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a b s t r a c t

In this paper, two significant weaknesses of locally linear embedding (LLE) applied to computer vision

are addressed: ‘‘intrinsic dimension’’ and ‘‘eigenvector meanings’’. ‘‘Topological embedding’’ and

‘‘multi-resolution nonlinearity capture’’ are introduced based on mathematical analysis of topological

manifolds and LLE. The manifold topological analysis (MTA) method is described and is based on

‘‘topological embedding’’. MTA is a more robust method to determine the ‘‘intrinsic dimension’’ of a

manifold with typical topology, which is important for tracking and perception understanding. The

manifold multi-resolution analysis (MMA) method is based on ‘‘multi-resolution nonlinearity capture’’.

MMA defines LLE eigenvectors as features for pattern recognition and dimension reduction. Both MTA

and MMA are proved mathematically, and several examples are provided. Applications in 3D object

recognition and 3D object viewpoint space partitioning are also described.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Manifold learning has attracted attention as a nonlinear
learning method in the past decade. As illustrated in Fig. 1(a), it
hypothesizes that high dimensional data samples are distributed
on an underlying manifold, which is controlled by a few para-
meters [3,5,51]. Manifold learning techniques try to simplify the
high dimensional data by recovering the underlying low dimen-
sional manifold. Local methods are a subset of manifold learning
techniques that try to recover global manifold structure from
local linear space information. This idea is summarized as ‘‘Think
globally, fit locally’’ by L.K. Saul et al., who proposed locally
linear embedding (LLE) [1,2]. After LLE, several new methods have
been proposed to improve geometric reconstruction performance,
such as Laplacian eigenmaps (LEM) [6], Hessian LLE (HLLE) [7],
diffusion maps (DFM) [9] and local tangent space alignment
(LSTA) [10]. All these algorithms output a set of eigenvectors
and eigenvalues. The basic idea of these local methods is sum-
marized as Fig. 1(b). As illustrated in Fig. 1(c), there are two main
fields of applications based on local methods, and LLE in parti-
cular: (1) choosing the right eigenvectors, underlying manifold
structure can be reconstructed for tracking and perception under-
standing [23,27–34,36,37,39]; (2) eigenvectors can also be con-
sidered as low-dimensional data features for pattern recognition
[10,13–16,18,24, 26,35,45,52].

Local methods are popular because they have good computa-
tional efficiency than other manifold learning techniques [22].
However, researchers found significant weaknesses in applications:
(1) as illustrated in Fig. 1(c), local methods output a set of
eigenvectors and eigenvalues. To recover the manifold, right eigen-
vectors should be chosen. Existing local methods choose the
eigenvectors based on the ‘‘intrinsic dimension’’ of manifold. How-
ever, they fail to give a robust method to determine the ‘‘intrinsic
dimension’’. (2) Local methods output many eigenvectors, but only
few of them contribute to recovering the manifold. The meanings of
the rest of the eigenvectors are unclear. Some research [2,14–16,52]
consider the local methods as dimension reduction techniques. The
eigenvectors are considered to have similar meanings as those
eigenvectors from linear dimension reduction techniques (such as
PCA). However, the results from pattern recognition experiments are
negative.

LLE is the oldest local method. LEM [6], HLLE [7], DFM [9] and
LSTA [10] have attempted to achieve improved geometrical recon-
struction performance. However, all these methods are limited to
local linear relation capture and global optimization. None of them
tried to solve the ‘‘intrinsic dimension’’ problem or interpret the
eigenvectors. Referring to Fig. 1, their works are limited in part (b),
they cannot solve the application problems in part (c).

The ‘‘intrinsic dimension’’ is derived from an analogous feature
from global manifold learning methods, such as multidimensional
scaling (MDS) [46], Isomap [4,19] and maximum variance unfolding
(MVU) [16]; or from linear dimension reduction techniques, such as
principle component analysis (PCA). Current research suggests that
local methods cannot determine the ‘‘intrinsic dimension’’ by
examining eigenvalues like global methods [1,2]. Kégl [20] and
Levina and Bickel [21] proposed ‘‘intrinsic dimension’’ determining
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methods based on the mathematical definition of manifold, but their
results are not in accordance with those from global manifold
learning methods [4,16]. We found different researchers have
different understanding on ‘‘intrinsic dimension’’. We broaden the
research on this topic by introducing the topological manifold [44].
In mathematics, a manifold in Euclidean space has two dimensions:
(1) the ‘‘local dimension’’—the dimension of manifold, and (2) the
‘‘global dimension’’—the minimum Euclidean space embedding
dimension (MESED). We clarify the misunderstanding on ‘‘intrinsic
dimension’’ that locally dimension determining methods [20,21]
find the ‘‘local dimension’’, while global manifold learning methods
[4,16] find the ‘‘global dimension’’. To definitively determine the
structure of a manifold, local manifold learning methods should find
the ‘‘global dimension’’. In our research, we propose the manifold
topological analysis (MTA) method that can determine the ‘‘global
dimension’’ of typical topological manifolds.

The ambiguous meaning of eigenvectors hinders application of
LLE in pattern recognition. LLE performs worse than linear
methods when many LLE eigenvectors are used, specifically more
than 6 eigenvectors according to Saul and Roweis’ [2] research in
digit recognition. It was generally considered that LLE eigenvec-
tors that are not contributing to manifold structure capture only
clustering and noise, which are derived from an analogous feature
in global manifold learning methods [52]. However, by studying
locally linear spaces [42,47], topology [44] and general function
spaces [43,48], we have found the multi-resolution property of
LLE eigenvectors: LLE eigenvectors are multi-resolutional; they
capture manifold nonlinearity in the corresponding resolution.
We prove this property and develop the manifold multi-resolu-
tion analysis (MMA) method. Furthermore, we successfully apply
our method in 3D object recognition and 3D object viewpoint
space partitioning.

Other research have also found local methods that are not
robust against data rescaling and normalization; as a result,
global geometric information is unrecoverable [25]. Current local
methods are unreliable because they use eigenvalues to choose
eigenvectors. Our manifold topological analysis (MTA) method

does not have this problem because the eigenvectors are chosen
by topological analysis. We also develop a subroutine included in
MTA that scales eigenvectors by eigenvalues, thus, it can recover
global geometric information.

Although manifold learning has become popular in the past
decade, most research has not fully considered the ‘‘manifold
hypothesis’’ [3] (Fig. 1(a)). This ‘‘hypothesis’’ is usually summar-
ized with very few sentences without proof, such as ‘‘suppose
data samples have an underlying manifold structure’’. In some
researches, local methods have been disproved [11]. We have
found that their data samples do not strictly satisfy the ‘‘manifold
hypothesis’’. In order to make our research strictly follow the
‘‘manifold hypothesis’’, we introduce a sufficient condition for
data samples to satisfy the hypothesis.

In this paper, ‘‘topological embedding’’ and ‘‘multi-resolution
nonlinearity capture’’ are introduced. The proposed MTA method
is based on ‘‘topological embedding’’ to robustly determine the
‘‘global dimension’’ of a manifold with typical topology, which is
important for tracking and perception understanding. The pro-
posed MMA method is based on ‘‘multi-resolution nonlinearity
capture’’. MMA defines LLE eigenvectors as features for pattern
recognition. Both MTA and MMA are proved mathematically, and
several examples are included. We also examine the method
performances in applications in 3D object recognition and 3D
object viewpoint space partitioning. This paper has the following
organization: In Section 2, we introduce the mathematical defini-
tion of topological manifolds and give a sufficient condition to
satisfy the ‘‘manifold hypothesis’’. Then, we summarize the
existing LLE algorithms in matrix form. In Section 3, we mathe-
matically analyze the topological manifold and LLE algorithm.
Furthermore, we describe ‘‘topological embedding dimension’’
based on the analysis. In Section 4, the MTA method is introduced
for typical topology and mathematically proved. This method
successfully determines the ‘‘global dimension’’ of typical mani-
folds. In Section 5, we provide meaning of LLE eigenvectors based
on ‘‘topological embedding’’ and general function spaces: LLE
eigenvectors are multi-resolutional and capture manifold

Fig. 1. Framework of locally manifold learning. (a) Manifold hypothesis: high dimensional data samples are distributed on an underlying manifold, which is controlled by a

few parameters [3,5]. (b) Locally manifold learning algorithms: locally linear relation between samples is captured. Then a low-dimensional solution preserving the

captured relation is found by spectral decomposition. A set of eigenvectors with corresponding eigenvalues from spectral decomposition is given as output. (c) Main

applications of manifold learning. The upper branch is to reconstruct the hidden manifold structure by choosing the right eigenvectors. The lower branch is using

eigenvectors as features based on the meaning of eigenvectors.
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nonlinearities. Furthermore, we propose the MMA method with
mathematical proofs. In Section 6, we apply our methods in 3D
object recognition and 3D object viewpoint space partitioning.
We discuss the results and a previous work in Section 7.

2. Sufficient condition for the ‘‘manifold hypothesis’’ and
locally linear embedding

In Section 2.1, we first introduce some basic definitions about
manifolds and give a sufficient condition for data samples to
satisfy the ‘‘manifold hypothesis’’. In some researches, the data
samples do not strictly satisfy the ‘‘manifold hypothesis’’ [11].
Therefore, definite data sample constraints are necessary. In
Section 2.2, the original LLE algorithm is quickly introduced in
matrix form. Because the LLE algorithm is very familiar, this step
is intended to make the algorithm more convenient for further
discussions and proofs. The ‘‘intrinsic dimension’’ problem is
introduced by an example in the end.

2.1. A sufficient condition for the ‘‘manifold hypothesis’’

2.1.1. Mathematical definitions

We introduce the following three important definitions that
are related to manifolds:

Continuous map: If X and Y are topological spaces, a map f:X-Y

is said to be continuous if for every open set UCY, f�1(U) is open
in X.

Homeomorphism: If X and Y are topological spaces, a home-
omorphism from X to Y is defined to be a continuous bijective
map f:X-Y with continuous inverse.

Manifold in Euclidean space: A k-dimensional manifold (or a k-
dimensional surface) in Rn is a subset S

k
�Rn such that each

point has a neighborhood in Sk that is homeomorphic to Rk.
Topological spaces, the Hausdorff property and second count-

ability are also important in defining manifolds. However, they
are not used directly in our proofs. We leave out their definitions
[42,44] to make this paper succinct.

We introduce two important dimensions of manifold:
Dimension of manifold: This is already introduced in defining

manifold in Euclidean space. According to its definition, it is also
called the ‘‘locally dimension’’ in this paper.

Minimum Euclidean space embedding dimension (MESED): ‘‘The
minimum dimension of those Euclidean spaces in which a given
manifold can be smoothly embedded with a one-to-one mapping’’
[42]. This dimension is also called the ‘‘global dimension’’ or
‘‘topological embedding dimension’’ in this paper.

We give an example in Fig. 2(a). A circle that is embedded in a
2-dimensional Euclidean space is a 1-dimensional manifold. Any
given point of the circle (point x is chosen as example in Fig. 2(a))
has a neighborhood in the circle which is homeomorphic to
1-dimensional Euclidean space R. According to the definition of
manifold in Euclidean space, a circle is a 1-dimensional manifold.
We could also say its ‘‘locally dimension’’ is 1. On the other hand,
the entire circle cannot exist in a 1-dimensional Euclidean space.
At least 2-dimensional Euclidean space is needed to embed
the circle. This means its MESED or ‘‘topological embedding
dimension’’ is 2.

A relation between dimension of manifold and MESED is given
by the following theorem:

Strong Whitney embedding theorem [44]: Any connected smooth
n-dimensional manifold S

n (required also to be Hausdorff and
second-countable) can be smoothly embedded in the Euclidean
2n-space R2n.

2.1.2. Manifold hypothesis and a sufficient condition for the

hypothesis

Scientists in many fields face the problem of simplifying high-
dimensional data by finding low-dimensional structure in it. If
there is a low-dimensional manifold structure hidden in the high-
dimensional data, the hidden manifold can be recovered by
manifold learning techniques. Fig. 2(b) is an example of a set of
image data with a hidden manifold structure. The structure is
successfully recovered by LLE as shown in Fig. 2(c).

In favor to reduce the dimension of high-dimensional data,
some researchers conduct manifold learning techniques in certain
data. However, they fail to find the hidden manifold structure and
claim the manifold learning techniques are weak. Actually, they
omitted the fact that their testing samples might have a ‘‘hidden
structure’’ but do not have a ‘‘hidden manifold structure’’. Accord-
ing to the definition of manifold in Section 2.1.1, we introduce a
sufficient condition to ensure that data samples have a hidden
manifold structure. It is divided into 4 constraints:

Constraint 1—continuous mapping: For data samples with a
previously known underlying manifold structure, neighborhoods
in data space are also neighborhoods in the underlying manifold.

Continuous mapping is an important prerequisite that requires
data sampling to preserve neighborhood relations. If the under-
lying manifold structure is previously unknown, this restriction is
automatically satisfied because manifold learning algorithms find
only continuous mappings from data to underlying structure.

Constraint 2—locally homeomorphic: For data samples with a
previously known underlying manifold S

k, dimension of manifold
derived from dimension-determining techniques [20,21] should
also be k. For data samples without a previously known

Fig. 2. (a) A circle is used as an example of 1-dimensional manifold with topological embedding dimension as 2. Given any point in the circle (x as an example), its

neighborhood (denoted in black) is homeomorphic to 1-dimensional Euclidean space. At least 2-dimensional Euclidean space is needed to embed the circle. (b) Example of

image data with an underlying circle structure. 120 silhouettes are sampled by rotating the Hand model m324 from PSB [49]. 10 images are presented here. (c) Manifold

structure found by LLE. 120 images are used and 10 are presented.
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underlying manifold, the dimension of their underlying manifold
should be robustly derived from a dimension determining
technique.

The definition of a k-dimensional manifold requires neighbor-
hood of any given data samples to be homeomorphic to local
Euclidean subspace Rk.

For data samples with a known underlying manifold, if the
sampling is too sparse or too noisy, the manifold structure might
not be recovered. We use dimension-determining techniques
[20,21] to evaluate the samples. Such techniques find the locally
dimension according to the locally homeomorphic. Dimension
returned from these techniques should agree with the previously
known dimension.

In most cases, manifold learning techniques are aiming to
recover the underlying manifold structure that is previously
unknown. If the data sampling is too sparse or noisy, or there
isn’t any underlying manifold structure at all, it is not expected to
recover a manifold structure from manifold learning techniques.
Dimension-determining techniques are used as a prerequisite, if
the locally dimension cannot be found, there is no possibility to
find the global manifold structure. Handwritten digits [2], for
example, do not really have an underlying manifold structure,
they only satisfy the continuous constraint.

We mention that the use of dimension-determining algo-
rithms does not nullify the use of manifold learning techniques:
local dimension determining algorithms [20,21] find only the
‘‘local dimension’’, while manifold learning techniques find the
global structure.

Constraint 3—topological space, Hausdorff and second countabil-

ity: ‘‘Data samples are in Euclidean space’’.
Samples should meet the constraints defined for topology, the

Hausdorff property and second countability. In practice, we do
not need to show how Euclidean space is used universally.
Further, we can only compute finite samples. Thus, the topology,
Hausdorff property and second countability constraints are auto-
matically satisfied.

Constraint 4—connectivity: The underlying manifold is simply
connected.

We do not discuss manifolds with more than one connected
component. If there are more than one connected components,
each of them can be analyzed separately. Moreover, there is no
need to use manifold learning algorithms to find connected
components. There are many robust graph-theory-based algo-
rithms [40,41].

In general, constraints 2 and 4 are the crucial constraints to
verify. And we also see that if the data satisfies these constraints,
it also satisfies the strong Whitney embedding theorem.

2.2. Locally linear embedding and the ‘‘intrinsic dimension’’ problem

2.2.1. Locally linear embedding

The basic idea of locally linear embedding algorithm is illu-
strated in Fig. 3. To avoid ambiguity, we introduce the algorithm in
matrix form in Section 2.2.1. After that, we show the ‘‘intrinsic
dimension’’ problem by an example in Section 2.2.2.

Step 1: Neighborhood search.
Each D-dimensional input data sample is denoted as a hor-

izontal vector:

xi ¼ ðxi1,xi2,. . .,xiDÞ ð2:1Þ

All N inputs can be represented as a matrix:

X¼

x1

x2

^

xN

2
66664

3
77775

N�D

¼

x11 x12

x21 x22

. . . x1D

. . . x2D

^ ^

xN1 xN2

& ^

. . . xND

2
66664

3
77775

N�D

¼ X1 X2 . . . XD

h i
N�D

ð2:2Þ

For each vector xi, we identify its neighborhoods by finding the
nearest K vectors using Euclidean distance. And its neighbors are
denoted by an N-dimensional horizontal vector:

ei ¼ ðei1,ei2,. . .,eiNÞ ð2:3Þ

where eij¼1 if xj is a neighbor of xi, eij¼0 if xj is not and eij¼0 if
i¼ j.

The overall neighborhood relationship is represented as an
N�N matrix:

E¼

e1

e2

^

en

2
6664

3
7775

N�N

¼

e11 e12

e21 e22

. . . e1N

. . . e2N

^ ^

eN1 eN2

& ^

. . . eNN

2
66664

3
77775

N�N

ð2:4Þ

Step 2: Constrained least square fits.
In this step, each data sample is linearly represented by its

neighbors. For a particular vector xi its K neighbors are tempora-
rily denoted as xe1,xe2,y,xeK. A locally linear representation is
given by finding a set of reconstruction coefficients we1,we2,y,weK

that minimize the representation error:

e¼ xi�
XK

j ¼ 1

wejxej

������
������ ð2:5Þ

Fig. 3. Steps of locally linear embedding: (a) assign neighbors to each data point xi (for example using the K nearest neighbors). (b) Compute the weights wij that best

linearly reconstruct xi from its neighbors by solving the constrained least-squares problem in formula (2.5). (c) Compute the low-dimensional embedding vectors yi best

reconstructed by wij, minimizing formula (2.13) by finding the smallest eigenmodes of the sparse symmetric matrix in formula (2.15). Although the weights wij and vectors

yi are computed by methods in linear algebra, the constraint that points are only reconstructed from neighbors can result in highly nonlinear embeddings.

Cited from [1].
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with constraints:

XK

j ¼ 1

wej ¼ 1,wejZ0 ð2:6Þ

Formula (2.5) can be written as

e2 ¼ xi�
XK

j ¼ 1

wejxej

������
������
2

¼
XK

j ¼ 1

wejðxi�xejÞ

������
������
2

¼
X

jk

wejwekGjk ð2:7Þ

where Gjk is the local Gram matrix:

Gjk ¼ ðxi�xejÞ
T
ðxi�xekÞ ð2:8Þ

Reconstruction weights are solved by the Lagrange multiplier
method:

wej ¼

P
kG
�1
jkP

lmG
�1
lm

ð2:9Þ

To make (2.9) uniquely solvable, Gjk is modified as

Gjk’Gjkþdjk
D2

K

 !
TrðGÞ ð2:10Þ

where djk is 1 if j¼k and 0 otherwise. TrðGÞ denotes the trace of
G and D2

51. Usually, D¼0.1.
The overall representation weights are arranged in a repre-

sentation weight matrix:

W¼

w1

w2

^

wn

2
6664

3
7775

N�N

¼

w11 w12

w21 w22

. . . w1N

. . . w2N

^ ^

wN1 wN2

& ^

. . . wNN

2
66664

3
77775

N�N

ð2:11Þ

where wij is the weight of xi from xj. If xj is not a neighbor of xi,
wij¼0. Notice that wij¼0 does not guarantee xj is not a neighbor
of xi; the neighborhood relationship is denoted separately by E.

Step 3: Eigenvalue problem.
The final step finds another set of d-dimensional vectors

{y1,ye2,y,yN} that best fit the representation weights W.
{y1,y2,y,yN} is said to be the d-dimensional embedding of the
original data. {y1,y2,y,yN} is arranged in the matrix form as follows:

Y¼

y1

y2

^

yN

2
66664

3
77775

N�d

¼

y11 y12

y21 y22

. . . y1d

. . . y2d

^ ^

yN1 yN2

& ^

. . . yNd

2
66664

3
77775

N�d

¼ Y1 Y2 . . . Yd

h i
N�d

ð2:12Þ

Y minimizes the square average cost function F:

FðYÞ ¼ :Y�WY:2
ð2:13Þ

or

FðYÞ ¼ :Y�WY:2
¼
Xd

k ¼ 1

Yk�WYk

�� ��2 ¼ Xd

k ¼ 1

Yk�WYkð Þ
T Yk�WYkð Þ

¼
Xd

k ¼ 1

YT
k ðI�WÞ

T
ðI�WÞYk ¼

Xd

k ¼ 1

YT
kMYk ð2:14Þ

where

MN�N ¼ I�WN�Nð Þ
T I�WN�Nð Þ ð2:15Þ

and {Yi}i¼1,2,yd is orthogonal and regulated:

YT
i Y j ¼ 0, ia j,i,j¼ 1,2,. . .,d ð2:16Þ

Eð9Y i9
2
Þ ¼

1

N
YT

i Y i ¼ 1, i¼ 1,2,. . .,d ð2:17Þ

The optimal solution to (2.14) with constraints (2.16) and
(2.17) is calculated using the Lagrange multiplier method:

FðYÞ ¼
Xd

k ¼ 1

YT
kMYk�

Xd

k ¼ 1

lk
1

N
YT

k Yk�1

� �
ð2:18Þ

Differentiate (2.18) by Yk, k¼1,2,y,d:

) YT
kM�lkYT

k ¼ 0)MYk ¼ lkYk ð2:19Þ

As a result, {lk} are eigenvalues of M, while {Yk} are the
corresponding eigenvectors.

From (2.14):

FðYÞ ¼
Xd

k ¼ 1

YT
kMYk ¼

Xd

k ¼ 1

YT
klkYk ¼

Xd

k ¼ 1

lkYT
k Yk ¼

1

N

Xd

k ¼ 1

lk

ð2:20Þ

Therefore, for each given d, FðYÞ can be minimized by finding the
bottom eigenvalues of M and their corresponding eigenvectors.

Obviously, eigenvector YT
0 ¼7 ð1,1,. . .,1Þ have the eigenvalue

l0¼0; thus, it should be discarded because they reveal nothing
about the original data.

To solve for each given d, we find the lowest d+1 eigenvalues
of M and their corresponding d+1 eigenvectors, and discard
YT

0 ¼ 7 ð1,1,. . .,1Þ; the remaining d eigenvectors are the best
d-dimensional embedding of the original data.

2.2.2. An example of the ‘‘intrinsic dimension’’ problem

The existing LLE algorithm ends without giving the method to
determine the ‘‘intrinsic dimension’’ d, which is crucial for the
manifold structure. We use the data of hand rotation (Fig. 2(b)) to
show this problem. We visualize the manifold structure in Fig. 4
for d¼1, d¼2, d¼3 and d¼4. They look distinctively. Therefore, if
the ‘‘intrinsic dimension’’ is unknown, we cannot determine

Fig. 4. Reconstruct the underlying manifold structure of hand rotating images (Fig. 2(b)). Assuming different ‘‘intrinsic dimension’’ d, different structures are

reconstructed. (a) d¼1, the indices of images are used as the x-axis. (b) d¼2. (c) d¼3. (d) d¼4, only the 2nd, 3rd and 4th LLE eigenvectors are visualized.
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which structure is right. Other examples of this problem can also
be found in [2].

3. Mathematical analyses of topological manifolds and the
LLE algorithm

In this section we mathematically analyze topological mani-
folds and LLE algorithm to develop the key ideas for the manifold
topological analysis method (MTA) and manifold multi-resolution
analysis method (MMA). Specifically, the ‘‘centralization tradeoff’’
introduced in Section 3.2 is a key idea for MMA, and ‘‘spectral
decomposition’’ introduced in Section 3.4 and ‘‘topological
embedding dimension’’ introduced in Section 3.5 are key ideas
for both MTA and MMA, respectively. We develop these ideas step
by step with interim analysis in Sections 3.1 and 3.3.

3.1. Locally linear spaces

From the definition of a d-dimensional manifold, each data
sample has locally linear spaces. As illustrated in Fig. 5, we
introduce the following locally linear spaces of a particular
sample xi with its neighbors xe1,xe2,y,xeK:

The original data space: RD.
The local tangential space of the manifold: Rd.
The span space by neighborhoods xe1,xe2,y,xeK: RS.

Rd is derived directly from the manifold hypothesis, and xi is
sampled from the d-dimensional manifold; it has a local neigh-
borhood homeomorphic to Rd and is tangent to the manifold.
Because xi is sampled with noise, it might not be located exactly
on the manifold. We give a tolerance such that the space is
spanned by its nearest point on the manifold.

RS has the expression:

RS
¼ x

�����
XK

j ¼ 1
wejxej,

XK

j ¼ 1

wej ¼ 1

9=
;

8<
: ð3:1Þ

Constraint
PK

j ¼ 1 wej ¼ 1 is important because it makes the
spanned space local.

We discuss the dimension S of this space. From expression
(3.1), S is no greater than K�1:

SrK�1 ð3:2Þ

Because locally linear representation is expected to capture
the manifold tangential space Rd, it is required that S be no
smaller than d:

SZd ð3:3Þ

In ideal situations, {xej} should all lie in the tangential space
Rd, as required by definition of manifold. Thus, S should be no

greater than d. However, in practices (1) data are sampled
discretely, which means data might be located outside Rd because
of manifold nonlinearity; (2) data are sampled with noise, which
also means that the data might be located outside Rd. Formula
(3.3) is satisfied if the number of neighbors K is chosen to be big
enough.

Generally, the three spaces are related according to

RdDRSDRD
ð3:4Þ

3.2. ‘‘Degeneration’’ and ‘‘centralization tradeoff’’

‘‘Degeneration’’ is originally discussed by Saul and Roweis [2]
for the LLE algorithm to uniquely solve the representation
weights defined in (2.10). From (3.1) and (3.2), such degeneration
occurs when SoK�1. From (2.7), a weaker condition to claim
‘‘degeneration’’ is

DoK�1 ð3:5Þ

Formula (3.5) is more practical because D and K are known.
djkðD

2=KÞTrðGÞ in (2.10) punishes big representation weights.
Equivalently, formula (2.10) chooses those weights which {wej}
minimize the square sum:

XK

j ¼ 1

w2
ej ð3:6Þ

Intuitively, this is to place xiu¼
PK

j ¼ 1 wejxej at the center of its
neighborhoods {xej}. This is called the ‘‘centralization optimal’’.

In this section, we stress the tradeoff between two optimal:
‘‘least square fit’’ (2.7) and ‘‘centralization’’ (3.6). It is a key
preposition to support the MMA method. In practice, data are
discretely sampled from nonlinear manifold. Given a particular
point, it is not expected to lie in the center of its neighborhoods.
To minimize the square fit error (2.7), square sum of weights (3.6)
is not minimized. Formula (2.10) gives a tradeoff between these
two optimals, where D denotes how important ‘‘centralization’’ is
in compared with ‘‘least square fit’’. D¼0.1 by default in the LLE
algorithm [2]. Intuitively, ‘‘least square fit’’ means ‘‘pull
xiu¼

PK
j ¼ 1 wejxej away from center of {xej}’’.

This tradeoff gives LLE the ability to capture the nonlinearity of
manifold. We use it to prove the MMA method in Section 5.

3.3. Continuous mapping

In addition to embedding, we demonstrate that the eigenvec-
tors {Yk} (2.12) and (2.19) can be seen as mappings from data
samples to real numbers R:

Yk : fxig-R ð3:7Þ

Given the definition of continuous mapping in Section 2.1, {Yk}
can be considered to be continuous maps because LLE maintains
neighborhoods.

According to the manifold hypothesis, {xi} are sampled from
the underlying manifold S. This means {Yk} are continuous maps
from the underlying manifold S to real numbers R.

Yk : S-R ð3:8Þ

Technically, mapping newly sampled data could be accom-
plished by well-developed function interpolations techniques.
Some research have attempted to modify LLE from embedding
to mapping [38,52]. In our research, we do not discuss the
techniques in detail but stress the idea that {Yk} are continuous
mappings from the underlying manifold S to the real numbers R.

Fig. 5. Illustration of locally linear spaces. 1-dimensional manifold S
1 embedded

in R3 is used as an example. For a particular point x, Rd is its 1-dimensional

manifold tangential space; RS is the 2-dimensional space spanned by neighbors;

and RD is the 3-dimensional data sample space.
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3.4. Spectral decomposition

Other than embedding, it is rewarding to consider the third
step of LLE as spectral analysis of the original data and their
underlying manifold. All the eigenvalues of MN�N (2.15) can be
sorted such that

l0rl1rl2r � � �rldr � � � lN ð3:9Þ

and their corresponding eigenvectors are related according to

Y0,Y1,Y2,. . .,Yd,. . .,YN ð3:10Þ

where li measures prominence of Yi and Yi as a feature of the
original data [40].

This idea is similar to PCA, in which the original data are
analyzed by spectral decomposition; the highest eigenvalues and
eigenvectors of PCA define the expansion while the lowest
eigenvalues and eigenvectors define the clustering. Some research
have used LLE as a spectral analysis tool [12,15,53] based on
this idea.

However, we found that the analogy to PCA does not hold
completely because LLE-eigenvalues and LLE-eigenvectors have
their own meanings: Each eigenvector of LLE is a continuous

mapping from the manifold to real number R and captures non-

linearities from the manifold; its corresponding eigenvalue measures

the prominence of captured nonlinearity.

Our MMA method is developed and proved in Section 5.
Nonlinearity capture is introduced and proved in detail in
Section 5.3.

3.5. Topological embedding

It is mentioned in Section 3.3 that each LLE eigenvectors is a
continuous map from manifold to R. Because continuous map
preserves topology, we can find the low-dimensional topological
manifold structure from high-dimensional data using the right
LLE eigenvectors. This is the basic idea of LLE.

For manifold with MESED¼2, it can be visualized using two
eigenvectors (denoted as Yi and Yj). The coordinates yn of sample
xn is

yn ¼ ðyni,ynjÞ ¼ ðY iðxnÞ,Y jðxnÞÞ ð3:11Þ

And the manifold S can be expressed as

S¼ ðY iðSÞ,Y jðSÞÞ ð3:11Þu

Similarly, manifold with MESED¼3 can be visualized as

S¼ ðY iðSÞ,Y jðSÞ,YkðSÞÞ ð3:12Þ

Formula (3.11)0 can also be considered as an implicit expres-
sion of Y jðSÞ in R2 with the coordinates given by Y iðSÞ. And (3.12)
can be considered as implicit expression of Y jðSÞ in R3 with the
coordinates given by Y iðSÞ and Y jðSÞ. This implicit expression
gives us a method to observe the behavior of all eigenvectors
without using a known index.

As previously shown by the example in Section 2.2.2, we now
discuss the well-documented criticism of LLE: it cannot deter-
mine the ‘‘intrinsic dimension’’ of the underlying manifold. Newer
local manifold learning algorithms [6,7,9,10] are aiming to
improve geometric performance, but they cannot determine the
‘‘intrinsic dimension’’ either.

Saul and Roweis [2] have attempted to determine the ‘‘intrin-
sic dimension’’ using eigenvalues, which is an analogy to global
manifold learning algorithms. However, their result is negative.
We point out it is a ‘‘false analogy’’: as discussed in Sections 3.2
and 3.4, the second step of LLE captures only the local relation-
ships in the manifold tangential space Rd or the neighborhood

spanned space RS. This is different than PCA and Isomap, where
the global relationship for each sample in RD has been captured.

Other than the ‘‘false analogy’’, we find the meaning of
‘‘intrinsic dimension’’ is ambiguous. Different researchers have
different understandings on ‘‘intrinsic dimension’’. To avoid
ambiguity, we have introduced the dimension of manifold and
MESED in Section 2.1.1 instead. We clarify that Kégl [20] and
Levina and Bickel [21] who propose local dimension determining
methods [20,21] consider it as the dimension of manifold, while
Tenenbaum et al. [4] and Fu and Thomas [16] who propose global
manifold learning algorithms [4,16,46] consider it as the MESED.

We find a method to determine the MESED based on the
particular behavior of LLE eigenvectors.

LLE first captures local information of manifold S
d. Because

the ‘‘locally dimension’’ (dimension of manifold) is d, the informa-
tion captured is also d-dimensional. Then LLE tries to find global
structures to fit all the local information. From the strong
Whitney embedding theorem, the global structure can always
be found in RT , where the MESED: T r2d. Solving the eigen-
problem (2.19), we can find N eigenvectors that are orthogonal
(2.16), where N is the number of data samples. Analyzed in
Section 3.3, those eigenvectors that preserve the continuity will
preserve the topology. Since d5N, we have T r2d5N, and most
eigenvectors preserve the continuity in order to minimize the
reconstruction error (2.14). Therefore, the number of those
eigenvectors preserving the continuity is much more than T .
Since there is only T -dimensional freedom in topology, the
eigenvectors will repeat the same topology while finding other
ways to satisfy the orthogonal constraint (2.16).

In Section 5, we discuss and prove that the eigenvectors of LLE
outside RT find freedom in general function spaces to satisfy the
orthogonal regulation. Moreover, the general function spaces are
specified as multi-resolutional spaces. In Section 4, we introduce
a method to find eigenvectors inside RT by observing the
eigenvectors’ multi-resolution behavior, which is developed as
the MTA method.

4. Manifold topological analysis (MTA) method

In this section, we introduce the manifold topological analysis
(MTA) method for typical topological manifolds, which are most
frequently used in computer vision, especially in tracking and
perception understanding. We analyze the behavior of the eigen-
vectors and eigenvalues of these manifolds. In addition, we
propose a method to determine their topological embedding
dimension and a method to improve the geometric performance
of LLE using eigenvalues.

4.1. Typical topological manifolds in computer vision

We introduce 4 typical topological manifolds:
(1) Line: R. (2) Circle: S1. (3) Plane: P. (4) Cylinder: cyl.
There are only 2 kinds of 1-dimensional topology: a line R and

circle S
1. They can generate 2-dimensional topology using a

Cartesian product. Thus, they are basic and important.
There are 3 basic 2-dimensional topologies: plane P, sphere S

2

and torus T. However, we choose P and cyl as typical topologies.
The following are the reasons.

Plane P is the most popular manifold in manifold learning
algorithms. The rectangle, swiss-roll and S-shape plane are all
planes in topology. Almost all manifold learning algorithms have
experimented with plane P [1–9,16,17]. In computer vision, there
are many samples with an underlying topological plane. Plane P

is chosen as one typical topological manifold.
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The sphere S
2 is a very important 2-dimensional topology. For

example, the viewpoint space of a 3D-object is a sphere, as shown
in Fig. 12(a). However, it is seldom discussed in manifold learning
methods because it is impossible to visualize a dimension reduc-
tion of a sphere. To show a dimension reduction of sphere, the
original space must be at least 4-dimensional. The other reason
we do not choose a sphere is: a sphere is difficult to describe with
an explicit expression in Euclidean space. For example, a unit
sphere is described explicitly in polar coordinates by R¼1 or
implicitly in Euclidean space by x2þy2þz2 ¼ 1. The explicit
expression in Euclidean space can be derived from the polar
expression (R,y,j). However, the expression varies dramatically
depending on the choice of the original point (y,j). The manifold
topological analysis method would be very complex to apply to a
sphere. However, a sphere can be analyzed by the manifold multi-
resolution analysis method (MTA) introduced in Section 5. An
example of a viewpoint sphere analysis is given in Section 6.2.

The cylinder cyl is not a basic 2-dimensional topology, which
can be seen as a combination of two planes [44]. However, it is
very important because it is much easier to analyze than a sphere.
In 3D computer vision, it is often used instead of a sphere [56].
Thus, we choose a cylinder as a typical 2-dimensional topology.

The torus T is not chosen because it seldom occurs in computer
vision.

Classification of 3 or higher dimensional topology has not been
completely developed in mathematics [44]. And all 3 or higher
dimensional topology cannot be visualized, except the cube R3.
Therefore, they are not discussed in MTA. We introduce and prove
our MMA method in Section 5, which is a feature extraction
method that is applicable to all topologies.

We introduce and prove the MTA method in the rest of this
section.

4.2. Manifold topological analysis method

We introduce the MTA method for typical topological manifolds:
Step 1: Determine whether or not the data samples satisfy the

‘‘manifold hypothesis’’ introduced in Section 2.1.2. If yes, calculate
the ‘‘local dimension’’ d of their underlying manifold S with a local
dimension determining method [20,21] if d is previously unknown.

Step 2: Conduct LLE on data samples and return more than 4d

of the lowest eigenvectors {Yi} along with their corresponding
eigenvalues {ki} (including the zero eigenvalue and the eigenvec-
tor l0,YT

0 ¼ 7 ð1,1,. . .,1Þ).
Step 3: Observe the behavior of eigenvectors according to

coordinates known a priori (Y i : S-R) or implicitly ððY iðSÞ,Y jðSÞÞ

(3.11)0 for a 1-dimensional manifold (d¼1) and ðY iðSÞ,Y jðSÞ,YkðSÞÞ

(3.12) for a 2-dimensional manifold (d¼2)). Calculate their degree of
periodicity.

Step 4: Classify eigenvectors into groups by their degree of
periodicity and find the basic (least periodic) eigenvectors. The
number of basic eigenvectors is equal to the dimension of the
topological embedding T , and their implicit expression recon-
structs the topological structure of the manifold.

Step 5: Rescale basic eigenvectors Y iðSÞ to ciY iðSÞ, where ci is

determined by its corresponding eigenvalues ci=cj ¼

ffiffiffiffiffiffiffiffiffiffiffi
lj=li

q
. The

implicit expression of rescaled basic eigenvectors reconstructs the
topological structure of the manifold, while allowing the global
geometry to be recovered.

Step 1 was discussed in Section 2.1.2. Step 2 was previously
discussed in Section 3.4 and why 4d eigenvectors are chosen will
be discussed in Section 4.5. Step 3 will be introduced and proved
by enumeration in Section 4.3. The proof of Step 4 was discussed
in Section 3.5 and will be expanded in Section 4.4. Step 5 will be
introduced and proved in Section 4.5.

4.3. MTA on typical topological manifolds

In this section, we observe the behavior of eigenvectors of all
typical topological manifolds, and categorize them mathemati-
cally. In MTA, only 4d eigenvectors are needed, and this will be
explained in Section 4.5. In order to bring more information to the
readers, we will give more than 4d eigenvectors in examples.

4.3.1. Line R

We start from an ideal situation in which the data are
uniformly sampled from a straight line segment. This is illustrated
in Fig. 6(a). Fig. 6(b) and (c) shows the first 6 eigenvectors when
80 points are sampled uniformly; the neighborhood number is
chosen as K¼2. Fig. 6(b) is the explicit expression Y i : fjg-R,
where j is the sample index. Fig. 6(c) is the implicit expression:
(Y1({xi}),Yj({xi})) (3.11)0. Significantly, Fig. 6(b) shows a set of
sinusoidal functions in ascending order. It can be proved that they
are standard sinusoidal functions:

7sin n
p
2

x

l

� �n o
ð4:1Þ

where l is the length of the line segment [a,b], xA[a,b] and
n¼0,1,2y For K¼2, the reconstruction matrix is given as

W¼

1 0

0:5 0

0 0 � � �

0:5 0 � � �

0 0

0 0

0 0:5

^ ^

0 0:5 � � �

^ ^ &
0 0

^ ^

0 0

0 0

0 0 � � �

0 0 � � �

0 0:5

0 1

2
66666666664

3
77777777775

N�N

ð4:2Þ

We will prove (4.1) in Section 4.3.2. It can also be proved that the
implicit expressions shown in Fig. 6(c) are Chebyshev polynomials:

TnðtÞ ¼ cosðarccosðntÞÞ,tE½�1,1�,n¼ 0,1,2,. . . ð4:3Þ

We highlight the standard sinusoidal function bases and
Chebyshev polynomial bases because there are two important
spectral analysis methods with these two bases: Fourier series
decomposition and Chebyshev decomposition. As a result, we
were inspired to develop the manifold multi-resolution analysis
method in Section 5.

Fig. 6(d)–(i) shows many visual examples whose underlying
manifold is a line R. We found their eigenvectors are still a set of
non-standard sinusoidal functions with an ascending degree of
sinuousness. Their degree of sinuousness can be measured as the
number of local extremas or the number of points that cross the
line Y iðRÞ ¼ 0. As in formula (4.1), we denote these typical
eigenvectors of line R as

YR
0 ,YR

1 ,YR
2 ,YR

3 ,. . . ð4:4Þ

4.3.2. Circle S
1

We start from an ideal situation in which the data are
uniformly sampled from a unit circle, Fig. 7(a). We use a visual
example, which is shown in Fig. 7(b). For K¼2 its locally linear
representation weights matrix is

W¼

0 0:5

0:5 0

0 � � �

0:5 � � �

0 0:5

0 0

0 0:5

^ ^

0 � � �

^ &

0 0

^ ^

0 0

0:5 0

0 � � �

0 � � �

0 0:5

0:5 0

2
6666666664

3
7777777775

N�N

ð4:5Þ
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Fig. 7(c) is the explicit expression Y i : fjg-R, where j is the
sample index. Fig. 7(d) is the implicit expression Y1({xi})-Yj({xi}).
Comparing with line R situation, Fig. 7(c) also shows a set of
sinusoidal functions in ascending order. The difference is that the
eigenvectors of circle S

1, Y i : fS
1
g-R, are periodic functions,

because the route on circle S
1 is periodic. Eigenvectors are

expected to be standard sine and cosine functions because of
the ideal symmetry of W:

YS1

0 � 1 or �1

YS1

nþ ¼7sinðnyþjnþ Þ

YS
1

n� ¼ 7sinðnyþjn�Þ

yE 0,2p½ Þ, 9jnþ�jn�9¼
p
2

ð4:6Þ

Formula (4.6) is also proved as a method to generate com-
plete function bases in general function analysis [48]. Each
sinuous level (or frequency) has 2 orthogonal random phase
sine functions. We denote the one with the smaller eigenvalue
as YS1

nþ and the other as YS1

n� . These sinuous functions are the
base functions of Fourier series decomposition for periodic
functions.

Fig. 6. LLE eigenvectors of line R: (a) uniform samples from a straight line segment; (b) their lowest 6 eigenvectors in the explicit expression; (c) their lowest 6 eigenvectors in

the implicit expression; (d) and (e) an image series of an expanding black circle and its lowest 6 eigenvectors in the explicit expression; (f) a rotating hand (481 images) from the

CMU image database; (g) their lowest 6 eigenvectors in the explicit expression; (h) a nonlinear line segment in R2; and (i) its lowest 6 eigenvectors in the explicit expression.
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We prove fYR
i g in (4.1) are standard sine functions: Observe

the weight matrixes (4.2) and (4.5). The only difference is the

weights on the end points, xR1 and xRN on line R. Circle S1 has no

end points. If the circle is observed from the side, it collapses to a

line. There is a perspective point at which xS
1

N�i is sheltered from

xS
1

2þ i, and xS
1

1 and xS
1

N=2þ1 become end points (N is an even number

and i¼ 0,1,. . .,N=2�1). Because xS
1

N�i are sheltered, add the

weights of xS
1

N�i to xS
1

2þ i, and remove xS
1

N�i; the new weight matrix

is the same as (4.2). In the same way, deleting the sheltered part

of YS
1

n7 , we get the yield YR
n . Thus the theorem is proved. &

In practice, the frequency feature of eigenvectors is very
robust. Fig. 7(e)–(g) shows an example. Generally, eigenvectors
of circle S1 are denoted as

YS
1

0 ,YS
1

nþ ,YS
1

n� n¼ 1,2,. . . ð4:7Þ

Fig. 7. LLE eigenvectors of circle S1: (a) uniform samples from a unit circle; (b) the method to generate a 100�100 pixel images series (100 images) with the underlying manifold

structure shown in (a); (c) their lowest 6 eigenvectors in the explicit expression; (d) their lowest 6 eigenvectors in the implicit expression. (e) 120-images series sampled from the

rotating hand model m324 from PSB [49]; (f) their lowest 6 eigenvectors in the explicit expression; and (g) their lowest 6 eigenvectors in the implicit expression.
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Fig. 8. (a)–(f) LLE eigenvectors of plane P. (a) and (b) The rectangle and its lowest 10 eigenvectors in the explicit expression, respectively; (c) and (d) noise-sampled

‘‘Swiss-roll’’ and its eigenvectors, respectively; (e) and (f) noise-sampled ‘‘S-shape’’ and its eigenvectors, respectively; (g) and (h) LLE eigenvectors of cylinder cyl: a noise-

sampled cylinder and its lowest 10 eigenvectors in the explicit expression, respectively.
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4.3.3. Plane P

The plane is easy to analyze because it can be generated as a
Cartesian product of two lines:

P¼R2
¼ ðR,RÞ ð4:8Þ

Similarly, eigenvectors of plane YP are Cartesian products of
line eigenvectors YR. Fig. 8(a) and (b) shows the eigen-decom-
position of a rectangle. A rectangle has a ‘‘height orientation’’ and
‘‘width orientation’’. We do not use a square because its orienta-
tion is arbitrary. The first 10 eigenvectors can be denoted as

YP
i,j ¼ ðY

R
i ,YR

j Þ ð4:9Þ

ði,jÞ ¼ ð0,0Þ,ð0,1Þ,ð1,0Þ,ð1,1Þ,ð0,2Þ,ð1,2Þ,ð0,3Þ,ð1,3Þ,ð0,4Þ,ð2,5Þ ð4:10Þ

where i refers to the ‘‘height orientation’’ and j refers to the
‘‘width orientation’’.

Such eigenvector behavior is robust against nonlinearity and
noise. The ‘‘Swiss roll’’ and ‘‘S-shape plane’’ sampled with noise
are popular; Fig. 8(c)–(f) shows their eigen-decomposition.

4.3.4. Cylinder cyl

Similar as plane, cylinder can be generated by Cartesian
product of a line and a circle:

cyl¼ ðR,S1
Þ ð4:11Þ

Moreover, its eigenvectors Ycyl
i,j can be expressed as a Cartesian

product of line-eigenvectors YR
i and circle-eigenvectors YS

1

j :

Ycyl
i,j ¼ ðY

R
i ,YS

1

j Þ ð4:12Þ

Fig. 8(g) and (h) shows the eigen-decomposition of a cylinder
sampled with noise. The lowest 10 eigenvectors can be expressed
as (4.12), where

ði,jÞ ¼ ð0,0Þ,ð1,0Þ,ð0,1þÞ,ð0,1�Þ,ð1,1þÞ,ð1,1�Þ,ð0,2þÞ,
ð0,2�Þ,ð1,2þÞ,ð1,2�Þ ð4:13Þ

4.4. Determining the ‘‘topological embedding dimension’’ of typical

topological manifolds

In Section 3.5, we have discussed that manifold with
MESED¼T can be embedded in RT . RT can have at most T
orthogonal eigenvectors. The rest of the eigenvectors will repeat
the topology and find orthogonal freedom by varying its fre-
quency. For a typical topological manifold, we see its eigenvectors
can be grouped by their topology. Eigenvectors in the same
topology group varies in frequency to satisfy the orthogonal
constraint (2.16). In each group, there is an eigenvector with the
least frequency. It is labeled with the smallest non-zero sub-
indices, and is named the ‘‘basic eigenvectors’’. We sort them as in
Table 1.

When the topological embedding dimension is unknown, we
analyze the behavior of the eigenvectors. The number of basic
eigenvectors is equal to the dimension of the topological

embedding (MESED). In addition, basic eigenvectors reconstruct
the global structure of an underlying manifold, which is the 4th
step of MTA.

4.5. Improved geometric reconstruction using eigenvalues

We improve the geometric reconstruction ability of LLE using
eigenvalues. From (2.14), the relationship between an eigenvalue
and the scaling of its corresponding eigenvector is

FðcYkÞ ¼ c2FðYkÞ ¼ c2lk, cAR ð4:14Þ

Eigenvectors are regulated according to (2.17) and are not
recovered after topological reconstruction. From (4.14), their scale
information ci can be recovered by

ci

cj
¼

ffiffiffiffi
lj

li

s
ð4:15Þ

This is the 5th step of MTA.
We use an ellipse as an example. Its long axis is denoted as a,

and the short axis is denoted as b. Topologically, an ellipse is a
circle S1, and implicit expression ðYS1

1þ ,YS1

1�Þ reconstructs an
ellipse as a round circle. The global geometric information is lost.
So does other locally manifold learning methods [6,7,9,10]. From
(4.15), we set c1 +¼1 and c1� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1þ =l1�

p
, and ðc1þYS1

1þ ,c1�YS1

1�Þ

successfully reconstructs an ellipse. When data are well sampled,
this reconstruction is precise. Fig. 9 shows the relationshipffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1�=l1þ

p
when a/b varies from 1.0 to 3.0; 2400 samples are

sampled uniformly from the ellipse.
Another weakness of the original LLE is that the smallest

eigenvalues do not always correspond to basic eigenvectors

Table 1
Eigenvectors of typical topological manifolds.

Topology Manifold dimension Topological embedding

dimension

Eigenvectors Basic eigenvectors

Line R 1 1 YR
i i¼ 0,1,2,. . . YR

1

Circle S
1 1 2 YS1

i i¼ 0,17 ,27 ,. . . YS1

1þ ,YS1

1�

Plane P 2 2 YP
i,j i,j,k¼ 0,1,2,. . . YP

0,1 ,YP
1,0

Cylinder cyl 2 3 Ycyl
i,j i¼ 0,1,2,. . . j¼ 0,17 ,27 ,. . . Ycyl

1,0 ,Ycyl
0,1þ ,Ycyl

0,1�

Fig. 9. Relationship between the global scale of the original data samples and the

LLE eigenvalues. The x-axis is the ratio of the long-axis and short-axis of an ellipse;

the y-axis is the square root of the ratio of the first 2 eigenvalues.
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because of scaling. Thus, reconstruction with the lowest eigen-
vectors is not robust. Goldberg et al. [25] discuss over-rescaling
the original data. They also propose a criterion to describe how
much scaling causes reconstruction failure. They show an exam-
ple using rectangle P, which we cite in Fig. 10. We cite their
example to explain this weakness and to demonstrate that our
method is robust against scaling.

As shown in Fig. 8(b), the first 5 eigenvalues of rectangle P

when its width-height ratio is not too great are

0¼ l0,0ol0,1ol1,0ol1,1ol0,2 ð4:16Þ

where li,j is the eigenvalue of eigenvector YP
i,j ¼ ðY

height
i ,Ywidth

j Þ. If
the scale in the ‘‘width orientation’’ maintained as the scale in the
‘‘height-orientation’’ decreases, l1,0 and l1,1 increase. l0,0, l0,1 and
l0,2 remain the same because they do not have a ‘‘height-
orientation’’ component. The scale in the ‘‘height-orientation’’ is
decreased until l0,2ol1,0 and l0,2ol1,1. This can always be
fulfilled according to (4.14). Then, the smallest 2 non-zero
eigenvalues are l0,1 and l0,2. Using the original LLE, the recon-
struction fails because a plane P is reconstructed as a line R:

YP
0,1-YP

0,23ðY
height
0 ,Ywidth

1 Þ-ðYheight
0 ,Ywidth

2 Þ ) YR
1 -YR

2 ð4:17Þ

It is evident that our method is robust against scaling and can
recover the original scale information.

We now discuss why 4d eigenvectors are chosen in Step 2 of
MTA. According to the strong Whitney embedding theorem, for a
d-dimensional manifold, we need to observe at least 2d eigen-
vectors. And in this section, order of eigenvectors will change
because of over scaling. We need to observe more in case not to
omit the base eigenvectors. Generally, eigenvector with frequency
f has eigenvalue more than 10 times greater than that with
frequency f�1 [2]. For a rectangle P, if l0,3ol1,0, roughly the
width-height rate is greater than 10. For such rectangle sampled
discretely with noise, it is ambiguous to define whether it is a
narrow rectangle P or a bold line R. Similarly, in practice, it is
ambiguous to define an ellipse with too big long-axis to short-axis
rate. So generally, we observe 4d eigenvectors in Step 2 of MTA as
default.

5. Manifold multi-resolution analysis (MMA) method

In Section 4, we describe the MTA method, which is a reliable
way to determine the typical global structure for tracking and
perception understanding. In the field of pattern recognition, LLE

is used for dimension reduction and as a feature extraction tool. In
this field, the underlying structure need not be given. However,
non-basic eigenvectors are still required to have exact meanings.

In this section, we introduce and prove the manifold multi-
resolution analysis (MMA) method, which extracts nonlinearity
from a manifold with multi-resolution. This method does not
reconstruct the global structure of manifold; thus, it is universally
applicable to all those manifolds that satisfy the ‘‘manifold
hypothesis’’. In Section 5.1, we discuss the origins of MMA. Based
on this preparation, we introduce the method in Section 5.2.
Further, in Section 5.3, we prove the multi-resolutional nonli-
nearity capture property of LLE eigenvectors. Two examples are
given in Section 5.4.

5.1. Ideas of manifold multi-resolution analysis

Many studies have used LLE eigenvectors as features in pattern
recognition [1,2,10–16,18,26,35,52], which is analogous to how
PCA, Isomap [4] or other global eigen-methods have been used. As
discussed in Section 3.5, LLE is a local method, and using it in the
same way as global methods is not acceptable. For example, one
inaccurate statement is that non-basic eigenvectors of LLE capture
only noise because non-basic eigenvector of global methods
capture only noise. In reality, basic LLE eigenvectors define the
topology without periodic repeating, but higher eigenvectors do
not. This is why LLE performs better than PCA if only a few
eigenvectors are used and performs worse if more eigenvectors
are used.

In Sections 4.3.1 and 4.3.2, we have mentioned function multi-
resolution analysis methods such as Fourier series decomposition
and Chebyshev decomposition. In addition to eigen-decomposition
of typical manifolds in Section 4.3, we also discuss the multi-
resolution property of LLE-eigenvectors. If we can find the meaning
of each eigenvector, we can use LLE as a manifold multi-resolution
analysis tool. This method is given in Section 5.2, and the proof is
given in Section 5.3.

5.2. Manifold multi-resolution analysis (MMA) method

We claim that LLE eigenvectors are multi-resolutional; LLE
eigenvectors capture manifold nonlinearity by their curves in
different resolutions.

The MMA method includes the following steps:
Step 1: Determine whether or not the data samples satisfy the

‘‘manifold hypothesis’’ introduced in Section 2.1.2. If yes, calculate
the ‘‘local dimension’’ d of their underlying manifold S with a local
dimension determining method [20,21] if d is not known a priori.

Step 2: Conduct LLE on data samples and return the 2nd least
eigenvectors {Yi}, where n is the desired analysis resolution.

Step 3: Find the local extrema of each eigenvector Yi according
to the following method:

For a particular point xi, find its neighborhood {xej} in the
neighborhood relation matrix E (2.4). If Yk(xi)4Yk(xej) (or Yk(xi)o
Yk(xej)) for all xejA{xej}, then xi is a local maximum (or minimum).

The number of local extremas in eigenvector Yi represents its
resolution.

Step 4: Find local curvature patches according to the following
method:

Start from a particular local extrema xi. Add its neighbor xej to
its set of curve parts {xi_C} if Yk(xi)�Yk(xej)40. For each point in
the set {xi_C}, repeat the search until no new point is added.

Each set {xi_C} is a local curve patch that captures nonlinearity
from the manifold in the corresponding resolution. The most
nonlinear location is identified by its local maximum.

Fig. 10. Local methods are unreliable because of rescaling. (a) Plane P (rectangle)

with a high width/height ratio. (b) A false underlying structure found by a local

method.

Cited from [25].
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5.3. Proof of the multi-resolutional nonlinearity capture property of

LLE eigenvectors

Step 1: The multi-resolution property of LLE-eigenvectors.
In this step, we show that, for any given n-dimensional manifold

S
n, its eigenvectors are multi-resolutional, and each of its eigenvec-

tors can be divided into small curves by equation Yi¼0.
As discussed in Section 3.5, a d-dimensional manifold has a

topological embedding space RT that only supports T orthogonal
eigenvectors. These T eigenvectors are called basic eigenvectors
in Section 4.4. Basic eigenvectors can be orthogonal to each other
because of freedom in topology. Moreover, as discussed in
Section 3.3, eigenvectors should preserve the continuity and
topology of the original manifold. Non-basic eigenvectors are
not topologically orthogonal to basic eigenvectors because there
is no topological freedom.

Freedoms are found in continuous functional space by varying
the resolution, which is common in general function analysis [48].
For example YS

n

T : Sn
-R can generate an eigenvector by increas-

ing the resolution.

S
n can be divided into two sub-patches S

n
1 and S

n
2 with

mappings h1ðS
n
1Þ ¼S

n and h2ðS
n
2Þ ¼S

n. Then, we find coefficients

c1 and c2 to generate the eigenvector YSn

2T :

YS
n

2T ðtÞ ¼
c1YSn

T ðh1ðtÞÞ tASn
1

c2YSn

T ðh2ðtÞÞ tASn
2

8<
: ð5:1Þ

which satisfies

Z
tA Sn

YS
n

2T ðtÞY
S

n

T ðtÞdt

¼

Z
tASn

1

YS
n

2T ðtÞY
S

n

T ðtÞdtþ

Z
tASn

2

YS
n

2T ðtÞY
S

n

T ðtÞdt

¼
1

b1

Z
tASn

c1YS
n

T ðtÞY
S

n

T ðtÞdtþ
1

b2

Z
tASn

c2YS
n

T ðtÞY
S

n

T ðtÞdt

¼
c1

b1
þ

c2

b2
¼ 0 ð5:2Þ

where b1 and b2 are the coefficients that are modified as a result

of changing the integration domain. The resolution of YS
n

2T is

doubled according to (5.1).
We note that YS

n

0 � 71, which is orthogonal to YS
n

0 indicates
that YSn

i ðtÞ are centralized:Z
tA Sn

YSn

0 ðtÞY
Sn

i ðtÞdt¼ 7
Z

tASn

YSn

i ðtÞdt ¼ E YSn

i ðtÞ
� �

¼ 0 ð5:3Þ

Thus, S
n can be divided into two sections by YSn

i ¼ 0:

ft9tAS
n,YSn

i ðtÞ40gand ft9tAS
n,YSn

i ðtÞo0g. We note that YSn

i is

a continuous mapping, which is discussed in Section 3.3; thus,

S
n is divided into several continuous patches. According to (5.1),

a higher resolution function has more and smaller patches.
According to the strong Whitney embedding theory, each

resolution level can stand only 2d eigenvectors. Therefore, at
least 2nd eigenvectors are needed for the desired resolution n.

Step 2: Local curve sections can capture local nonlinearities in
the original manifold.

YSn

k is a continuous mapping on bounded domain, thus, each
local patch has a local extrema. For a particular vector xi, its K

neighbors are temporarily denoted as xe1,xe2,y,xeK. We may
assume xe1,xe2,y,xeK is sorted by

YSn

k ðxe1ÞrYSn

k ðxe2Þr � � �rYSn

k ðxeK Þ ð5:4Þ

If xi is not a local extrema:

YSn

k ðxe1Þr � � �rYSn

k ðxejÞrYSn

k ðxiÞrYSn

k ðxejþ1Þr � � �Y
Sn

k ðxeK Þ,

j¼ 1,2,3,. . .,K�1 ð5:5Þ

We say xi lies inside its neighbors.
If xi is a local extremum, for example, if xi is a local maximum:

YS
n

k ðxe1ÞrYS
n

k ðxe2Þr � � �rYS
n

k ðxeK ÞrYS
n

k ðxiÞ ð5:6Þ

We say xi lies outside its neighbors.
In Section 3.2, we represent the tradeoff between ‘‘least square

fit’’ (2.7) and ‘‘centralization’’ (3.5). Regarding to eigenvector YSn

k ,
if xi is located in a generally nonlinear location in the original
manifold, then xi is considered at the center of its neighbors.
Furthermore, yi should be at the center of fyej ¼ YSn

k ðxejÞg to reduce
the reconstruction error 9yi�

PK
j ¼ 1 wejY

S
n

k ðxejÞ9
2

(2.13). In the
same way, if xi is from a location that is the most nonlinear, xi

is considered to be far away from the center of its neighborhoods.
In addition, yi should be at a local extrema, that is far away from
its neighbors {yej}. Similarly, curve patches can capture nonli-
nearity from the local patch of the original manifold.

Step 3: Curve sections of eigenvectors with different scales
capture nonlinearity at different scales.

The last step of the proof discusses the global property of the
capture. Previously, we focused on the reconstruction errors
raised by nonlinearity of the manifold. This kind of error is from
the locally orthogonal space of the manifold RD

\Rd. The notation
in local spaces was described in Section 3.1.

Typically, reconstruction error results from the locally tangen-
tial space Rd is small. Unlike the orthogonal space, points in the
tangential space can always be reconstructed without error,
which is discussed in Sections 3.1 and 3.2. Thus, global rescaling
does not increase reconstruction error according to (4.14). How-
ever, if we rescale each local part of the manifold with a different
scale (nonlinearly), the reconstruction point xiu¼

PK
j ¼ 1 wejxej

deviates from the point xi and increases reconstruction error.
In Step 2, we proved that curved parts of the eigenvectors are

likely to capture nonlinearities of the original manifold to reduce
the reconstruction error (2.5). If there are nonlinearities in the
manifold, curved patches move to those places to capture them.
Such movement causes a non-uniform redistribution of samples,
which increases the reconstruction error.

Compared with error from nonlinearities, error from redis-
tribution is very small because it is determined by distribution
differentiation. However, the ultimate goal is to minimize the
overall reconstruction error, thus, nonlinearity capture and redis-
tribution are tradeoffs. Curve patches do not move very extremely
to capture nonlinearity. Otherwise, the reconstruction error
reduced by capture does not compensate for the error raised by
tangential redistribution.

In other words, a certain curve section is most likely to capture
nonlinearity in the same scale to optimize the total reconstruction
error. Thus, LLE is a useful tool to capture nonlinearities at
different resolutions.

We have proved the MMA method. &

5.4. Examples

We give two examples.

(1) The first one shows ‘‘move and capture’’: a line with 3 non-
linear places, as shown in Fig. 6(h). As proved in Section 4.4,
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Fig. 11. An example to demonstrate the monotonic relationship between the resolution of eigenvectors and the scale of manifold nonlinearity: (a) a series of images that

consist of 161 frames describing ‘‘the movement of two rectangles’’. The height of the rectangles is 40 pixels. (b) The topological structure of data samples. Those images

with an occlusion of the two rectangles are denoted with solid points; (c) the lowest 8 LLE eigenvectors. The most obvious eigenvectors with ‘‘occlusion’’ are highlighted.

(d)–(f) The same experiment as above, but the height of the rectangles is 30 pixels. (g)–(i) The same experiment as above, but the height of the rectangles is 20 pixels.
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the eigenvector YR
1 captures only global topology. Moreover,

as proved in Section 5.3, YR
2 captures one nonlinearity, while

YR
3 captures two and YR

4 captures all the three. The standard
eigenvectors are compared with these eigenvectors in
Fig. 6(b). Local extremas have moved from their original
locations to locations with nonlinearity, which shows the
‘‘move and capture’’.

(2) The second example shows ‘‘capture in the corresponding
resolution’’. Fig. 11(a) is a series of images that shows two
rectangles that ‘‘move together’’, ‘‘occlude each other’’ and
‘‘separate’’. Specifically, the size of the canvas is 200�200
pixels, and the size of the rectangles is 180�40 pixels. The
motion is composed of 161 images. In the 61st through 101st
images, the two rectangles occlude each other. The underlying
topology is shown in Fig. 11(b), where images that show
‘‘occlusion’’ are denoted as solid points. The ‘‘occlusion’’ is a
nonlinearity on the manifold. The first 8 LLE eigenvectors are
shown in Fig. 11(c). We see some of them capture the
nonlinearity with a local extrema. We have highlighted the
one with most significant local extrema.

We performed the same experiment but rescaled the rectan-
gles to 180�30 pixels and 180�20 pixels, as shown in
Fig. 11(d)–(i), where the nonlinearity raised by ‘‘occlusion’’ has
a smaller scale. Such differences in scale are shown in their
underlying topology. We have also highlighted the eigenvector
with the most significant local extrema for ‘‘occlusion’’.

We observe the relationship between the scale of nonlinearity
and the resolution of the highlighted eigenvectors in Table 2,
which shows eigenvectors with different resolutions that capture
nonlinearity in the corresponding resolution.

6. Applications in 3D object recognition

We give two applications in 3D object recognition using the
methods introduced in Sections 4 and 5.

6.1. 3D object recognition

This application demonstrates the use of non-basic LLE
eigenvectors.

One efficient method of 3D object recognition is to present the
original 3D object as a set of its 2D projections [50], as shown in
Fig. 12. The difficulty of this method is choosing the 2D projec-
tions that lie on the viewpoint sphere S

2, which is a 2-dimen-
sional manifold. Usually, such projections are chosen to have
equal intervals. Here, we choose representative projections by
finding its local extremas using MMA. Referring to Fig. 6(h) and
(i), local extremas can represent the original manifold perfectly by
linear interpolation.

We introduce our experiment in detail: Fig. 13(a) shows
the 3D airplane models we used in the recognition experiment,
which are chosen from PSB [49]. Fig. 13(b) illustrates the
method of obtaining 2D projections, where the blue part is used
as training set and the red part is used as testing set. We
note that the training set and testing set are different because
of focus projection. The ratio of the model scale to the
focus length is about 2:5, which causes significant shape
deformation.

For each particular model, its training set lies on a 1-dimen-
sional manifold. We choose its representation projections by
finding the local extrema of LLE-eigenvectors. This is similar to
choosing local extremas in Fig. 6(g). The Fourier descriptor [54]
was extracted from projections. The classification library is

Table 2
The product invariance between the scale of nonlinearity and the resolution of

eigenvector.

Scale of nonlinearity (number of images with ‘‘occlusion’’) 40 30 20

Resolution of eigenvector (number of periodic) 3 4 6

Product 120 120 120

Fig. 12. (a) Viewpoint space of 3D objects, which is a 2-dimensional manifold S
2. (b) Projection images used to describe the original 3D objects.
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established by storing representative images of each model.
Another library with representative images chosen with equal
intervals was used for comparison.

In the recognition test, the test image is compared with
all representative images in the classification library and classi-
fied to the class of its nearest neighbor. Tables 3 and 4 show
2 tests: (1) recognition of 5 models using different non-basic
eigenvectors; and (2) recognition of different numbers of models.

Manifold multi-resolution analysis (MMA) performs better in
all tests because MMA captures nonlinearities of underlying
manifold, which are important representatives.

6.2. 3D object viewpoint space partitioning

The aspect graph was a popular way to find a 2D representa-
tion of a 3D object [50]. However, several problems hinder its
application: (1) disastrous computational complexity: O(n6)–
O(n9), where n is the number of edges of the 3D mesh model,
which is about 10,000 for the airplane model from PSB [49];
(2) the partitioning is over-detailed, with about 10,000–100,000
partitions for the airplane model from PSB; and (3) it cannot give
a hierarchical representation.

3D object viewpoint space partitioning by MMA overcomes all
these shortages: (1) the computational complexity of LLE is only
O(n2)–Oðn3Þ, where n is the number of data samples, which is
about 2000 for 3D models; (2) partition resolution can be
controlled by the number of eigenvectors used; and (3) partitions
are hierarchical.

Fig. 14 shows a comparison by partitioning the viewpoint
space airplane model.

7. Discussion

7.1. Learn underlying manifold of human walking

Learning the underlying structure of ‘‘human walking’’ is a
successful application of LLE in tracking and perception under-
standing, as shown in Fig. 15 [28,33]. Their results illustrate that
LLE successfully separates the two half cycles of human walking
cycle, which cannot be separated by traditional linear methods.
However, their analysis is not strictly correct.

An ‘‘8’’ shape is not strictly a ‘‘manifold’’ because it does not
satisfy the definition of a 1-dimensional manifold in Section 2.1.1.
Specifically, the ‘‘cross’’ on ‘‘8’’ is not homeomorphic to R.

According to the typical eigenvectors of circle S
1 in Section

4.3.2, an implicit expression of eigenvectors, ðYS
1

2þ ,YS
1

2�,YS
1

1þ Þ, is
always an ‘‘8’’ shape, even though the original manifold is a circle
(Fig. 4(d)).

The correct explanation is that YS1

1þ and YS1

1� find the underlying
structure of human walking as a circle and discriminate the two half

Fig. 13. (a) 15 airplane models chosen from PSB [49] for the recognition test. (b) Method to obtain projection images. The blue part is used as the training set and the red

part is used as the testing set. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Recognition of 5 models using different eigenvectors.

Eigenvector

used to choose

representative

images

Number of

images chosen

for the library

of each model

Images

tested

Recognition rate:

representative images

chosen by

MMA Equal

interval

YR
2

3 1800 0.591 0.461

YR
3

4 1800 0.614 0.585

YR
4

5 1800 0.674 0.669

Table 4

Recognition rate of different number of models using YR
2 .

Number of models Images tested Recognition rate: representative

images chosen by

MMA Equal interval

5 1800 0.591 0.461

10 3600 0.458 0.374

15 5400 0.384 0.341
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cycles. YS
1

2þ and YS
1

2� find the underlying structure of human walking

as a circle, but do not discriminate half cycles. As analyzed in

Section 4.5, eigenvalues l1+ and l1� are greater than l2+ and l2�

because the difference between 2 half cycles is very slight. Because
the original LLE uses the lowest eigenvectors, the 3 lowest eigen-

vectors in this situation are YS1

2þ ,YS1

2� and YS1

1þ , which implies an ‘‘8’’.

MTA would be a better analysis method to determine inter-
half-cycle behavior according to YS1

1þ ,YS1

1�,l1þ and l1�, and intra-
half-cycle behavior with YS

1

2þ ,YS
1

2�, l2 + and l2�. For example, as

shown in Fig. 15(e), YS1

1þ (LLE (3)) captures the nonlinearity at the
‘‘cross’’ by its local extrema.

7.2. Universality of MTA and MMA on all local methods

MTA can be extended to all the following local methods: LEM
[6], HLLE [7], DFM [9] and LSTA [10]. They differ from LLE in the
way that they capture local information. In the proof of MTA in
Sections 3.4, 3.5, 4.3, 4.4 and 4.5, we do not use the specified

Fig. 14. 3D object viewpoint space partition. (a) Cited from [55]: the aspect graph method by catastrophe theory. Too many partitions are generated, and they are non-

hierarchical. (b) The MMA method is shown with the bottom 6 eigenvectors from the explicit expression. For the first eigenvector, some projections on local extremas are

shown. The series of eigenvectors is shown, and the partition is hierarchical, and the partition resolution can be controlled.
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formulas (2.5) or (2.13); thus, any of them can be chosen to
replace LLE in the second step of MTA.

In the proof of MMA, we have used the tradeoff between two
optimal conditions (2.5) and (3.6) to prove the existence of
‘‘nonlinearity capture’’. One can use other local methods to
replace LLE in Step 2 of MMA if the ‘‘nonlinearity capture’’ ability
is proved. The proof is one of our future works.
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