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a b s t r a c t 

In this paper, we propose a novel 3D free form surface matching method based on a novel key-point 

detector and a novel feature descriptor. The proposed detector is based on algebraic surface fitting. By 

global smooth fitting, our detector achieved high computational efficiency and robustness against non- 

rigid deformations. For the feature descriptor, we provide algorithms to compute 3D critical net which 

generates a meaningful structure on standalone local key-points. The scale invariant and deformation 

robust Dual Spin Image descriptor is provided based on the 3D critical net. Our method is proved by solid 

mathematics. Intensive quantitative experiments demonstrate the robustness, efficiency and accuracy of 

the proposed method. 
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. Introduction 

Free form 3D surface matching is the technique to find the cor-

espondences between surfaces. There is a increasing demand for

fficient and accurate 3D surface matching techniques because it

erves as a fundamental method for a number of 3D based com-

uter vision techniques, e.g ., tracking [35] , recognition [3] , classi-

cation [7,16,17] , retrieval [1,40] , registration [15,27,36] , modeling

9,13,37] , morphing [31,38] and BRDF estimation [21–23] . 

Matching surfaces is not a trivial task when the surface is de-

ormable. Deformation occurs in many situations, i.e ., when the

urface itself is non-rigid and when the sensor is not well cali-

rated. Non-rigid object is quite common: human, animals, liquid

re all highly non-rigid. Sensor deformation is also common for

tructure from motion or a moving range sensor. 

Mathematically, in global aspect, deformation can be modeled

sing a smooth warping function, however, this is not easy because

he deformation could be highly non-linear and topological incon-

istent. In local aspect, deformation can be modeled using linear

ransforms. However, these modeling could be highly sensitive to

oise. 

In general state-of-art sparse matching technique is desired to
e: 
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Robust: It is basically desired a shape detector should be robust

gainst noise, sampling resolution, data missing, and rigid defor-

ations as well as non-rigid deformations. 

Topology independent: 3D data are frequently used in many

omputer vision and graphic tasks, e.g . CAD model (complete

nd noiseless surface), range data (incomplete and noisy surface),

tructure from motion (sparse and noisy point cloud). And thus, a

urface matching technique is desired to be generally applicable in

arious scenarios. 

Efficient: Computational efficiency is always desired in com-

uter vision tasks. 

In this paper, we model the shape deformation by using alge-

raic surface fitting (ASF) [30] . The proposed local key-point de-

ector - The 3D implicit polynomial detector (IP detector) - detects

ey-point on the original model according to the energy field pro-

ided by ASF. Our detector is fast by adopting an ASF technique

amed Adaptive Fitting [32] . The efficiency is further improved

y our speedup strategy. The overall detecting on 10 0,0 0 0 points

an be finished within 10s. Our detector is range data compat-

ble, for ASF is insensitive to topology, boundary and data miss-

ng. By modeling the deformation, our detector achieves invariance

gainst scaling and rotation; and robustness against noise, data

issing and free form deformation. The invariance and robustness

re demonstrated by mathematical proofs and experiments. 

For feature description, we first generate a graphic structure on

tand alone keypoints, call the 3D critical net. Based on it, we ex-

ent the local shape descriptor Spin Image [14] to Dual Spin Im-

ge (DSI) which achieves invariance against scaling and robustness

http://dx.doi.org/10.1016/j.neucom.2016.06.086
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.06.086&domain=pdf
mailto:diming.zhang@gmail.com
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Fig. 1. Robust matching of 3D surfaces with free form deformation. Blue and red 

makers denote key-points found by algebraic surface fitting. Yellow lines are 3D 

critical net connecting key-points. Green lines show the match between surfaces. 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article). 
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against free form deformation. The performance is demonstrated

by quantitative matching experiments. 

The contribution of this paper is threefold: First, we introduce

the theoretical insight on tackling the non-rigid registration prob-

lem as an multi-scope algebraic geometry problem. Second, we

propose a novel sparse feature detector by exploited the residual

field of algebraic surface fitting. And third, we propose a context-

aware feature descriptor based on critical net of the sparse feature

points. 

Fig. 2 illustrate the idea of the proposed method and

Fig. 1 shows and example of the surface matching. 

The rest of the paper is organized as follows: Section 2 dis-

cusses the related work in surface matching, non-rigid shape mod-

eling. Section 3 , the ASF, which is used to statistically model the

shape deformation, is introduced. 3-layers method and adaptive

fitting method is introduced which improves the fitting robust-

ness and computational efficiency correspondingly. Base on it, in

Section 4 , the method to utilize the modeled deformation for point

detection is provided along with mathematical proof. After that, in

Section 5 , 3D critical net is introduced and the local shape descrip-

tor: Dual Spin Image (DSI) is introduced. Section 6 is the quantita-
Fig. 2. Workflow of the proposed 3
ive experiments which demonstrate the robustness and efficiency

f our detector and descriptor. Section 7 is the discussion and

onclusion. 

. Related work 

.1. Matching rigid surfaces 

Early research works are more interested in exploiting match-

ng rigid surfaces, say, surface with no distortion. These methods

re usually used in retrieval and alignment. These methods can

e categorized as global feature based methods and local feature

ased methods. 

Global feature based methods has a long history in computer

ision. It characterize the global distribution of a 3D surface:

ederberg and Anderson [30] represent surface by algebraic sur-

ace fitting (ASF) and extract feature from polynomial coefficients.

ang and Ikeuchi [18] represent 3D models by mapping the nor-

al orientation and normal distance of the surface point to a unit

phere; Osada et al. [25] introduce shape distributions on dis-

ance, angle, area and volume of random surface points. However,

hese global matching techniques do not work with partial data

hat come from range sensor. And they are not developed to be

eformation-robust. 

Local feature based surface matching has shown advantages in

andling detailed or partial data. Local feature works from the

eighborhood of points on the surface: Chua and Jarvis [5] com-

ute point signatures that accumulate surface information along a

D curve in the neighborhood of a point. Mian et al. extract fea-

ure by evaluating the 3D basis and principal curvature of local

eighborhood [24] . Although these techniques work with incom-

lete data but they are not developed to be deformation-robust ei-

her. Some local shape information, i.e . local curvature, are sensi-

ive to both noise and deformation. 

.2. Non-rigidity modeling 

By limiting the deformation to isometric invariant, Elad et al.

8] use the Isomap embedding that embed the deformed shape

o an isometric invariant canonical form. Then shape matching is

erformed between the canonical forms. Raviv et al. [26] make an
D shape key-point detector. 
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Fig. 3. Illustration of 3L fitting in 2D case. (a)Illustration of the 3 layers: �0 the 

original shape, �1 its dilation and �−1 its corrosion. (b) Viewing the polynomial as 

a 3D surface, the fitted shape ˜ �0 is the intersection of the polynomial with z = 0 

plane. 
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xtension that the canonical form is also affine-invariant. Lipman

t al. [20] relax the restriction from isometric to conformal and

mbed the deformed shape to the conformal invariant canonical

orm. 

Manifold learning, e.g . ISOMAP [33] and LLE [28] enable the ac-

ess to deformable 3d shape matching. By limiting the deformation

o isometric invariant, Elad et al. [8] use the ISOMAP embedding

hat embed the deformed shape to an isometric invariant canoni-

al form. Then shape matching is performed between the canonical

orms. 

There are several limitations of the existing methods: 1. The

sometric or conformal invariance is too strong which is scarcely

atisfied in real practices. [19,39] 2. Furthermore, these techniques

o not work with incomplete data which have arbitrary bound-

ry because they are very sensitive to data integrity and boundary.

. Embedding based methods are computational high-cost because

hey need to do eigen-decomposition on dense matrices. For exam-

le, the ISOMAP embedding is O (n 3 ) − O (n 6 ) complex, where n is

he number of data points. It needs about one minute to solve only

0 0 0 points. Shape with more than 10,0 0 0 points, which is very

ommon for both CAD and range data, cannot be solve in a reason-

ble time. Several speed up techniques are proposed. A Sahillioglu

t al. reported their performance on finishing 20,0 0 0 points within

hree minutes. [29] However, the performance is still on satisfying

or real practices. 

.3. Local and sparse matching 

To avoid explicitly modeling the non-linear deformation, sparse

orrespondence take in the idea that local deformation can be

ell approximated by linear transforms. Sparse correspondences

etween deformed shape could be applied to non-rigid object re-

rieval, recognition, registration; it also enables dense matching of

on-rigid shapes. Basing on sparse correspondences, Sharma et al.

31] and Tung et al. [35] explore the dense correspondence on de-

ormed shapes and applied their methods to rigid shape morphing

nd motion tracking. 

It is worthy to notice that, all the existing deformation compat-

ble techniques are within the scope of Riemannian geometry, say,

anifold learning techniques which aim to embed the deformed

hape to a deformation invariant canonical form. In this paper, we

ry to deal with the deformation in an novel way: we implicitly

odel the deformation, rather than remove the deformation, we

epresent the deformation as an energy field. 1. we do not need to

ake very strong assumption on the deformation; 2. Modeling is

tatistical so that it is not topological sensitive or boundary sensi-

ive, thus both CAD and range data are compatible; 3. The method

s computational efficient. 

. Algebraic surface fitting 

Algebraic surface fitting (ASF) has a long history in computer

ision as being using in modeling 3D objects [4,30,32] . As a pre-
equisite of the proposed method, in this section, we introduce the

asic idea as well as the algorithm. 

In 3D case, implicit algebraic surface is defined by an n degree

mplicit polynomial (IP) as: 

f n (x ) = 

∑ 

0 ≤i, j,k,i + j+ k ≤n 

a i jk x 
i y j z k = 0 , 

x = (x, y, z) ∈ R 

3 . (1) 

iven 3D shape �0 represented by a set of M points: 

 x m 

} = { (x m 

, y m 

, z m 

) } , m = 1 , 2 , . . . , M, (2)

iven the degree of IP n , ASF is aiming to find the set of coefficients

 a i jk | 0 ≤i, j, k, i + j + k ≤n } which minimizes the � 2 error: 

 = 

M ∑ 

m =1 

( f n (x m 

)) 2 . (3) 

he found IP is thus denoted as ˜ f n (·) : 
 

m 

˜ f n (x m 

) 2 = min 

f n (·) 
E = min 

f n (·) 

∑ 

m 

f n (x m 

) 2 . (4) 

The zero surface ˜ �0 : 

 

0 = { x = (x, y, z) | f (x ) = 0 } , (5)

s desired to be a smooth approximation of the input surface.

ig. (4) shows an example. 

There are two challenges of ASF. The first is the over-fitting.

nd the second is the efficiency. Fortunately, both are solve as

ntroduced in the following subsections. Section 3.1 introduces

he 3L method which significantly robustifies the fitting. And

ection 3.2 introduces the adaptive fitting which improves the per-

ormance. 

.1. 3L fitting 

It is well known that the original polynomial fitting is very

ikely to fall into a over-fitting solution. 3L (3 layers) fitting, pro-

osed by Blane et al. [4] , has significantly improved the stability

f IP fitting. For clarity, 2D shapes are used as examples, all the

ethods also work for 3D surfaces. 

For a given 2D shape ˜ �0 , which consists of M points:

 x m 

= (x m 

, y m 

, z m 

) , m = 1 , 2 , . . . M} , and its corresponding polyno-

ial ˜ f (x, y ) , The polynomial ˜ f (x, y ) could be considered as a sur-

ace in 3D space: 

(x, y, z) = (x, y, ̃  f (x, y )) ∈ R 

3 (6)

ere, the 2D shape represented by the zero set: 

 

0 = { x = (x, y ) | ̃  f (x ) = 0 } (7)

s the intersection of the polynomial surface with the horizontal

lane passing through the origin at z = 0 . An illustration is shown

n Fig. 3 (a). 

Now, let’s consider the gradient of polynomial � ̃

 f (x, y ) in the

icinity of the 2D shape ˜ �0 . If ‖ � ̃

 f (x, y ) ‖ is small in the area, or

ven if there are singularities (place where � ̃

 f (x, y ) = 0 ), change in

he shape � ( x, y ) would not result in a big change of the polyno-

ial value � ̃

 f (x, y ) according to the relation: 

 

˜ f (x, y ) ≈ � ̃

 f (x, y ) � (x, y ) (8)

ccording to (4) , IP fitting is found by minimizing overall polyno-

ial norm. The fitting is not robust if the polynomial surface is

oo flat in the vicinity of ˜ �0 , because a large change of the shape

ould only result in a small change of the polynomial value. 

The 3L method (3 Layers) will search for polynomial surface

ith steep slides in the vicinity of 2D shape ˜ � . For given shape
0 
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Fig. 4. Illustration of the incremental fitting. (a) The origin shape [41] , (b) the approximate surface find by 6 ° ASF, (c) 8 degree, (d) 10 °, (e) the normalized fitting error 

decreases while the polynomial degree increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The Spatial frequency space aspects of polynomial fitting. While most local 

detectors work from small scale to large scale. The polynomial fitting works in the 

opposite direction. The global information is extracted in the polynomial ˜ f n (·) ; and 

the local information is distilled in function value { f n ( x )}. 
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�0 , 3L method first searches its dilation �1 and its corrosion �−1 .

Then the ASF is to find the optimal IP that satisfying: 

f (�0 ) = 0 

f (�1 ) = 1 

f (�−1 ) = −1 (9)

Fig. 3 (a) is an illustration. 

It is proved by Blane et al. that by conducting 3L method, sin-

gularities and small gradiant polynomial � ̃

 f could be ruled out the

in the vicinity of ˜ �0 . Readers are encourage to refer to Appendix A

of [4] for the proof. 

3.2. Adaptive fitting 

ASF is aiming to find the accurate smooth approximation of

shapes. The accuracy could be calculated according to the fitting

error (3) . When the model is under-fitted. According to (1) , the

higher the polynomial degree is, the more the polynomial coeffi-

cients are, the more the accuracy will be 1 . Fig. 4 shows an example

that the fitting error drops along with the increasing polynomial

degree. 

Notice that, according to (3) , the fitting accuracy is not known

until a given-degree-fitting is finished. There is a trade-off between

fitting accuracy and computational efficiency: a low degree fitting

is fast but might not meet the desired accuracy; a high degree fit-

ting might guarantee the fitting accuracy but some unnecessary

coefficients are calculated. Therefore, an appropriate polynomial

degree that balances the accuracy and time cost is desired. 

Fortunately, benefited from the adaptive solution of QR decom-

position, the quadratic form can be solved in a similar adaptive

strategy. Which means the internal optimization value calculated

for n -degree fitting can be directly used in the (n + 1) -degree fit-

ting. Readers are encouraged to refer to the detail in [32] . 

By far, we have introduced the original ASF, its robust modifi-

cation 3L-ASF, its fast modification Adaptive-ASF. In the following,

we will used the combined method and call it 3L-adaptive-ASF. 

4. IP-based key-point detection 

Our local key-point detection method is based on the polyno-

mial value of ASF ˜ f n (x ) . We detect local extrema according to ˜ f n (x )

and these extrema are considered to be invariant against scaling

rotation, robust against deformations and noise. 

The mathematic support of our method is consisted of two lem-

mas and one theorem, which will be introduced in Section 4.2.1 to

Section 4.2.3 . Strategy for key-point selection based on 

˜ f n (x ) are

introduced in Section 4.3.1 . After that, a speed up strategy is intro-

duced in Section 4.3.2 . The overall methodology is summarized in
1 Here we assume the overfitting is well-solved by 3L fitting. 

fi  

f  

i

ection 4.3.3 . In Section 4.4 , we will discuss the robustness of our

etector. 

.1. Motivation 

As introduced in Section 3.2 , the 3L and incremental fitting

trategy makes the state-of-art ASF robust and fast. ASF has a long

istory in computer vision as being using in modeling 3D shapes

or recognition, retrieving, registration and etc . [4,30,32] . 

According to (1) , Given a 3D shape �0 consists of M points { x m 

},

he yielded polynomial ˜ f (·) , the polynomial coefficients, is a good

epresentation of the surface. Thus previous researches are focus-

ng on the corresponding polynomial coefficients: ˜ f (·) . Rotation,

caling and affine invariants are extracted from the polynomial co-

fficients { a ijk }. 

Mention that, feature extracted from 

˜ f (·) are all global features.

s discussed in the introduction, local feature are more informa-

ion rich and versatile. In this research, we are aiming to develop

 local key-point detector based on ASF. Thus, we consider ASF in

 different view: 

From 

˜ f (·) , we can get zero set ˜ �0 (see (5) ) which is a smooth

pproximation of original shape �0 . Actually, for local key-point

etection, the smooth part is not information rich. The polynomial

alues (residue) { ̃  f (x ) } of points { x m 

} once were only considered

s the error of ASF, contains all the local information. Unlike the

riginal data { x m 

}, { ̃  f (x ) } are local information filtered by a global

lter: ˜ f (·) . This means, { ̃  f (x ) } contains both global and local in-

ormation. Fig. 5 illustrates our idea. One explanation of { ̃  f (x ) } is

ntroduced as follows: 
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Fig. 6. Illustration of the point deviation represented by algebraic distance ˜ f . (a) 3 layers to be fitted. (b) A local look of the 3 layers. (c) After the fitting, a monotonic field 

is generated around the original surface. Polynomial value ˜ f is the algebraic distance represents the deviation from ̃

 �0 . 
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Fig. 7. Illustration of dual spin image (DSI). (a) Sampling area of DSI based on 3D 

critical net. (b) Structure of DSI. 
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.2. Point deviation based on algebraic distance 

.2.1. Theorem 

We claim the theorem: 

heorem. Given 3D shape �0 consists of point set { x } and its n -

egree polynomial from 3L-adaptive-ASF ˜ f (·) along with the in-

uced smooth approximation 

˜ �0 . For each point x , its polynomial

alue ˜ f (x ) is a locally signed algebraic distance [32] of how far it

s deviated from 

˜ �0 . 

.2.2. Lemma1 

emma 1. By 3L ASF, a locally monotonic space is generated around

he 3D surface ˜ �0 . 

According to the idea of 3L fitting (9) , other than the zero set ˜ �0 ,

hich is the smooth approximation of original shape �0 , we could

lso find the “1”-level-set ˜ �1 = { x | ̃  f n (x ) = 1 } which is the smooth

pproximation of the dilation �1 . So does the “−1”-level-set: ˜ �−1 =
 x | ̃  f n (x ) = −1 } . 

Because polynomials are everywhere smooth (infinite differential),

ctually, we could get any level set ˜ �θ for −1 ≤ θ ≤ 1 : 

 

θ = { x | ̃  f n (x ) = θ} (10)

his means, in the area bounded by ˜ �1 and ˜ �−1 , denoted as �, the

olynomial value is bounded by -1 and 1, and changes continuously.

ig. ( 6 ) . 

To prove Lemma 1 , the left thing is to prove that: ˜ f (·) is strict

onotonic inside �. Or, equivalently, ˜ f (·) has no singularity inside

: 

 c > 0 , ∀ x ∈ �, ‖ � ̃

 f (·) ‖ > c (11)

s mentioned in Section 3.1 , this part has already been proved by

lane et al. [4] . 

According to Lemma 1 , given any point x on ˜ �0 , by moving to-

ards ˜ �1 its polynomial value ˜ f n (x ) increases from 0 to 1 continuous

nd strict monotonically and vice versa. Therefore ˜ f n (x ) is a signed

lgebraic distance to from point x to ˜ �1 . 

Mention that, Lemma 1 does not guarantee the polynomial value

utside �. Make ˜ �1 and ˜ �−1 away from 

˜ �0 will extend the area.

owever, ˜ �1 and ˜ �−1 are dilation and corrosion of ˜ �0 , if they are

oo distanced, there shape resemblance will decrease. In practice, the

istance is set to 5% in comparing with global shape size. 

.2.3. Lemma 2 

emma 2. The points on 3D surface ˜ �0 are guaranteed to be located

nside the locally monotonic space � with a very high probability. 

According to Lemma 1 , � is bounded by ˜ �1 and ˜ �−1 which are

he smooth approximation of the original shape’s corrosion �1 and

orrosion �−1 correspondingly. This means, it is not 100% guaranteed

he original shape �0 will locate inside �. 

Actually, we have not specified the original shape �0 . The point

istribution of � can be very different. Noise and data missing could
0 
lso be including. Therefore, we approach this problem in the view of

robability. 

The points { x } on �0 are considered to be set of random points.

fter fitting, there corresponding polynomial values { ̃  f n (x ) } are also a

et of random number. For any given point x , it is located inside � if

ts polynomial value satisfies: 

1 ≤ ˜ f n (x ) ≤1 (12) 

f we could model the distribution of { ̃  f n (x ) } , then we could calculate

he probability. 

Refer to (3) , ˜ f n (x ) is the error of the ASF. And the algorithm pre-

ented in this paper is to minimize the over square error. A popular

odel for this situation is the “Normal distribution” centers at ‘0’: 

p y ( ̃  f n (x ) = y ) ≈N(0 , σ 2 ) = 

1 

(2 πσ 2 ) 
1 
2 

exp 

{ 

− 1 

2 σ 2 
y 2 

} 

(13)

In practice, the exact distribution differs from model to model. In

ig. 9 , we have shown the distribution of ˜ f n (x ) of several different

odels. Normal distribution centers at ’0’ is very plausible in these

ases. 

After modeling the distribution of ˜ f n (x ) we could calculate the

robability that −1 ≤ ˜ f n (x ) ≤1 : 

p(−1 ≤ ˜ f n (x ) ≤1) = er f 

(
1 √ 

a σ

)
(14)

here erf ( · ) is the error function: 

r f (a ) = 

2 √ 

π

a ∫ 
0 

exp (−y 2 ) dy (15) 

Some typical value of (15) is as follows: 

Squid
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Fig. 8. Tests on key-point repeatability. (a) Invariance against transformation and rotation. (b)–(h) Robustness against deformations. (h) Robustness against noise. 



S. You, D. Zhang / Neurocomputing 259 (2017) 119–129 125 

Fig. 9. Key-point detection on different 3D shapes. 
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If σ < 0.39, ( σ 2 < 0.16 ), then p(−1 ≤ ˜ f n (x ) ≤1) > 0 . 99 

If σ < 0.32, ( σ 2 < 0.10 ), then p(−1 ≤ ˜ f n (x ) ≤1) > 0 . 999 

By far σ is an internal parameter of normal distribution, now we

nterpret this value with the parameter from ASF. For the Normal dis-

ribution, σ 2 is the variance: 

2 = 

1 

M 

M ∑ 

m =1 

| ̃  f n (x m 

) | 2 −
{ 

1 

M 

M ∑ 

m =1 ̃

 f n (x m 

) 

} 2 

(16)

or Normal distribution centers at ‘0’, 

1 

M 

M ∑ 

m =1 ̃

 f n (x m 

) = 0 (17) 

ubstitute (17) , into (16) : 

2 = 

1 

M 

M ∑ 

m =1 

| ̃  f n (x m 

) | 2 (18)

ompare (18) with (3) , it is found σ 2 is exactly the average square

tting error E : 

2 = E = 

1 

M 

M ∑ 

m =1 

| ̃  f n (x m 

) | 2 (19)

y far, we have proved that if the ASF is accurate enough, then the

oints on 3D surface �0 are guaranteed to be located inside the lo-

ally monotonic space � with a very high probability. Typically, we fit

he surface until the average square error is smaller than 1. In this sit-

ation, points on �0 are located inside � with the probability greater

han 0.999. It is enough for practices. 

By far, we have proved Lemma 2 . Together with Lemma 1 , we

ave proved the theorem. 

Fig. 9 shows examples of polynomial value of point on different

odels. 
.3. Methodology 

.3.1. Key-point selection 

In Section 4.2 , we have proposed the method to generate the

eference and evaluation the deviation from reference by using

SF. For a given 3D shape �0 consists of point set { x } and their

olynomial value ˜ f n (x ) , we select local extremas as key-points ac-

ording to ˜ f n (x ) . 

The key-point selection is computational efficient. It only needs

o compare their corresponding polynomial value (residue). The

omparison could start from very small neighborhood, where very

ew comparisons are needed. To find local extremas in larger

eighborhood, fewer comparisons are needed, because only those

maller-neighborhood-extremas need to be compared. 

The radius of the neighborhood could also be used as an tag

f the detected extrema. Fig. 2 (c) is an example of the extremas

ound in neighborhood with different radius. 

.3.2. Speedup 

Our method inherits the computational efficiency from the

daptive fitting. In this subsection, we introduce a down-sampling

trategy which further speedup the detection without losing any

ocal information. 

The time complexity of adaptive ASF is O ( Mk 3 ) where M is the

umber of points of the model and k is the number of coeffi-

ients of the polynomial. Number of polynomial coefficients is de-

ermined by the degree of polynomial. Some typical numbers are

isted as Table 1 . 

Reduce the polynomial degree will improve the computational

fficiency, however, the tradeoff is the fitting accuracy. To sup-

ort Lemma 2 , an upper bound of the fitting accuracy is provided,

hich indicates the lower bound of the number of polynomial co-

fficients. 

An alternative way of improve the computation efficiency is by

educing the number of points of the model: down-sampling. We

ention that down-sampling is generally not applicable for local

ey-point detection, because down-sampling significantly reduce 

he detailed information from the model. However, in our method,

own sampling could be introduced to ASF which is the most time

onsuming procedure. The original points { x } are used to train the

olynomial ˜ f n (·) . Then, ˜ f n (·) is used to calculate the polynomial

alue ˜ f n (x ) . Referring to Table 1 , to train a polynomial lower than

0 °, at most 286 coefficients need to be trained. Typically, a 3D free

orm shape acquired by range sensor is consisted by 50 0 0–50 0,0 0 0

oints. It is very redundant to for the training. 

To train k coefficients, at least k points are need. For the sake

f training robustness, we give more redundancy that 10 k points

re used. In Section 6 , we show the effectiveness of the down-

ampling. As discussed above, the appropriate polynomial degree is

ot known until the training is finished. Typically, the training will

erminate at 8 °. Thus 30 0 0 sampling points is sufficient for poly-

omial up to 10 °. Some examples of performance improvement are

hown in Table 2 . 

.3.3. Algorithm 

The overall key-point detection algorithm is summarized as fol-

ows: 

1. For 3D shape �0 which is consisted of M points: { x }, ( M �
300), down-sample the point-set and get the subset { x } sub . 

2. Conduct 3L-adaptive-ASF of { x } sub until the polynomial ˜ f n (·)
satisfies the desired fitting accuracy. Typically, fit until the av-

erage square fitting error (see formula (3) ) is smaller than 0.1. 

3. Compute the polynomial value of all points { x } and get the

value set { ̃  f n (x ) } . 
4. For each point x in { x }, find its starting local neighborhood

{ nei ( x )} which contains about 6 neighbors. This could be done
1 
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Table 1 

Number of polynomial coefficients of various degree. 

Polynomial degree 0 1 2 3 4 5 6 7 8 9 10 

No.of coefficients 1 4 10 20 35 56 84 120 165 220 286 

Table 2 

Computing time of models used in the experiments. 

Model Caesar Face-YO Bulldog Buddha Brain Bayon face1 Bunny Bayon face 2 Bayon face 3 

Place Fig. 2 Fig. 9 Fig. 9 Fig. 9 Fig. 9 Fig. 11 Fig. 4 Fig. 11 (b) Fig. 11 (c) 

Vertices 21,627 13,746 25,378 25,003 73,249 7713 8171 10,304 10,347 

Time (s) 3.12 1.16 10.27 10.26 15.22 1.16 11.86 2.91 2.87 

Fig. 10. Shape matching by using SI and DSI. First row: matching by SI, Second row: matching by DSI. Third row, result curve. (a)(b) Matching of range data on objects taken 

in 2 different directions. The x -axis the number of points detected while the y -axis is the accuracy. 
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n  
by setting the radius of the neighborhood d 1 as small as the

surface sampling resolution. If the surface is stored in mesh

format, this could also be done by searching for first step

neighbors. 

5. Select extremas in each neighborhood { nei ( x )} 1 according to

their polynomial value ˜ f n (x ) . Denote the selected extremas as

{ ext } 1 and tag the neighborhood radius d 1 . 

6. For extrema set { ext } i found in radius d i , Set d i +1 = 2 d i . If two

points are located in a d i +1 -neighborhood, compare their poly-

nomial value and found new local extremas. The new local ex-

trema set are denoted as { ext} i +1 . 

7. Repeat Step 6 until d i is 10–20% in comparing with the global
shape size. r  
.4. Robustness against deformations and noise 

Our proposed key-point detector is considered to be robust

gainst deformations. As mentioned above, the detector select

oints based on their deviation from the shape’s smooth approx-

mation 

˜ �0 . Deformations, including affine deformation and non-

inear deformation, are considered to be smooth changes. This

eans these kind of changes can also be approximated by ASF so

hat it will not bring much change to the points deviation. 

Local detectors would be sensitive to noise, e.g ., those points

elected from local curvature or normal are not robust against

oise. Fortunately, inherited from ASF, the proposed IP detector is

obust against noise. ASF models the shape globally and noise is
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onsidered to be local. This means the reference ˜ �0 is almost un-

hanged. To demonstrate the robustness, we conduct systematical

epeatability experiments in Section 6.1.2 . 

. Pairwise feature description 

To achieve high accurate matching, it is expected that the de-

ected key-point should be repeatable, and the feature descriptor

hould be invariant or robust against deformations. Such invariance

nd robustness can be achieved by introducing a structure to the

tandalone constellation key-points. In recently years, “structure of

eatures” strategy is proposed and many research works claimed 

he improvement in matching accuracy [6,11] . 

Our detector finds local minimums and local maximums on 3D

hape. We can generate structures between nearing minimums and

aximums. A similar idea for 2D image is called Critical Net [12] .

n Section 5.1 the 3D critical net is provided. Based on 3D critical

et, the Dual Spin Image descriptor is provided in Section 5.2 . 

.1. 3D critical net based key-point pairs 

The critical net is one of the ideas to efficiently generate struc-

ures between local minimums and local maximums. However, the

riginal algorithm only works for 2D images. We provide the al-

orithm for 3D mesh key points and the polynomial value in this

ubsection. 

3D mesh can be considered as a graph G = (V, E ) , where V is

eferring to the vertices which are denoted as { x } in this paper.

is referring to edges connecting the vertices, which can be eas- 

ly obtained from 3D mesh. To construct path between key points,

onnection between two vertices is defined as: 

Connection: for any a, b ∈ V, there is a connection between a

nd b on the grid G, denoted as a → b , if there exists an ascending

ath from a to b . 

For 3D mesh G = (V, E ) , all undirected edges E can be con-

erted to directed edges E f by comparing the polynomial values˜ f n (x ) of the two points linked by the edge. Then, finding a path

etween two key points can be done by canonical graph theory

ethods. Specifically, we adopt a width-first search on directed

raph in our method. 

The Critical Net on 3D mesh is defined as: 

Critical Net on 3D mesh: The critical net of a 3D mesh G =
(V, E ) is a directed acyclic graph: G f = (V f , E f ) where V f is the

ocal extremas detected by IP detector and E f = { (a, b) ∈ V f | a → b}
enoted directed connection between local extremas. 

In short, to generate 3D CN on 3D mesh: for each given local

inimum as the start point, if any local maximum can be arrived

y a path along which polynomial value { ̃  f n (x ) } increase monoton-

cally, this maximum is connected to the minimum. 

Fig. 7 (d) is an example of critical net on 3D human face. 

.2. Dual spin image 

By using 3D critical net, local feature can be more robust and

istinctive. We provide the dual Spin Image feature (DSI): 

Dual Spin Image Feature: For 3D mesh G = (V, E ) with 3D crit-

cal net G f = (V f , E f ) DSI are defined as: 

 ab = (SI(V R (a )) , SI(V R (b))) , (20)

here a, b are key points detected by IP detector a, b ∈ V f , and

hey are connected in the critical net: a → b. V R ( a ) denotes the

 -neighborhood of a , where R is the radius of the neighborhood

hich is determine by the Euclidean distance between a, b : R =
 ∗ d(a, b) . c is a constant. SI ( ·) denotes the original Spin Image de-

criptor on single patch [14] . Fig. 7 is an illustration of DSI. 
According to the definition, DSI is scale invariant for it adopts

he scale information from 3D critical net: the distance d from the

inimum a to the maximum b . DSI is more robust against defor-

ations because the feature is anisotropic which means the area

overed by DSI will move along with the deformations. Systemati-

al matching experiments are arranged in Section 6.2 . 

.3. Algorithm for DSI 

Similar as Section 4.3.3 , we summarize our algorithm for ob-

aining DSI: 

a) For a meshed surface: obtain its residual field 

˜ f (·) and its lo-

cal extrema (key points) { ext } using the algorithm described

in Section 4.3.3 . 

b) Divide the key points { ext } as local minimum { L } and local

maximum { U }. 

c) For each of the local minimum l ∈ { L }, search the ascending

path on the meshed surface. Say, each hop between mesh

vertices must have no decrease of the polynomial resid-

ual value. Specifically, such search is done by the canonical

wide-first graph search algorithm. All the valid paths end at

local maximums: N(l) = { u ∈ { U} and(l, u ) areconnected} . 
d) For each pair ( l, u ) connected by the ascending path, obtain

its dual spin image descriptor DSI(l,u) with spin image ra-

dius R = cd, as illustrated in Fig. 7 . 

. Experiments 

We demonstrate the effectiveness of the proposed method by

ntensive quantitative experiments. In Section 6.1 we first demon-

trate the effectiveness of the key-point detector. After that, in

ection 6.2 we demonstrate the effectiveness the feature descriptor

nd the overall surface matching method. 

.1. Key-point detection 

We first quantitatively evaluate the key-point detector in three

spects: robustness against deformation, robustness against noise

nd efficiency. After that, we show the generally applicability on a

ariety of data. 

.1.1. Robustness against deformation 

We have conducted a systematical repeatability test of our

etector. 

Tested deformations: Generally, models deformations resulted 

rom moving camera are modeled by using sinuous function or

olynomial splines [2,34] . According to that, we deformed the

odels by using sinuous function or polynomial splices. To start

ith, some linear deformations are also tested. Here we list the

ested deformations: 

Linear: scaling-and-rotation, affine. 

Non-linear: trigonometric function, polynomial spline. 

Testing strategy: 

1. For a model selected from the dataset, called the original

model, the corresponding deformed model is generated by a

deformation function which is known a priori. 

2. Detect key points on original model: { KP 1}. 

3. Detect key points on deformed model: { KP 2}. 

4. Remove the deformation of the deformed model by the defor-

mation function known a priori, so that { KP 2} is converted to

{ KP 2 ′ } 
5. Compare { KP 1} and { KP 2 ′ }: For each point in { KP 1}, if there is

a corresponding point in { KP 2 ′ }, this point is repeatable. Corre-

sponding distance is determined by a threshold: about 1.5 sam-

pling resolution. 
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Fig. 11. Feature detecting and matching of deformed surfaces. (a) The original sur- 

face data from Bayon Digital Archival Project [10] . The matching is conducted be- 

tween the original surface and surface with scaling and rotation. (b)(c) Surfaces 

with affine deformations. (d)(e) Surfaces with free form deformations. 
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6. Calculate the repeatability according to following formula: 

repeatability = 

repeatable points 

min (points in { K P 1 } , { K P 2 } ) (21)

Fig. 8 (a)–(e) is the test and result. 

According to the test, we found the repeatability could be

greater than 0.5 for a wide range of deformation. 

6.1.2. Robustness against noise 

We conduct repeatability test on noise. The testing strategy is

the same as the one used in deformation tests with a difference in

how we generate the models. The models with noise is generated

by following method: 
1. For each model, it is first centered to the original point. Then,

it is normalized such that the variance of the vertices is 1. (The

average squared-distance to the zero point of all the vertices on

the model is 1.) 

2. With the centered and normalized model as the original model,

the corresponding noised model is generated by adding Gaus-

sian noise to each vertex along its normal. The noise is quan-

tized by varying σ from 0 to 0.01. 

The result on the whole data set is shown Fig. 8 (f). 

Fig. 8 (i) is the test and result. 

.1.3. Computational efficiency 

The computational efficiency is evaluated with the following

nvironment: CPU: Intel Core 2 Q9400 2.67 GHz; RAM: 4 GB; OS:

in7x64; Codes: Matlab 7.9; No parallelization. The computation

ime of the models used in this paper are listed in Table 2 . 

.1.4. General applicability 

Our detector is general applicable to different type of mod-

ls. Experiments of models from Aim@Shape 3D shape repository

41] are shown in Fig. 9 . 

.2. Descriptor and matching of range data 

We conducted 3D surface matching by using the Dual Spin Im-

ge descriptor. We first quantitatively evaluate the precision and

ecall of the matching, and show the significant improvement for

he single Spin Image. After that, we show the effectiveness on a

ariety of deformation and scenarios. 

.2.1. Quantitative measurement of matching accuracy. 

We evaluate the matching precision and recall using the same

valuation metric proposed in previous subsection. As illustrated

n Fig. 10 , the proposed descriptor finds significant more matching

han the single spin image while has a significant lower error rate.

.2.2. Applicability on various deformation and scenario. 

We show the applicability on various free form deformations.

s show in Fig. 11 , the matching is robust on both linear and non-

inear deformations. 

. Conclusion 

In this paper, we have proposed an IP based detector. It pro-

ides a new aspect of algebraic fitting which is used to be consid-

red only working globally. The IP detector is computational effi-

ient and generally applicable to free form 3D surfaces. It is invari-

nt against global scaling and rotations; it is also robust against

ree form deformation, change in topology, data missing and noise.

he 3D critical net is efficiently generated and introduces global

nformation to detected local key-points. The Dual Spin Image de-

criptor based on 3D net is more reliable than individual Spin Im-

ge for it is invariant against scaling and robust against free form

eformation. The future work includes: 1) A more versatile single

eature descriptor. Single spin image is restricted to circle neigh-

orhood. In handling free form deformation, freedom in selecting

eature neighborhood is expected. 2) The further discovering of 3D

ritical net. Affine deformation can be accurately calculated from 3

oints. A tri-feature descriptor is expected to be invariant against

ffine deformation. 3) New matching strategy, based on critical net,

ree matching is also applicable, which holds potential in shape

etrieval. 
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