e-PIA, and hence
by the induction hypothesis ¢ is of the form ¥(p/y, X,7/z) where ¥(x,2) is an (X, Z)—IF;—formula
for X = y ® X and 6 an order-type over X which restricts to € over y, in which each z € 7 occurs at
most once. Moreover, €/(y) < —y/’ for each y € 7. Then we let ¢ = ¥(%,7) — z, where z is a fresh
variable, which is (x, Z&2z)-IF§. Hence ¢’ is of the form (y(p/y, X,7/2) = 2)lx/z] as required. Finally,
e9(y) < =y’ < +¢’ for each y € ¥, and also €’(+y) implies that €9(y) < +¢’.

The remaining cases are left to the reader. O

Analyzing lemma 7.4 above we note that it guarantees us the following:

1. To every inequality j < ¢ with +¢ non-trivially e-PIA, of a suitable instance of the (IFy) rule
can be applied.

2. By a ‘suitable’ instance we mean one given in terms of a normal (y, 2)-IF;-formula with § = €
and in which all and only the e-critical variable occurrences in +¢ are substituted for y-positions.
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3. Consequently, all non-critical variable occurrences are in the y.

An analogous order-dual list of facts holds for inequalities ¥ < m with —y non-trivially e-PIA.

7.3 The e-Ackermann shape

Applying suitable instances of the rules (IFy) and (IF7) to the inequalities j < ¢ and ¢y < m in (7.3),
respectively, yields, for each 1 <i <n,

LA (@)[i/u,¥/2) <% p; and  p; <5 RAY(Y)[m/u,¥/Z] (7.4)

respectively. Lemma 5.3 implies that the polarity of the y remains invariant under such applications.
Indeed, we know that €?(y) < +¢ for eachy € ¥. Foreach 1 < i < n, if §; = 1, then Lemma 5.3
implies that y occurs in LA(¢)[i/u,¥/Z] with the opposite polarity to what it had in ¢. Moreover,
the rule yields LAY (¢)[i/u,¥/Z] <' p;, hence €?(y) < —LAX(¢)[i/u,¥/Z]. If 6; = 4, then Lemma 5.3
implies that y occurs in LAf(go)[i/ u,y/z] with the same polarity to what it had in ¢. Moreover, the
rule yields LA ()[i/u, y7/Z] <% pi, ie, pi < LAX(@)[i/u,¥/Z], hence €(y) < +LAX(¢)[i/u,¥/Z]. The
application of (IF7) to ¢ < m is analyzed order-dually.

Since the only occurrences of p in LAf(go)[i/ u,y/z] and in RA?({//)[m/ u,y/z] are of course the
ones sitting in the 7y, the polarity invariance discussed above implies that the displayed inequalities in
(7.4) are of the form

aP)<pi of pi<a(p). (7.5)

with ¢ = 1, € = 9, €/(—a(p)), and €)(+a’(p)).

Definition 7.5. Given an order-type € over p, a set of £ -inequalities is in e-Ackermann shape if each
inequality in the set is of one of the following forms:

1. a(p) < p; with ¢ = 1 and €(—a(p));
2. pj < (p)ife = 0and €(+a'(D));
3. y < ¥ with €(—y) and €2(+y").

Taking stock of the reduction process up to this point, we see that the obtained system is now in e-
Ackermann shape. Indeed, through the application of approximation rules, the e-critical occurrences
in the antecedent of (7.1) have been ripped out, were made to sit in inequalities of the form (7.3), and
then displayed in inequalities as in (7.5), which are clearly in one of the required shape of Definition
7.5.1 or 7.5.2. Moreover, the approximation rules produced, besides the inequalities of the form (7.3),
also inequalities of the form i < (X, y/z) and ¢(X,y/Z) < m, which, by remark 7.3, are of the form
prescribed in Definition 7.5.3.

Exactly in the same way as was shown in [9], applying the Ackermann rule to a set of inequalities
in e-Ackermann shape produces a set of inequalities which is again in e-Ackermann shape. Hence all
occurrences of propositional variables may be eliminated by repeated applications of the Ackermann
rule. Thus we shown that this procedure applied to an e-recursive inequality in input produces a set of
pure quasi-inequalities in £, each of which can be equivalently translated into FO+LFP.
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