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THE ADDITION FORMULA FOR JACOBI POLYNOMIALS
AND SPHERICAL HARMONICS*

TOM KOORNWINDERY}

Abstract. Recently Gegenbauer’s addition formula was generalized for Jacobi polynomials P®#(x)
by an algebraic approach (cf. the author’s paper in [10]). Here a new algebraic proof using spherical
harmonics will be presented. Let ¢ < p and let e, e,, -, ¢,,, be an orthonormal basis of R7*?
with unit sphere Q. The Jacobi polynomials P},"/z‘l'q/z'l’(x) can be characterized as spherical har-
monics of degree 2n on Q which are invariant under the subgroup SO(q) x SO(p) of the rotation group
SO(q + p). Let the rotations A, be defined by A4.e, = cos te, — sinte .,k =1,---,q, A€, = sinte,
+coste ., k=1,---,9, A€, = ¢, k=29 +1,---,q + p. An explicit orthonormal basis will be
constructed for the set of those spherical harmonics of degree 2n which are invariant under all
T e SO(q) x SO(p) which commute with the rotations A,. Let this basis consist of the functions S,
k=1,---,N. Then the kernel function ®(& n) = ’,:’=1 SUOS(m (EneQ) satisfies D& A ey)
= ®(A ¢, e,). The addition formula for Jacobi polynomials P¥>~142~1)(x) is finally obtained by
writing this last identity in an explicit way.

1. Introduction. Many classes of special functions can be considered as gen-
eralizations of the cosines. It is one of the objects of special function theory to
extend both the formal properties of the cosines and the harmonic analysis for
Fourier-cosine series or integrals to these classes of special functions.

The identity

(L.1) cos n(0; — 6,) = cos nf, cos nd, + sin nd; sin nb,,

for obvious reasons called an addition formula, has the fellowing well-known
generalization to Legendre polynomials:
P,(cos 0, cos 92 + sin 6, sin 6, cos ¢)
1.2 i
(1.2) Z k)'P"(cos 0,)P(cos 0,) e*¢

(cf. [4, vol. 11, § 11.4(8)]). Both the formulas (1.1) and (1.2) are contained in Gegen-
bauer’s addition formula for ultraspherical polynomials

CXcos 0, cos 0, + sin 6, sin 0, cos @)

n

(1.3) = Y a}{sin 6,)*C *K(cos 0,)(sin 0,)*C}* ¥(cos 0,)
k=0
- Ci™1(cos ¢), } a}, constants

(cf. [4, vol. 1, § 3.15.1 (19)]). Although there exist analytic proofs of formula (1.3),
it is in the context of spherical harmonics that this formula is most easily proved
and understood (see § 2).
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Jacobi polynomials P&*#)(x) form a larger and more natural class of orthogonal
polynomials than Gegenbauer polynomials (cf. Askey [1]). Fora > —1, 8> —1
they are orthogonal on the interval (— 1, +1) with respect to the weight function
(1 — x1* (1 + x)*. We mention the special cases P®%(x) = const. C3*/*(x),
P%9(x) = P(x) and P, '/?~1/?(cos 0) = const. cos nf. Departing from formula
(1.3) it is difficult to guess what the generalization for Jacobi polynomials might
be. One might expect a formula like

n

PEP(A(x, y, 1) = Y an 5 OF0)PD),
k=0
where the orthogonal polynomials p,(¢) and the argument A(x, y, t) have to be
specified, and where the functions F k(x) are certain ‘“‘associated Jacobi functions”
such that F(x) = P*#(x). However, by group theoretic methods [10], [11] we

obtained
PP (cos 20(6,, 05,7, P))

(1.4) "k
=Y Y GuuFy(cos 20,)F;(cos 20,)p (7, d),

k=01=0
where

cos O(0,,0,,r,¢) = (cos 0; cos 0,)
+(sin 0, sin 0, r)? + % sin 20, sin 20, r cos ¢,
Per, @) = reT PP LETR=Dr2 — CE_ (cos ¢),

F*Y(cos 20) = (sin 0)* *(cos O)F ' PErE*LEE=D(cos 20),

and where the constants a,,, are given in [10]. If we consider r and ¢ as polar
coordinates, then for « > B > —3% the functions p, (r, ¢) are orthogonal poly-
nomials in the upper half unit disk. with respect to the weight function
(1 — x2 — y*#~#~1y?f Formula (1.4) contains (1.3) as a special (degenerate) case
for « = B, r = 1. Our result is essentially more complicated than (1.3) because of
the double summation. This phenomenon was completely unexpected from an
analytic point of view. Without the group theoretic approach the problem of
finding the addition formula for Jacobi polynomials might have remained an
open question for many years to come.,

In [11] we solved the problem by studying the analogues of spherical harmonics
on the homogeneous space U(q)/U(q — 1). Thus we obtained (1.4)fora = 1,2,3, - -+
and B = 0 and we derived the general case by simple analytic methods. In the
present paper we give an interpretation of (1.4) in terms of spherical harmonics,
when aand fareinteger or halfintegerand o = = —4. In our opinion this method
of proof is more satisfying than our first approach, because it is valid for more
general o and 8 and because it is a very elementary method, only using spheres,
rotations and spherical harmonics.

2. Spherical harmonics. In this section we state without proofé the properties
of spherical harmonics which we shall need. For proofs the reader is referred to
Erdélyi [4, vol. 11, Chap. 11], Miiller [12] and Vilenkin [13, Chap. 9].
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Let R¢ be a g-dimensional real linear vector space with inner product (x, y)
and with orthonormal basis ey, - - -, e,. SO(q) denotes the group of rotations of
R? and SO(q — 1) is the subgroup of rotations which leave e, fixed. Let Q be the
unit sphere in R with rotation invariant measure dw and with total measure w,
Then Q is the homogeneous space SO(q)/SO(q — 1).

Let H(x) = H(x;, - ,X,) be a homogeneous polynomial of degree n on R?
which satisfies Laplace’s equation. Let the function S(£) be defined on Q by
S(&) = H(&) for £ Q. Then S(&) is called a spherical harmonic of degree n. We
denote the class of all such functions S(¢) by #%" and we write N(q, n) for the
dimension of #%".

THEOREM 2.1. The function space L*(Q) is the direct sum of the spaces A",
n=0,1,2, . The spaces #%" are mutually orthogonal and they are invariant and
irreducible under SO(q).

THEOREM 2.2. Let S(&) be a function on Q. Then S € #*" and S(T¢) = S(&) for
all Te SO(q — 1) if and only if

S(&) = const. C¥271((&, e))).

COROLLARY 2.3. Let the functions Si(&), k = 1,---, N(q, n), form an orthonormal
basis of #?". Then

N(g,n)

2.1 Y SU&Sm) = const. CZ27 (&, n), &neq.
k=1

The constant equals N(g, n)(w,C¥*~ (1))~ ".

The function C%2~}((¢, 1)) can be con51dered as the kernel function of the func-
tion space #*". We shall specify the orthonormal basis by using the theorem
below. Let Q' be the orthoplement of e; in Q.

THEOREM 2.4. #°%" is the direct sum of subspaces #*™',1 = 0,1, - -+, n, which are
mutually orthogonal and which are invariant and irreducible under SO(g — 1).
#9™! consists of the functions

S(&) = (sin 0)'C2/ ' *(cos 0)S(),

where E€Q, & = cosfe, +sinb&,0< 0 <7, & e and Sje A1 1
COROLLARY 2.5. Let the functions S (&), k, = 1,---,N(q — 1, 1), form an ortho-
normal basis of #*™'. Then

N@-1,)

kzl S(&)S, () = const. (sin 0,)'C¥2 " *Y(cos 6,)

(2.2)
- (sin 0,)'C2 1! *Hcos 0,)CI2 (&, '),

where & neQ, & =cos0,e; +sin0,&,n=cosbe +sinbdy, 00, == 0
<0, <mn,&eQ’' ne.

The addition formula (1.3) now follows from (2.1) and (2.2) for A = ¢/2 — 1 and
cos ¢ = (&,n’). This method will be generalized in § 3. We conclude this section
with a lemma which will be applied in § 5.
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LEMMA 2.6. Let S € #*™, S, e #", & and neQ, and let dT be the invariant
measure on SO(q). Then

J S((TES,(Tn)dT = 0 for m#n,
50(q)

ACYE=Y(E,n) for m=n.

Here

A= (71N S1(8S(8) dw(d).
Qq

Proof. Denote the left-hand side by F(&,#). F is in #%™ as a function of & and
F is in #%" as a function of #. Since F(T¢&, Ty) = F(&,y) for Te SO(q), F only
depends on the inner product (£, #). By Theorem 2.2 F(£, n) = const. C¥#27Y((¢, 1))
and F(£, n) = const. C4#2~ (£, 1)). Hence F = 0 for m # n. For m = n the constant
A is obtained by putting & = #. This completes the proof.

3. Jacobi polynomials as spherical functions on symmetric spaces. Let a Rieman-
nian manifold X have the property that for any two point pairs ¢;,¢, € X, n,
n, € X satisfying d(&,, &,) = d(n,, n,) there exists an isometry T of X such that
T¢, =n, and T¢, = n,. Then X is called a two-point homogeneous space.
According to Wang [14] the compact spaces of this type are the spheres S%
d=1,2, - thereal projective spaces PR),d = 2,3, - - - , the complex projective
spaces P{C),d = 4,6, - - - , the quaternion projective spaces P4(H),d = 8,12, -- -,
and the Cayley projective plane P4(Cay), d = 16, where d is the real dimension of
the space. These spaces are the compact symmetric spaces of rank one (see
Helgason [7]).

Let X be a compact two-point homogeneous space and let e € X fixed. Let G be
the maximal connected group of isometries of X and let K = {Te G| Te = e}.
Then X is the homogeneous space G/K. The spherical functions on X are the
eigenfunctions of the Laplace-Beltrami operator which only depend on the distance
d(¢, e), & € X. These functions turn out to be Jacobi polynomials P‘*#)(cos / d(¢, e)),
where o = (d — 2)/2, f = a for S*and f = —1,0, 1, 3 for P4R), PC), P“(H) and
P%(Cay), respectively (cf. Gangolli [6]). By renormalization of the distance we can
put A = 1.

The function space L*(X) is the direct sum of subspaces #", where #" is
invariant and irreducible under G and contains the spherical function of degree n.

For an orthonormal basis of s#" consisting of functions S, (&), k= 1,---, N, we
have
N —_—
(3.1) Y Su&)Sin) = const. PP cos d(&, n)).
k=1

It can be expected that the analogues of Theorem 2.4 and Corollary 2.5 will give a
generalization of the addition formula (1.3) for those Jacobi polynomials which
are spherical functions. The results for PYR) follow from (1.3) after a simple
quadratic transformation. We obtained the results for P%(C) as follows.

The complex projective space P21~ %(C) is the homogeneous space SU(q)
/U(q — 1). Observe that the homogeneous space U(q)/U(q — 1) is the unit sphere
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Q in the complex vector space C? with Hermitian inner product (z, w) = z,w,
+ .-+ + z,w,. Hence the functions on SU(q)/U(q — 1) are those functions on Q
which are invariant under scalar multiplication with €', 0 < ¢ < 2n. Let #°3%*"
be the class of spherical harmonics S on Q which satisfy S e #242" and S(¢"%¢)
= 5(8), 0 £ ¢ < 2n. For an orthonormal basis {S,} of #3%%" we have [11]

N
(3.2) Y. Si)S,(n) = const. P~ 2N2(E, n)* — 1), ¢, neQd.
k=1

Ikeda and Kayama [8], [9] studied the analogues of spherical harmonics for the
homogeneous space U(q)/U(q — 1). Using their results we were able to prove the
analogues of Theorem 2.4 and Corollary 2.5 for this case. Thus we obtained the
addition formula (1.4) fora« = 1,2, 3, --- and B = 0. The general case of (1.4) then
follows by repeated differentiation of both sides of (1.4) with respect to ¢ and by
analytic continuation with respect to o and . Although we did not verify the results
for P(H) and P'5(Cay), these cases probably give formula (1.4) fora = 3,5,7, -- -,
B =1land a =7, = 3, respectively.

In the context of symmetric spaces of rank one we can give a slightly different
interpretation of the addition formula (1.4). It follows from (1.4) by integration
that foro > B > —3,

(3.3)  P*Pcos 20,)P*P)cos 20,)
1 pn
= const. f f P*P(cos 20)(1 — r2* A~ 12+ (sin ¢)* dr d¢p.
09Yo0

On the other hand, spherical functions on a homogeneous space G/K (K compact)
satisfy

(3.4) f fxky) dk = £SO, x,y€G,
K

(cf. Helgason [7, p. 3997). Formula (3.3) is the analytic form of (3.4), when P*?
can be interpreted as a spherical function. The addition formula (1.4) can be
considered as an orthogonal expansion and its first term is given by (3.3). On the
other hand, formula (3.4) gives the first term of an orthogonal expansion of f(xky)
as a function of k € K. For compact symmetric spaces of rank one this last inter-
pretation of an addition formula is equivalent to the method described earlier.

4. Jacobi polynomials as spherical harmonics. In § 3 we considered Jacobi poly-
nomials as spherical functions, i.e., functions on a group G which are bi-invariant
with respect to a subgroup K. In this section we shall obtain a more general class of
Jacobi polynomials as functions on a group G which are right invariant under a
subgroup K and left invariant under a subgroup H.

Let R“*? be a (g + p)-dimensional linear vector space with inner product and
with orthonormal basis e, e,, -+, e, ,. Q denotes the unit sphere in R? *? and
SO(q + p) the group of rotations. #4*?™ is the class of spherical harmonics of
degree m on Q. Suppose that g > 1 and p > 1. The subspace spanned by e, - - - , ¢,
is called R?and the subspace spanned by e, ., - - - , €, is called R”. The subgroup
SO(q) consists of the rotations which leave e, ., -,e,,, fixed and SO(p) is
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similarly the subgroup of rotations which leave e, ---,e, fixed We write
=QMNR%and Q" = QN RP. If £ €Q, then
4.1) & = cos B¢ + sin &, 00=<mn/2, &eQ, e

If dw, do' and dw” are the invariant measures on Q, Q and Q”, respectively, then
it follows from (4.1) that
4.2) dw(&) = (cos 0)1 Y(sin )P~ dO dw'(&') dew"(E7).
The following theorem is due to Zernike and Brinkman [15] (see also Braaksma
and Meulenbeld [2]).

THEOREM 4.1. Let S(¢) be a function on Q. Then S € #47P2" and S(T&) = S(&) for
all Te SO(q) x SO(p) if and only if S(£) = const. P2~ 142~ U(cos 20).

Next we prove a theorem, which is analogous to Theorem 2.4.

THEOREM 4.2. Let k, | be integers = 0 such that m — k — 1 is even and = 0. Let
H}TP™ be the linear space which is spanned by the functions

(4.3) S(&) = (cos 0)'SY&)(sin O)S(E"PE2, 2557 ™"+ M cos 20),

where S, € #%' and S| € AP, Then #1*P™ is the direct sum of the spaces #'L ;7™
The spaces #L;P>™ are mutually orthogonal and they are invariant and 1rreduczble
under SO(q) X SO(p).

Proof. The invariance, irreducibility and orthogonality follow from Theorem
2.1. For the dimension N(q, n) of %" holds (1 + x)(1 — x)' 79 = Y*_, N(g, n)x",
|x] <1 (cf. Miiller [12]). It follows easily from this formula that N(q + p, m)
=Y N(q,)N(p, k), where the summation is taken over all k,/ > 0 such that
m —k — 1 2 0 and even. Hence dim #*?»™ = dim #{;>™ It is only left to
prove that the functions S(¢) in (4.3) belong to #2*»™,

First observe that the homogeneous polynomial of degree m + k + [ given by

H(x) = (x3 + -+ 4 x2, )mrk+o2

2 RS 2 —_— 2 —_— e e 2
P§ /Zkil«)z//ZZ y [*1 + + Xg Xg+1 xq+p
+
" XP+ A X2 X e+ X2,

is harmonic (by Theorem 4.1). Let a;, a,, - -+, a,4, be complex numbers such that
ad+ - +al=al,+ - +a,=0 Putu—x1+ CH X, v=x +
- + x2,,. Then it follows easily that

a d + +a d a 9 + t+a ’ kH( )
—_— DECERY - e PV x
"ox, 10x,) 7T 0% 0

=2 g x, + - + aqxq)’(aq“xq“ + -+ aq+pxq+p)k

& <)

Clearly the resulting function is a harmonic homogeneous polynomial of degree m.
By [4, vol. I1, § 10.8 (16)] it follows that

(u + v)"P“"”’(u - v)/P(“B)(l) = u",F, (—n —n—Bo+1; —Z)

1 a k
( ) I:(u_,_ v)(m+k+l)/2P(p/2 14)1//22 1)

- ﬁ) i, m—ii
g—m( l)u v.
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Hence by termwise differentiation,

(4.4) 212 u + oy PEP[L "V = const. (u + vy tpaksn (U0}
oul \ov u-+v nok- u—+v
const. # 0.
We conclude that the polynomial
(a1x; + - 4 ax ) (@gr 1 Xghy + - F gapXgsp)
(4.5) X4+ x;+p)(m—k—l)/2
szn/z _ll+kq/2 1+1) -~-+x§——x§+1——~- x‘fﬂ,
x1+~~~+x§+x§+1+ Ct X2,
is harmonic.
The polynomial (a;x, + --- + aqxq)’ is harmonic on R% Since #°¢' is irreducible
under SO(q), every harmonic homogeneous polynomial of degree [ on R" is a
linear combination of polynomials (a,x, + --- + a,x,), wherea; + --- + a =0.

Similar results hold for (a,, X, + --- + a4 X+ I,) By restrlctmg x to Q in
(4.5) it follows that the functions S defined by (4.3) belong to #?*?™ This com-
pletes the proof of Theorem 4.2.

COROLLARY 4.3. Let the functions S(&), i=1,---, N(q, DN(p, k), form an
orthonormal base of #{;"™. Then

N(q,)N(p,k)
) S{(&)S(n)
(4.6) =t
= const. f¥!(cos 20,) % (cos 20,)CI2 = Y(&', ' )CE2Y(E", ")),
where
fl(cos 20) = (cos 0)'(sin OYP@2; 1 k42~ 1+ D(cos 20)
and

& =cos0,& + sin0,¢&", n = cos 0,1 + sin 0,1

as in formula (4.1).
Combining (2.1) and (4.6) we obtain the formula

4.7 C*P/2=1(cos 0, cos 0, cos ¢ + sin 0, sin 0, cos )
= Z Conyie1fon e, /(€08 201) frn 1 (COS 20,)C#>~ (cos p)CP*~*(cos ),

where the summation is taken over all k,/ = 0 such that m — k — [ is even and
= 0, and where c,,,, are constants. This formula is a generalization of Gegen-
bauer’s addition formula (1.3), but it is not the addition formula for Jacobi
polynomials we are looking for.

5. The addition formula for Jacobi polynomials. In this section we use the same
notation as in § 4. Our approach is to find an interpretation of the product formula
(3.3) in terms of spherical harmonics and next to obtain the addition formula as
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the orthogonal expansion corresponding to this product formula. Suppose that
p > q = 2. The easier cases p = g and q = 1 are left to the reader. We shall write

(5.1) S(&) = P27 1427(cos 20),

where 0 is given by (4.1).
Let SO(q + p — 1) consist of the rotations of R?*? which leave ¢, fixed. Formula
(3.4) applied to the homogeneous space SO(q + p)/SO(q + p — 1) gives

(5.2) C+O2=1(T¢E, ) dT = const. C* 92~ {E)CE* 92~ 1(y),

SO(g+p—1)

E,neq.
If the integration is taken on the subgroup SO(q) x SO(p)instead of SO(q + p — 1),
then we obtain for m = 2n,

(5.3) CE*92=1(T¢&, n) dT = const. (&)L (n).

f 50(q) x SO(p)
This product formula was reduced to an analytic form in [3]. The corresponding
orthogonal expansion is the addition formula (4.7).

Next we want to replace the integrand of (5.3) by the function .#. Let the rotation
A, be given by

A, = COSTe — SiNTe, .y, k=1,--,q,
(5'4) Ateq+k = Sin‘[ek + COSTeq+ka k = 1, s, q,
A e, = e, k=2¢q+1,---,9 + p.

We shall prove the product formula

(5.5) S(ATEAT = const. #(Ae)S(, 0= 1< n2.

J\SO(q) X SO(p) ~—

Putting £ = Aye, in (5.5) we obtain the more symmetric formula

f (A, TAge,)dT
SO(q) X SO(p)

= const. ¥(A4,e,)F(Aye,)
(56) = const. PP/2~1.4/2= D) (cog 27)PP/2~ 1412~ D(cos 20),

0t w/2, 056 < )2,

Formula (5.5) is essentially due to Flensted—Jensen [5], who first derived the
analogue of (5.5) in the dual (i.e., noncompact) case. The product formula (3.3)
can be derived from (5.5).

The choice of the rotations A, is motivated by a generalized Cartan decomposi-
tion of SO(q + p). If Te SO(q + p), then T = T; A, T,, where T, € SO(q) x SO(p),
T,eSO(q +p—1), 0 £t < n/2, and where A, is uniquely determined by T.
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Let the group M consist of all Te SO(q) x SO(p) for which TA, = A,T, 0 < <
< n/2. Then Te M if and only if

T, 0 0
T=|0 T, 0],
0 0 T,

where T; and T, are orthogonal matrices with determinant one of orders g x ¢
and (p — q) x (p — q), respectively.

For the proof of (5.5), note that the left-hand side, considered as a function of &,
satisfies the conditions of Theorem 4.1. Hence the left-hand side equals f(z).#(¢),
where f(t) = const. [ sop 7 (A.Tey)dT. Every TeSO(q) x SO(p) can be
written as T = T;T,, where T, e M and T,eS0(q + p — 1). Thus #(A4,Te,)
= H(A. T\ The,) = L (T Ae,) = ¥(A.e;). This proves formula (5.5).

We shall derive the addition formula for Jacobi polynomials by expanding
S (A, TE) as a function of T e SO(q) x SO(p). By Theorem 4.2 it is an equivalent
problem to find the expansion

n

+k
(57) FALH =) Y S,

k=0 l=-k

where S, (&, 7) belongs to #¢172" as a function of & Since L(A,TE) = F(A4,8)
for Te M, we have the invariance S, (T¢, 1) = S, (&, 1) for Te M.

Let RY be the subspace of R?*? which is spanned by e,.;, -, e, and let
R5™% be spanned by ey,.1, -, €4, Let Qo =Q N RE and QF = QN Ry
Let the linear mapping I:R} — R? be defined by Ie ,, = I, k=1,---,¢q.
Similarly to (4.1) we can write for £ € Q":

(5.8) & =cos o +sinxly, 0=y =mn/2, e, .
LEMMA 5.1. The M-invariant functions in AL P2", are zero for | < 0 and they
are equal to
(5.9) S(&) = const. (sin 0)**{(cos O)c I PP2 1 +k+La2— 1+ k=D (cog 20)
~(cos )¢~ IP{lpm 2= La2= 1= D(cos 2)CH2 T (€, 1))

for 1 = 0. Here the notation of (4.1) and (5.8) is used.

Proof. The M-invariant functions in #¢} %", are obtained by the projection
So(&) = M S(TE) AT, Se H402",. By applying Theorem 4.2 twice we can derive
that #¢{ 72", is spanned by the functions

S(&) = (sin 0)<*Y(cos Q)1 PPE 1k La2= 1+ k=D (cog 20)
- (sin y)'(cos VPR D74 #4121+ I cos 2)
8- d&)S6,(80)S54£0),
where 0 <k<n —k=ZI=Zk iz20,j=20,k+1—i—j=0 and even, S;_,

eAHVTL So € AV, e AP
By writing S(&) = (6, x, &, &, £3) the projection S — S, becomes

So(£) = f f 10, 1, T,E, 17T, &y, Ty&3) dT, dT,.
T1€S0(q) Y T2eSO(p—q)
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By applying Lemma 2.6 twice it follows that S; = 0if i # 0 or j # k — [. For
i=0andj=k—Ilwehavek +1—i—j= 2l hence ! = 0. Formula (5.9) now
follows easily from Lemma 2.6. This completes the proof.

For fixed p, ¢, n and for k, I such that 0 < [ < k < n we define

S.i(&) = ¢, (sin ) H(cos Gy~ PR~ 1 Hk+Lal2= 1+ k=) cog 26)
(cos ) TIP{PT 2T L a2 = 1k cos D) CH2 T (L 1Ep)),

where the constants c,; are positive and such that fn‘m,(Sk’,(C))2 dw(é) = 1.
Observe that S, () = ¢¢,0(¢) and that S, (e,) = 0 for (k, I) (0, 0). The func-
tions S, ,(¢) form an orthonormal basis of a function space which is invariant
under transformations A4,. Hence, the kernel function

(5.10)

n k
F(€9 11) = Z Z Sk,l(i)sk,l(n)a 67 7169,

k=01=0

satisfies F(A.¢, A, n)= F(£ ). Putting n = A 'e, we obtain the required expan-

sion of type (5.7).
THEOREM 5.2.
n k
(5.11) F(AL) = C(;o1 Z Z Sk,1(Ar_le1)Sk,1(f),
k=0 =0

where the functions S, are given by (5.10).

Apart from a different notation of the variables, the right-hand side of (5.11) is
the same as the right-hand side of (1.4). The left-hand side of (5.11) can be handled
as follows. Let #(A4,¢) = P®/?~ 142~ 1)(cos 2@). Then

cos’ ®

3 (4.8, )
k=1

q
Y (&, cos te, + sin Te, )
k=1

é (052 (¢, e))? + sin? (&, e,.1))?

+sin 22(¢, ) (€, ey )]

i [cos? t cos? O((&, e))?
k=1

+sin” sin? 6 cos? x((&y, e, +4))°

+ 7 sin 27 sin 260 cos x(&', €,)(&p, €,41)]
= cos® 1 cos? 0 + sin? tsin? f cos?

+ % sin 27 sin 26 cos x(&, I&}).

This proves formula (1.4) for « = 3p — 1, f = g — 1. We omit the routine
calculation of the constant coefficients ¢, , in (5.10).
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Note added in proof. The addition formula (1.4) in the case that § = 0 was earlier
obtained by R. L. Sapiro, Izv. Vys$. Uéebn. Zaved. Matematika, 62 (1967), p. 101.
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