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JACOBI POLYNOMIALS, II. AN ANALYTIC PROOF OF THE
PRODUCT FORMULA*

TOM KOORNWINDER"

Abstract. An analytic proof is given for the author’s product formula for Jacobi polynomials and
a new integral representation is obtained for the product J(x)Ja(y) of two Bessel functions. Similarly, a
product formula for Jacobi polynomials due to Dijksma and the author is derived in an analytic way.
The proofs are based on Bateman’s work on special solutions of the biaxially symmetric potential
equation. The paper concludes with new proofs for Gasper’s evaluation of the convolution kernel for
Jacobi series and for Watson’s evaluation of the integral

fo J(2x)Jt(2y)Jt(2z)21 d2.

1. Introduction. In recent papers [13], [14], 15] the author derived the
addition formula for Jacobi polynomials by group theoretic methods. It was
pointed out in [13] that the product formula and the Laplace type integral repre-
sentation for Jacobi polynomials immediately follow from the addition formula.
The way of obtaining these results illustrated the power of the group theoretic
approach to special functions. However, it was felt unsatisfying that no analytic
proofs were available for the addition formula and its corollaries.

Next, an elementary analytic proof of the Laplace type integral representation
was given by Askey [1]. Our main result in the present paper is an analytic deriva-
tion of the product formula. It is based on important but rather unknown results of
Bateman [3], [4] concerning special solutions of the biaxially symmetric potential
equation. The present paper is a continuation of Askey’s paper 1]. We would like
to thank Askey for communicating us the results contained in [1] and Gasper for
calling our attention to [3.

Immediately after this work was done both Gasper and the author extended
the results to an analytic proofofthe addition formula. They used different methods
and will publish their proofs separately in subsequent papers.

Section 2 of this paper contains a review of Bateman’s work on the biaxially
symmetric potential equation [3], [4]. Admitting transformations of the variables,
Bateman obtained solutions of this equation by separating the variables in three
different ways. We prove that, in a certain sense, these three possibilities are the
only ones.Bateman’s special solutions involve Bessel functions, Jacobi polynomials
and nth powers. They can be expressed in terms of each other by means of a
number of identities, one of which is the bilinear sum obtained in [1 ].

By using these identities the product formula for Jacobi polynomials and a
new product formula for Bessel functions can be derived from the Laplace type
integral representation for Jacobi polynomials. This is done in 3. Section 4 dis-
cusses the analogous results connected with an integral representation for Jacobi
polynomials due to Braaksma and Meulenbeld [5] and a new proof is given of a
product formula due to Dijksma and the author [7].
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126 TOM KOORNWINDER

Gasper [10], [11] settled the positivity of the convolution structure for Jacobi
series. His explicit expression for the convolution kernel is derived from our pro-
duct formula in {} 5. Some formulas from Watson 17, which Gasper applied in his
proof in [10], here arise in a natural way. Thus, a deeper understanding of Gasper’s
proof is achieved.

2. The biaxially symmetric potential equation. The partial differential
equation

(c2 2fl+ c3 c32 2z+ 1 c3)(.) 57u2 + +
u u - v .F(u v)=O

arises naturally from the potential equation in two different ways.
First, if and fl are nonnegative integers and if (Xl, Xz,X3, x4) (u cos q,

u sin b, v cos Z, v sin Z), then the equation

XX2/2 (2

0X---’(2 2
(2.2) + -xx-+ +x2 (uv e"g’+Z)F(u, v)) 0

is equivalent to (2.1) (cf. Bateman [4, p. 389]).
Second, if 2e + and 2/? + are nonnegative integers and if

U N21 "q- X "q-’’" "-1
t- XIj+ 2

and

then the equation

(2 02 (2

is equivalent to (2.1).

+ y2 + + F(u,v)=O

Therefore, (2.1) is called the biaxially symmetric potential equation. Special
solutions of this equation were studied by Bateman in [3] and in [4, pp. 389-394].
We will summarize some of Bateman’s results in this section.

The differential operator in (2.1) has two singular lines u 0 and v 0.
It is natural to consider solutions of (2.1) in the upper right quarter-plane. Equation
(2.1) admits solutions by separation of variables. Regular solutions of this type are

(2.4) F(u, v) u-J(Au)v-I(2v),
where the functions J, and Is are Bessel functions.

Let 1 be a simply connected domain in the (s, t)-plane and let @2
> 0, v > 0}. Suppose that the mapping (s, t)--+ (u, v) is a conformal mapping of

1 onto 92 It means that u(s, t) and v(s, t) satisfy the Cauchy-Riemann equations

(2.5) u=v, and ut -v
and that

(2.6) A(s, t) =- uv, -u,v :/: 0 on 1.
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After this transformation, equation (2.1) becomes

A(s,t) t_
+ (213+ 1)us G 0

U V S
2.v

++ (aft+ 1)u’+(2+ 1))]u
Fu(s, ), vs, )) O.

It is not difficult to prove that for a fixed conformal mapping (s, t) (u, v)
as introduced above the following three statements are equivalent.

(A) For all values of a and fl, equation (2.7) admits separation of variables.
(B) Both the functions u(s, t) and v(s, t) are the products of a function of s and

a function of t.

(C) The mapping (s, t) (u, v) is given by one of the three complex analytic
functions

u+ iv=s+ it, u+ iv e+ or u+ iv=cos(s+ it),

up to translations, dilatations and rotations over an angle k(/2) of the (s, t)-plane
and up to dilatations of the (u, v)-plane.

We did not succeed in proving or disproving the equivalence of (B) with the
following statement (A’).

(A’) There is a value of and fl (-} a fl -) for which equation (2.7)
admits separation of variables.

However, the equivalence of the statements (A)and (C) suggests that one should
especially consider the three forms of equation (2.1) connected by the transforma-
tions

(2.8) u + iv e+ cos ( + i).

The pictures in Fig. 1 show the domains which are thus mapped onto each
other.

FIG.

The first identity in (2.8) is equivalent to

(2.9) u=excosy, v=exsiny

and equation (2.7) becomes

+ 2( + fl + 1)>7 + + ((2 + 1)cotgy- (2fl + 1)tgy)75;;
(2.10)

F(e cos y, e sin y) 0
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with the special regular solutions

(2.11) F(e cos y, e sin y) eZnxP(n’#)(COS 2y)

(cf. Bateman [4, p. 389]). Here the function P(,’) denotes a Jacobi polynomial.
The mapping (, r/) (u, v) in (2.8) can be written as

(2.12) u=coschr/, v= -sinshr/

and after this transformation equation (2.1) takes the form

+ ((2e + 1) cotg (2//+ 1) tg )

(2.13) + + ((2e + 1)cth r/+ (2fl + 1) th r/)

F(cos ch r/, -sin sh r/) 0

with the special regular solutions

(2.14) F(cos ch r/, -sin sh r/) P(,’)(cos 2)P(,’)(ch 2r/)

(cf. Bateman [4, pp. 392-393]).
Bateman [3], [4] has derived some identities which relate the special solutions

(2.4), (2.11) and (2.14) ofequation (2.1) to each other. We need two of these identities.
Solutions of type (2.4) and (2.11) are related to each other by

(2.15) u-aJ(u)v-I(v) 2 an(u2 nt- V2)nP(n’#)((u2 U2)/(U2 + 192))
n=0 P.=’)(1)

where the coefficients a, are defined by

(2.16)
2F( + 1)u-aJa(u) a"u2"

n=0

(formula (2.15) with v 0). For a detailed proof, see Bateman [3, pp. 113, 114].
Formula (2.15) is a generating function for Jacobi polynomials, which is also
mentioned in Erd61yi [8, vol. III, 19.9(12)].

The substitution

(2.17) s=cos2, =ch2q

combined with the substitutions (2.9) and (2.12) gives

(2.18) e2x-- s + t, cos 2y
l+st
s+t

In terms of the variables s and t, the solutions of type (2.11) and (2.14) can be re-
lated to each other by the identity

(2.19)
P(’)(s) P(’)(t)

b,.(s + t)
P(’)((1 + st)/(s + t))

P(.’)(1) P(’)(1) -k: o P(’)(1)
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where bk, is defined by (2.19) when 1, i.e.,

P,’/)(s)
bk,,(s + 1)k.(2.20) P,")(1)

Formula (2.19) is proved in Bateman [4, pp. 392, 393] by using the fact that both
sides of (2.19) are solutions of the same partial differential equation (2.13) (after
the transformation (2.17)). The converse identity (formula (4.1) in Askey [1]) was
first obtained in [3, pp. 122, 123]. For another result of Bateman, which expresses
the solution (2.4) in terms of the solutions (2.14), the reader is referred to [3, p. 115
or [17, p. 370].

The preceding results might be extended by considering other special solu-
tions of (2.1). For instance, one may take n complex in the solutions (2.11) and
(2.14). In this way Flensted-Jensen and the author [9] generalized (2.19) for
complex values of n. Another possibility is to replace one or both of the factors in
(2.4), (2.11), (2.14) by a second solution of the (ordinary) differential equation.

It should be pointed out that Appell’s hypergeometric function

F4(y, 6 + , +/3; -/)2, u2),
defined in [8, vol. I, 5.7.1], is also a solution of (2.1). This can be verified by term-
wise differentiating the power series of the function F4. The methods of this section
may be applied in order to prove the generating function for Jacobi polynomials
mentioned in [8, vol. III, 19.10(26)] and the Poisson kernel for Jacobi polynomials
(see Bailey [2, p. 102, example 19]).

It would also be of interest to express the solutions (2.11) and (2.14) in terms
of the solutions (2.4) by means of definite integrals over 2.

Finally, we mention the work of Henrici [12], who used equation (2.1) in
order to prove the addition formula for Gegenbauer functions.

3. The product formulas for Jacobi polynomials and for Bessel functions. The
Laplace type integral representation for Jacobi polynomials is

f,lfdp NR.=,fl)(x)
-1
t- x x 2 2 r

=o =o 2 r +i -x cos

(3.1)

where

(3.2) dm,(r, )
2F(o + 1)

Following Gasper [10] we use the notation

(1 r2)-fl- lr2fl+ 1(sin 4)) 2fl dr dq.

The measure (3.2)is normalized by

(3.4) f/ ff dm=,,(r, gp) 1.

P(,,’)(x)
(3.3) R’)(x) =- pT,)(1)
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Formula (3.1) was first proved by the author [13] from the addition formula. Next,
an elementary analytic proof of (3.1) was obtained by Askey [1, 3]. The deriva-
tions given below were suggested by the way Askey proved the converse of (2.19)
(see [1, 4]).

It follows from (3.1) that

(x + )":,
x + !

(3.5) [(1 + X)(1 + fl)+ (1 X)(1 y)r2

+ (1 ( yr cos 3" am,(r, )
and

(3.6) x2 + YZ)"R’) )5---1 (x2 y2r2 + 2ixyr cos qS)" dm,(r, ).

Combination of formulas (2.19), (2.20) and (3.5) gives the product formula

R. (x)R.

3.7) ?,k + x) + y)+

+ 1 x yr cos

In his original proof the author [133 derived (3.7) from the addition formula by
integration.

In a similar way, it follows from the formulas (2.15), (2.16) and (3.6) that

x-’J(x)y-I(y)

On (X2 y2r2 + 2ixyr cos )" dm,e(r,
n=0

an(X2 y2r2 + 2ixyr cos

2 2 (1/2)fl2V(o + 1) (X2 2_ )-;-- _- i/--y 0-s 7---- dm=,(r el)).

The interchanging of summation and integration is allowed because the infinite
sum converges uniformly in r and qS. By using that

y-I(y) (iy)-J(iy)

and by analytic continuation it follows that

x-/Jttx)Y-%tYl’’’’’ 2F(o + 1)

(3.8) fj f/J//((x2 Y--2r2-- + 2xyr cos )/2)dm (r(x2 + y2r2 +0)1,
>>-.

This formula seems to be new.
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It is surprising that the two product formulas (3.7) and (3.8), which seem to be
much deeper results than the integral representation (3.1), can be derived from (3.1)
so easily. Another surprising fact is that formula (3.1) implies (3.7) but is also a
degenerate case of (3.7). In fact, one obtains (3.1) after dividing both sides of(3.7) by
R,’)(y) and then taking the limit for y oo.

Formula (3.8) follows from (3.7) by applying the confluence relations

(3.9)

and

lim
P(’’t(1 Y2/(2n2))

2F(o + 1)y-J(y)

(3.10) lim
P(n’l)(x2/(2n2)- 1)= 2F(fl + 1)x_J(x)

,-, P(,’)(- l)

(cf. ErdOlyi 8, vol. II, 10, 8(41)J).
If fl T then the measure dm,(r, q) defined in (3.2) degenerates to the measure

F(e + 1 6(1 r)(sin )2 dr d4.

Here 6(0 represents Dirac’s delta function
The degenerate forms of (3.1) and (3.7) for fl are Gegenbauer’s classical

formulas for ultraspherical polynomials (cf. [8, vol. I, 3, 15(22), (20)]). Formula
(3.8) degenerates to the product formula

x- IJ(x)y- Jl(y

(3.11)
2v/F(/ + 1/2)

J((x2 + .)2
2 -- 2xy cos (D) 1/2)

-(-- -. 7+_ 2xy cos 4)) 1/2)fl (sin b)2 dO,

This is an integrated form of Gegenbauer’s addition formula for Bessel functions
(cf. Watson [17, 11..4(2)]). It should be pointed out that new proofs are obtained
for these two classical product formulas of Gegenbauer if one applies Bateman’s
identities (2.15) and (2.19) to (3.1) in the case ft.

Askey [1] derived the Laplace type integral representation (3.1) from its
degenerate case a fl by using a fractional integral for Jacobi polynomials. In a
similar way we can derive the product formula (3.8) from its special case (3.11.) by
applying Sonine’s first integral

(3.12) foy--J(y)
2_

_
1i_,(0 fl)

(yr)-lj(yr)r21+ *(1.- r2)-l-l dr,

> fl > 1 (see Watson [17, 12.1.1(1)]). This method of reducing the case (e,/3)
to the case (fl, fl) fails for the product formula (3.7).

If fl $ -1/2 then the measure dm,e(r, c/)) degenerates to the measure

F(a + 1)1/2)( r2)_ 1/2(6((/)) + (7 (/)))dr d.
+
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The degenerate forms of (3.1) and (3.7) which are thus obtained are related to the
degenerate forms for fl by the quadratic transformation

(3.13) P’- l/z)(2x2 1) P,,’)(x)
P.’ ’/2)(1) P’)(1) (see [8, vol. II, 10.9(21)]).

Formula (3.8) degenerates for/3 -1/2 to

(3.14) cos (x + yr)(1 r2) 1/2 dr,cos x’y J(y)
2x/r( + ) -,

For x 0, this is Poisson’s integral ([17, 3.3(1)])

cos (yr)(1 r2) 1/2 dr(3.15) Y-J(Y)
2xfF(0 + 1/2)

and, conversely, formula (3.14) immediately follows from (3.15). Thus, the double
integral (3.8) connects (3.11) with Poisson’s integral in a continuous way.

The remarks at the end of 2 suggest that other integral formulas can be
derived by the methods of 3. One case, for Jacobi functions, is worked out in [9].

The left-hand sides of formulas (3.1), (3.7) and (3.8) can each be considered as
the first term of an orthogonal expansion with respect to the measure dm,(r,
An orthogonal system of functions with respect to this measure is

f,,(r, b) PI-- 1’+-(2r2 1)rt-’P_- 1/2’- /2)(cos q).
(3.16)

k>_l>O.

The expansion corresponding to formula (3.7) is called the addition formula for
Jacobi polynomials (see Koornwinder [13]). The expansions corresponding to
(3.1) and (3.8)can be obtained as degenerate cases ofthis addition formula. Recently,
Gasper and the author independently gave analytic proofs of these expansions.

Gasper first derived the expansion corresponding to (3.1) in an elementary
way and next applied (2.19) and (2.20) in order to obtain the addition formula.
Similarly, one might prove the expansion corresponding to (3.8).

The author obtained the higher terms of the addition formula by doing inte-
gration by parts in (3.7). The same method might be applied to (3.1) and (3.8).

These two methods of proof will be published in the near future.

4. The integral representation of Braaksma and Meulenbeld. By interpreting
Jacobi polynomials as spherical harmonics Braaksma and Meulenbeld 5] ob-
tained an integral representation for Jacobi polynomials which is different from
(3.1). Their formula is

P.’e)(x) F( + 1)F(fl + 1) (e + 1).(fl + 1).

(i,/i cos + + cos

(sin b)2(sin //)2fl d(/) dl//, fl>-1/2.
As pointed out in [5], the analytic proof of (4.1) is easy.
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By using (2.19) a product formula can be derived from (4.1). The explicit form
of the coefficients bk,, in (2.21) follows from

(4.2)
p?,t)(_ 1) P(,f’)(1)

Hence,

P(,,’)(x) p(,,,t)(y)
p(,,t)(_ l) P(,,’)(1)

(sin q)2(sin )2fl d(/) dO
Let C.+ e+ l(t) denote a Gegenbauer polynomial. By using

L (-n)k(n++fl+ 1),t2= 2Fl(-n n+o+fl+ l’1/2"t2)
: o (1/2)k

we conclude that

P(,,’)(x) P(,,’)(y)
P’)(- 1) P(,,’t)(1)

(4.3)

p(.-1/2,a+fl+ 1/2)(1 2t2)
p(n-1/2,o+fl+ l/2)(1)

Cn+ fi + l(t
C’+e+’(O)2n

F( + 1)F(fl + 1)
1/’-’,(z --I-- fl --t--TCI-’(0 -- 1/2)F(/ ----,’2n 1(0)

Cn+ fl + y COS

+ + cos

(sin 402=(sin O)2fl d(/) dO,

Formula (4.3) was first obtained by Dijksma and Koornwinder [7]. They used
similar group theoretic methods to those of Braaksma and Meulenbeld [5].

We can also derive from (2.15) and (4.1) that

(4.4)

x-Jtx)Y-PJtY)’’ 2+nr( + 1/2)r(/ + 1/2)

cos (x cos 4) + Y cos O)(sin 4))2=(sin O)2e d4 dO,
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Writing

cos (x cos 4 + y cos 0) cos (x cos 4) cos (y cos 6)

sin (x cos 4)) sin (y cos ),

we can reduce (4.4) to the product of two Poisson integrals (3.15).

5. Gasper’s product formula. The right-hand sides of the formulas (3.1), (3.7)
and (3.8) all have the form

ff for f(a2r2 + 2abr cos + be) dm,//(r, b),

where the function f is continuous on (0, ), the letters a and b represent positive
real numbers and the measure dm,//(r, ) is defined by (3.2). By a transformation of
the integration variables this integral can be rewritten in the so-called kernel form.
We will prove that

ff f f(a2r2 + 2abr cos b + b2) drn,//(r, 49)

j’(t2)g,//(a, b, t)t21 + dt,

where for > fl > - the kernel K,//is defined by

(5.2)

a- 2 (a2 b 2 c2 .qt._ 2bc cos ff)--//- (sin 0)2//dO

In formula (5.2) the notation

ifx > O,
(x)+

0 if x=<0,

is used.
Formula (5.1) can be proved by successively performing the following trans-

tbrmations of variables to the left-hand side of (5.1). First, we put

x=rcosqS, y=rsin05,

next,

x’= ax + b, y’ ay,

and finally,

x’=tcosO, y’=tsinO.
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Thus we obtain the equalities

ff[f([arei+b[2)(1-r2)--lr2’+’(sindp)2drddp
f((ax + b)2 + (ay)2)(1 x2 yZ)_-t--lyZt dx dy

a-2 f((x,)2 + (y,)2)(a2 b 2 (x,)2 (y,)2 +

(y,)2 dx’ dy’

a 2 f(t2)(a2 ba {2 + 2bt cos

Formula (5.1) follows by substitution of (3.2) and (5.2).
The kernel K,, defined by (5.2), is clearly nonnegative. Putting f(x) in

(5.1) we find

fo(5.3) K,(a, b, t)t2 + dt 1.

The analytic form of the kernel K was studied by Macdonald (see Watson
[17, p. 412])and by Gasper [11]. It turns out that three different cases have to be
distinguished. Let

bz + c2 a2

(5.4) B
2bc

Then (5.2) takes the form

2-eF( + 1)
K,e(a, b, c)

x/r(a fl)r(fl + 1/2)"-2(bc)-
(5.5)

(s B)+-/- 1(1 $2)fl- 1/2 ds.

Case I. a < [b cl. Here < B, and K,(a, b, c) O.
CaseII. lb-cl <a<b+c. Here-1 <B< 1, and

F( + 1) B2)- 1/2K,e(a, b, c)
F(a + )a- 2a(bc) e ’(1

(5.6) B
"2F1 + fl

_
fl. + _.1

2

Case III. b + c < a. Here B < -1, and

2-/F( + 1) B) /2

K,e(a, b, c) a-2a(bc)-e- (1

(5.7) r(a- fl)r(fl + 1) (-1 B)e+ ,/2

2)2F1 + fl, fl + {;2fl + ;;-7
For these results, cf. [17, p. 412] and [11].
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Next, we will rewrite the formulas (3.1), (3.7) and (3.8)in kernel form using
formula (5.1). It follows from (3.1) that

y.+(5.8) R("S’//)(x) - (x/ 1)/2, w/( + 1)/2, x/f)dy, x > 1.

A Mehler type integral for Jacobi functions (also for complex n) which follows from
(5.8) leads to an explicit expression for the Radon transform for Jacobi function
expansions (to be published by the author). The analogous Mehler type integral
for Jacobi polynomials was independently obtained by Gasper (yet unpublished).
He applied the formulas [8, vol. I, 2.4(3) and 2.8(11)3. The kernel form of (3.7)
was first obtained by Gasper [10]. It is

t/2

R,S’//)(cos 20 )R,S’//)(cos 202) RnS’//)(cos 203)Ks,(sin 0 sin
,0

(5.9) COS 01 COS 02, COS03)(COS 03)2//+ sin 03 dO3,

0<02<, 0<0<,
Here, the range of integration is restricted, because a sin 01 sin 02,
b cos 01 cos 02 and c > would imply the condition of Case I.

Formula (3.8) can be rewritten as

(5.10)
Js(x) J//(Y)
x y// fo J//(z) Ks//(x y, z)z2//+ dz

2SF(e + 1) F-
It follows by the homogeneity of Ks,//that

(5.11) Js(2x)J//(2y)2 fo y, Z)
2F( + 1)

By duality it follows from (5.9) that

(5.12)

where

J//(2z)z dz.

--, t,,,o 201)R,S’//)(cos 202)R’//)(cos 203)
n=0

Ks,//(sin 01 sin 02, cos 01 cos 02, cos 03)
2 +//+ 2(sin 03)2s

(h(.S’//)) -1 (R(.S’//)(x))2(1 x)S(1. + x)// dx

and cos 0 4: [cos (01 + 02)1. It follows from (5.11) that

f xSy//z// Ks,//(x y, z)
(5.13) js(2x)j//()y)j//[2z)21--s d2 2F(e + 1)

for zlxyl.
In order to prove (5.12) and (5.13) by duality one has to use that the function

K,(a, b, t) is continuous differentiable on the intervals (0, ]a b[), (]a hi, a + b)
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and (a + b, ). In the Jacobi case, the equiconvergence theorem for Jacobi series
(Szeg6 [16, Thin. 9.1.2]) and well-known convergence properties of Fourier-
cosine series then can be applied. In the Bessel case, the tool is Hankel’s inversion
theorem [17, p. 456].

Combination of (5.12) and (5.13) gives

Z h,’a)R,’)(cs 20,)R,’)(cos 202)R,,e)(cos 203)
n=0

(5.14)
2-t-2F(0 + 1)(sin 01 sin 02 sin2 03)-(COS 01 COS 02 COS 03) -fl

J(2 sin 01 sin 02)JB(2 cos 01 cos 02)J//(2 cos 03)/ 1-a d2,

Z > fl > --1/2, COS 03 :)g: Icos (01 -1- 02)
For (5.13)and (5.14)see Watson [17, pp. 411,413]. Gasper [10] obtained (5.12)

by combining these two formulas of Watson. Formula (5.13) was applied by
Copson [6, p. 352] to the Riemann-Green function for the hyperbolic analogue of
(2.1).
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