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Abstract—Image smoothing is a fundamental technology which
aims to preserve image structure and remove insignificant tex-
ture. Balancing the trade-off between preserving structure and
suppressing texture, however, is not a trivial task. This is because
existing methods rely on only one guidance to infer structure or
texture and assume the other is dependent. However, in many
cases, textures are composed of repetitive structures and difficult
to be distinguished by only one guidance. In this paper, we aim to
better solve the trade-off by applying two independent guidances
for structure and texture. Specifically, we adopt semantic edge
detection as structure guidance, and texture decomposition as
texture guidance. Based on this, we propose a kernel-based image
smoothing method called the double-guided filter (DGF). In the
paper, for the first time, we introduce the concept of texture
guidance, and DGF, the first kernel-based method that leverages
structure and texture guidance at the same time to be both
’structure-aware’ and ’texture-aware’. We present a number of
experiments to show the effectiveness of the proposed filter.

I. INTRODUCTION

Image smoothing, which aims to preserve the important
structure or edges and remove insignificant details or texture
within the structure, plays an important role in many com-
puter vision applications, such as image abstraction [1], detail
enhancement [2], image denoising [3], etc. Existing image
smoothing methods can be roughly classified into two types:
kernel-based local smoothing, and optimization-based struc-
ture and texture separation. Kernel-based methods emphasize
’structure-awareness’. For example, the bilateral filter (BLF)
[4] and guided filter (GF) [5] calculate a local average of
intensities by convolving with a positive kernel. This operation
can retain large gradients by adjusting weights of neighboring
pixels according to their color intensities. The averaging
operation is able to suppress weak texture or noise (small
oscillations with low contrast) effectively. However, as Zhang
et al. [6] have pointed out, the essential deficiency of this
type of method is the lack of discrimination of strong texture
(insignificant details with high contrast) and main structure.
For example, as shown in Fig. 1, the input image contains a
vase covered with black dots. The removal of these black dots
will not affect our cognition of the vase, thus we regard them
as insignificant details that can be removed. Unfortunately, the
dots are textures with strong edges, which will be mislabeled
as ’significant structure’ in existing methods. Specifically, BLF
fails in removing these textures because the contrast between
dots and background is too large, in which case BLF preserves
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Fig. 1. Image smoothing with kernel-based and optimization-based methods.
The dotted texture has strong edges that will be mislabeled as structure in
existing methods. Using the proposed double-guided filter can solve such a
problem.

them as edges, as shown in Fig. 1(b). GF fails due to the same
reason as well (shown in Fig. 1(c)).

In contrast, image separation methods emphasize ’texture-
awareness’, which aims to extract the texture from the image
by optimizing a globally-defined objective function based on
the assumption that an image can be decomposed into structure
and texture layers. For example, LO-smoothing [7] manipulates
the total number of non-zero gradients, and WLS [8] leverages
the total variation between two layers in terms of gradients.
As Fig. 1(d-e) show, the edges are over-smoothed and ’halo’
artifacts occur if the method attempts to remove all the texture
(the over-smoothing is especially serious at the base of the
vase, which has low contrast but important semantic meaning).
That is, optimization-based methods always have to trade off
between removing texture and preserving structure.

Our idea is to combine the benefits of both methods: we
take the advantage of kernel-based methods for ’structure-
awareness’, and optimization-based methods for ’texture-
awareness’. In this paper, we regard image smoothing as
denoising and cartoon/texture separation that are commonly
associated with structure preservation, the same task as [1-4,
7, 11-12, 15-16, 21-23, 27-32]. We design a double-guided



kernel-based filter (DGF), which is able to preserve meaning-
ful structure with the guidance of newly-proposed semantic
edge detection [9] (structure guidance), and distinguish and
remove texture with the guidance of image separation [10]
(texture guidance) without over-smoothing any structure. Fig.
1(a) illustrates our concept and shows an example of our
result compared with existing methods. More importantly, the
kernel only takes two parameters corresponding to ’structure-
awareness’ and ’texture-awareness’, and is easy to use.

The contributions of the proposed method are threefold:

1. We give theoretical insights on balancing ’structure-
awareness’ and ’texture-awareness’ for image smoothing.

2. It is the first time that structure and texture guidance have
been applied simultaneously to image smoothing. More spe-
cially, the two guidance images are generated independently.
3. The proposed easy-to-use double-guided filter outperforms
existing methods on simultaneous ’structure-awareness’ and
‘texture-awareness’. That is, it can remove even stronger
textures without blurring other important structures.

The rest of the paper is organized as follows: Section II
introduces related work on image smoothing. Section III
illustrates the motivation of structure and texture guidance.
Section IV is the formulation of our proposed DGF. A number
of experiments and analysis are demonstrated in Section V.
Section VI gives a conclusion.

II. RELATED WORK
A. Kernel-based image smoothing

In essence, the most important aspect in this type of method
is the calculation of weights. In the bilateral filter [4], the
weights are determined by the color intensity difference (range
kernel) and spatial distance (spatial kernel) at the same time.
The joint bilateral filter [11] extends on the bilateral filter,
obtaining the range kernel from another image called the
guidance image. If the guidance image is fixed throughout the
smoothing process, it is known as static guidance [5], [12]. In
contrast, dynamic guidance means the guidance image will be
updated after each iteration [13]. A new direction is to combine
static and dynamic guidance [14], [15]. Additionally, [16]
utilizes region covariances to measure the difference between
two kernels. In [6], the double weights are dependent on the
tree distance [17] between pixels and the overlapping areas
between superpixels. Other related methods use propagation
distance [18], a co-occurrence matrix [19], patch shift [12],
multipoint estimation [20], [21], or fully connected regions
[22]. In our work, we obtain the weights from static structure
guidance and texture guidance.

B. Optimization-based structure and texture separation

Unlike kernel-based image smoothing, optimization-based
structure and texture separation methods focus on defining an
objective function based on image gradients and then finding
the optimal solution. As [8] pointed out, the objective of
global optimization is to make the output image as smooth
as possible while as close as possible to the input. In early
work, Total Variation (TV) [23] was proposed to separate

structure from texture, based on the assumption that an image
can be decomposed into a structure and a texture layer, and
they are totally unrelated. In [8], partial derivatives of the
input image are added to the objective function, which is
optimized with weighted least squares. In [24], the regularizer
was replaced with Relative Total Variation (RTV). Both are
based on the L2 norm. It has been suggested that in image
filtering, the L1 and LO norm may be more effective than the
L2 norm [25]. [26] utilizes the L1 norm to define the objective
function, which contains local flattening, global sparsity, and
image approximation. One popular LO norm based method was
proposed in [7], which counts and manipulates the number of
non-zero gradients. Further explorations have been made to
improve this, including minimization by region fusion [27],
[28]. [10] found that the correlation between the structure
gradients and the texture layer is extremely low in the ideal
decomposition. The Structure Gradient Texture Decorrelating
(SGTD) regularizer thus models both the structure and texture
layers. One method leverages both global and local optimiza-
tion [29]. It regards edges as high variance in range values of
neighbouring local extrema and details as oscillations between
local extrema. Despite the trade-off nature of this type of
method, good performance in separating texture helps us to
construct the texture guidance map, which will be discussed
in Section III.

III. STRUCTURE GUIDANCE AND TEXTURE GUIDANCE
A. Motivation

To the best of our knowledge, existing guided image
smoothing methods depend largely on structure guidance.
However, this is not sufficient because in most circumstances,
texture may also have distinct edges, which will confuse
structure guidance. Thus, we need texture guidance to tell
the filter where to smooth more when encountering strong
textures. We note that optimization-based methods decompose
the image into structure and texture layers, which achieves a
tradeoff between preserving structure and removing texture (it
outperforms kernel-based methods in texture removal). Here
we use the texture layer to guide local filtering. To be more
specific, texture guidance reduces the possibility of preserving
insignificant details caused by texture. The two guidance will
be introduced in the following.

B. Structure Guidance

Traditional structure guidance is derived from a pre-
generated image (a smoothed copy of the input). One im-
portant goal of image smoothing is to keep the output as
close to the input as possible. The high similarity between
the input and guidance images limits the ability of specific
smoothing. Recent work has attempted to construct structure
maps based on pixel gradients and then use them as guidance
[12], [30]. However, large gradients do not always correspond
to the structure because some strong textures may also have
large gradients along their edges. This phenomenon can be
found in both Fig. 1 (the black dots on the vase) and Fig. 2



(the black dots in the background, which have large gradients
as shown in Fig. 2(b)).
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Fig. 2. Illustration of double guidance process.
Semantic edge detection [31] has provided a new direction

for generating structure guidance [32]. Detection is based on
training from hundreds of human-labeled samples. Using this,
the filter can preserve meaningful structure, to produce images
that correspond better to human perception. Inspired by this,
we use a state-of-the-art semantic edge detection method [9] to
construct the structure map. Fig. 2 shows the gradient (b) and
semantic structure map (c) (larger pixel values are more likely
to be structure). By comparison, the gradient map widely used
by traditional methods is largely affected by textures while the
semantic structure map eliminates the interference of them.
Thus, the semantic map is more suitable for structure guidance.
We denote the structure confidence map as E.

C. Texture Guidance

The essential reason for the tradeoff in optimization-based
methods is that they assume the original input can be exactly
decomposed into two layers (structure and texture layers are
negative correlated because the total sum is fixed). This is
the natural deficiency of total variation based methods. We
note that although the method in [10] (SGTD) is also based
on this assumption, it explores a new way to minimize the
correlation between structure gradient and texture components
(magnitude). The two measurements are different so that
we can regard the two layers are independently generated.
This method has been shown to outperform most existing
optimization-based methods in removing textures. Thus, we
utilize this approach for texture guidance. We normalize the
magnitude of the texture layer to [0, 1] and take it as the texture
confidence map, as shown in Fig. 2(d) (larger magnitude cor-
responds to higher contrast, implying the texture component

is harder to remove). We denote the texture confidence map
as T.

IV. DOUBLE-GUIDED FILTER

Based on the analysis above, we define an easy-to-use
double-guided filter which only relies on one parameter for
each guidance. In detail, given input I, the filtering is given
as: 1

S= > wslp,q) - wilq) - I
qeEQ

where S, is the output pixel value, and Q2 is a k£ x k
square kernel centered at p. ws(p,q) and wi(qg) denotes
the weights from structure and texture guidance respectively.
Kp = > ws(p,q) - wi(q) is used for normalization.

q€Q
1) Structure weight: ws(p, q) takes the form of:
ws(pa Q) = (1 — E(q)) . exp(w)

where E(q) denotes the edge confidence at pixel ¢, and o, is a
user-specified parameter. The right part of the structure weight
is the range kernel found in the bilateral filter, which modulates
smoothing by color intensity difference. This kernel essentially
prevents attenuation of strong textures in the bilateral filter
because both main structures and strong textures have large
color difference. The left-hand part multiplies by (1 — E(q)),
so that color difference will be retained unless the structure
confidence is relatively low. Even though some part of the
structure is weak (has low contrast), the guidance lowers the
weights to preserve color difference. Although (1 — E(q)) €
[0,1], it can indeed make a difference after normalization.
2) Texture weight: wy(q) takes the form of:

~T(q)*

2
20;

)

where T'(q) denotes the texture confidence at pixel ¢, and oy is
a user-specified parameter. Texture weight replaces the spatial
(Gaussian) kernel in the bilateral filter. Intuitively, pixels with
high texture confidence should be smoothed whereas those
with low confidence should be preserved. Thus, we assign
small weights to pixels with higher texture confidence.

3) Effect of single and double guidance: The highlight
of the proposed DGEF is that structure and texture guidance
support each other to preserve structure and remove texture.
To illustrate this, Fig. 2 shows (c) structure confidence and (d)
texture confidence, which are used for (e) structure guidance
only, (f) texture guidance only, and both are used for (g) the
proposed DGF based on (a) the input image. Intuitively, the
result using only structure guidance has sharpened edges but
some strong texture is still retained. In contrast, the result
using only texture guidance does not contain any insignificant
textures but the overall structure appears blurred. To visualize
the effect, we plot the color intensity distribution along one
line (marked in the images) in Fig. 2(h). We first find that in
texture regions (e.g., dashed box A), the results with texture
guidance and double guidance overlap in most circumstances

wy(q) = exp(
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Fig. 3. Double-guided filtering with different kernel sizes and iterations.

while the structure-guided result shows apparent deviation or
oscillations. This is because the semantic structure map is
not perfect and still cannot eliminate the negative effect of
some strong textures. In contrast, in regions with structural
edges (e.g., dashed box B), the results with structure guidance
and double guidance are almost the same (except the texture
regions near the edge), indicating that our DGF has preserved
the structure well. However, the result of texture guidance in
this case is inadequate because the edges are over-smoothed
(the green line is more rounded and less sharp) as they are
not explicitly preserved. It is clear that our proposed DGF has
combined the benefits of two guidance effectively.

V. EXPERIMENTS AND ANALYSIS
A. Parameter adjustment

1) Kernel size and iterations: In our method, the kernel
size, k, and the number of iterations, N;;., determine the
scale of textures to be smoothed and the extent of texture sup-
pression respectively. Fig. 3 shows the smoothing results with
various kernel sizes and iterations to an image with artificial
random noise. We examine the signal-to-noise-ratio (SNR) to
measure the effect of removing noise quantitatively. Compared
with the noisy input, a smaller SNR indicates that noise is
better suppressed. With increasing kernel size, larger scale
texture is more easily removed. This can be also achieved by
increasing the number of iterations. Empirically, 3-5 iterations
with kernel size of {5,7,9,11} can yield desirable results.

2) Smoothing effect factors o4 and o,: The two parameters
control the effect of smoothing in terms of preserving structure
and removing texture respectively. Normally, a smaller o, can
retain more edges and a smaller o; can smooth out more
textures. Empirically, to ensure good performance, o4 falls
into [0.1,0.3] and oy into [0.2,0.4]. Fig. 4 shows results with
various o, and o;.

B. Comparison with other methods

1) Visual comparison: Visual comparison is widely used in
almost all the image smoothing papers. In Fig. 5, we compare
our filter with 2 classical algorithms (total variation (TV) [23],
bilateral filter (BLF) [4]), and 6 state-of-the-art algorithms
(relative total variation (RTV) [24], guided filter (GF) [5],
rolling guidance filter (RGF) [13], fast LO smoothing [27],
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Fig. 4. Double-guided filtering with different o5 and o;.

segment graph filter (SGF) [6], static and dynamic guidance
filter (SDF) [14]). Among them, BLF, GF, RGF, SGF are
kernel based, while TV, RTV, fast LO smoothing, SDF are
optimization based. We use the default parameters defined
in their open-source code. In our method, we set k = 9,
o, = 0.15, 0 = 0.2, and N, = 3. With a clearer
visualization with close-ups, our method outperforms other
kernel-based and optimization-based methods in that it is able
to suppress texture more effectively without over-smoothing
the main structure.

One special and difficult example is the third vase example,
in which the vase body is covered with very strong texture
while the object (vase and base) itself has relatively low
contrast to its background. Ideally, the texture should be
removed while object-background contrast should be retained.
As can be observed, only our DGF removes all the black
textures on the vase and preserves contrast between the object
and the background simultaneously. Other methods cannot
achieve both goals effectively. Even though in some cases,
e.g., the results produced by TV, RTV and SGF, texture is
eliminated somewhat, however, the base-background contrast
is completely lost as a penalty. This example further shows
how our method outperforms other methods in preserving the
main structure and removing texture.

TABLE I
SNR VALUES OF IMAGES IN FIG. 6

Method | Fig. 6(1) | Fig. 62) | Fig. 63) | Average |
Noisy input | 30.99 33.12 36.06 33.39
BLF [4] 45.73 44.54 48.28 46.18
GF [5] 44.77 42.95 47.59 45.10
RGF [13] 54.45 49.59 56.20 53.41
L0 [7] 35.82 4537 48.14 43.11
Fast LO [27] | 47.37 47.10 51.73 48.73
SGF [6] 50.63 42.25 50.45 47.78
SDF [14] 41.39 42,01 46.82 43.41
Proposed 58.36 63.25 62.69 61.43

2) Quantitative evaluation: Since denoising is a basic func-
tion of image smoothing, we can further evaluate the denoising
performance with SNR quantitatively, similar to [6, 10, 13,
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Fig. 6. Image denoising results with different methods.

27, 32]. More specifically, we first take a smoothed image as indicates that the noise are removed more effectively). We
ground-truth (original signal), and then add Gaussian noise show three groups of results in Fig. 6, and list corresponding
and texture manually. The SNR here measures the effect of SNR values in Table I. It is clear that the SNR values of
removing noise (compared with ground-truth, a larger SNR our filter are largest in all the three examples, showing that
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Fig. 7. Image smoothing applications with different methods.

our method can suppress noises more effectively. Moreover,
the results with our method are very close to the ground-
truth from visual comparison, indicating that it can suppress
noise and preserve the main structure and color distribution
at the same time. It should be noted that although RGF and
fast LO can both yield relatively large SNR, RGF makes
the smoothed image look blurry, especially at the significant
edges or corners, while fast LO has unexpectedly introduced
more noticeable quantization into the results, which makes the
output look less smoothed and less similar to the ground-truth.

C. Applications

1) Image abstraction: Image abstraction aims to create a
cartoon-like style from an input image. We use the method in
[1] for image abstraction, which involves smoothing the input
and retaining main structures, detecting difference-of-Gaussian
edges, and abstracting the image with soft color quantization.
The results of image abstraction for a mountain are shown
in Fig. 7(a). It is clear that our method can suppress more
details while still preserving the main structure, especially
on the surface of the mountain. Note that LO-smoothing
outperforms two other kernel based methods in abstracting
the sky because it performs a global smoothing to the whole
image by manipulating the number of non-zero gradients and
the gradients within the sky region are similar.

2) JPEG artifacts removal: JPEG compression images have
artifacts, that degrade quality. Artefact removal results are

shown in Fig. 7(b). We can observe that our method removes
artifacts more effectively, while retaining better similarity to
the input compared with other two methods.

3) Detail enhancement: Suppose I is the input image, and
S is the smoothed output. We define detail enhancement DE
as: DE =S+ a- (I —S), where a > 1 controls the extent
(o = 2 in this case). The results with different methods are
shown in Fig. 7(c). As shown, with close inspection of some
texture regions, our method performs better in boosting the
details without affecting the overall color tone.

VI. CONCLUSION

The proposed double-guided filter outperforms existing im-
age smoothing methods in preserving the main structure and
removing insignificant texture. In this paper, for the first time,
we introduce the concept of texture guidance which funda-
mentally improves traditional kernel-based methods in terms
of distinguishing texture from structure. The combination of
structure guidance and texture guidance makes the filter both
“structure-aware’ and ’texture-aware’. Our method performs
consistently well in both image smoothing and denoising
tasks, and a number of experiments have demonstrated the
effectiveness of the proposed filter. Our future work will focus
on implementing new methods for constructing structure and
texture guidance, and accelerating the filtering process with
GPU parallel computing.
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