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JACOBI POLYNOMIALS, III. AN ANALYTIC PROOF
OF THE ADDITION FORMULA*

TOM KOORNWINDER"

Abstract. The addition formula for Jacobi polynomials is derived from the integral representation
for the product P,’ (x)P, (y) of two Jacobi polynomials. The proof uses integration by parts and some
new differentiation formulas for Jacobi polynomials. Several formulas related to the addition formula
are also discussed.

1. Introduction. This paper completes the analytic proof of the addition
formula for Jacobi polynomials, which was initiated in [13 and [83. In [13 Askey
gave an elementary proof of the Laplace type integral representation for Jacobi
polynomials. The author [8] derived from this formula the integral representa-
tion for the product Pt,’e)(x)Pt,’)(y) of two Jacobi polynomials. The present paper
contains the derivation of the addition formula from this product formula.

For the proof we need some new second order differential recurrence relations
for Jacobi polynomials. These are obtained in 2. The addition formula can be
considered as an orthogonal expansion in terms of certain functions in two
variables. It can be rewritten as an expansion in orthogonal polynomials in two
variables. This is discussed in 3. The addition formula is equivalent to a number
of integration formulas which represent the respective terms of the orthogonal
expansion. In 4 these integration formulas are derived from the product formula
which was proved in [8. This is done by repeated integration by parts and by
applying the differentiation formulas obtained in 2. In a similar way the degener-
ate addition formula for Jacobi polynomials and a generalized addition formula
for Bessel functions are obtained. Several related results are finally discussed in 5.

Three different proofs of the addition formula for Jacobi polynomials have
now been published. The first two proofs applied group theoretic methods. In
[4, [5, [6 it was used that certain Jacobi polynomials are spherical functions on
the homogeneous space SU(q)/SU(q 1). The proof given in [73 was based on the
interpretation of Jacobi polynomials as spherical harmonics. The present proof
uses only analytic methods. A slightly different analytic proof by Gasper is unpub-
lished (cf. 5, Remark 2). The author can announce yet another proof of the addi-
tion formula which is rather short and involves a certain class of orthogonal
polynomials in three variables.

Remark. In the following some elementary formulas for gamma, hyper-
geometric and Bessel functions and for orthogonal polynomials will be used
without reference. For these formulas the reader is referred to the chapters 1, 2, 7
and 10, respectively, in Erd61yi [3.

2. Some new differentiation formulas for Jacobi polynomials. Let the hyper-
geometric function be defined by

(2.1) 2F(a, b’, c; x) o (a)"(b)"x"z, Ixl <
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There are a number of well-known first order differential recurrence relations for
hypergeometric functions (cf. [3, 2.8, (20)-(27)] with n 1). In this section some
second order differential recurrence relations for hypergeometric functions and for
Jacobi polynomials will be derived, which are probably new.

Replacement of x by x2 in (2.1) and termwise differentiation gives

(2.2) + F(a b" c" x) 4ab F(a + b+ l" c" x)
X dX

Using the identity 2Fl(a, b; c; x) (1 x)c-a-b 2F1(c a, c b" c; x) we derive
from (2.2) that

(dx22C-ld 2)a+b-c+2n [(1 x 2Fl(a + b + 1; c;x2)
X dx

(2.3)
4(c a 1)(c b 1)(1 X2)a+b-c2Fl(a, b’, c’, X2).

Jacobi polynomials P’a)(x) can be expressed as hypergeometric functions by
the formula

(-1)"(fl + 1),
2Ft _n n + 0 + fl + l’fl + 1"

+ x)p,t)(x)
n! 2

Substituting this in (2.2) and (2.3) we obtain the pair of differential recurrence
relations

(2.4)

d

(2.5)

d

Repeated application of (2.5) gives a Rodrigues type formula

(2.6)
22"n !(n + o + 1),,(1 x2)P(,,’)(2x2 1)

d2 23 + d
dx2 + x ax (1 X2)2n+.

If the variables x, y are expressed in the variables r, q5 by x r cos qS, y r sin ,
then

Hence formula (2.6) can be rewritten as

(2.7)
22"n!(n + 0 + 1),(1 x2 y2)P(’e)(2(x2 + y2)_ 1)

(Dt)"(1 x2 y2)2,, +,
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where De denotes the partial differential operator

2 2 2fi c
(2.8) De 6X2

-[- y2 -- y y"

Let the region R {(x, y)lx + y2 < 1, y > 0} denote the upper half unit disk.
LZMMA 2.1. Letf be a C-function on the closed unit disk {(x, y)[x2 + y2 =<

such thatf(x, y) f(x, y). Then the same holds for Daf Furthermore, if >
and > -1/2, then

ddR

(2.9)

ffR22"n!(n + 0 + 1), ((Dt)"f(x, y))(1 x2 y2 dx dy.

Proof It follows from (2.8) that Def is a C-function in x and y which is even
in y. Let e be fixed and larger than 1. Both sides of (2.9) are well-defined and
analytic in fl if Re > -. Since by (2.8),

D# =y-2# (y2e + (y2#y
it follows by repeated integration by parts and by application of Gauss’s theorem
that for k 0, 1,-.., n and fl > 0 we have

ff ((D#)"-(1- x2 y2)2n+)((D#)tf(x’ Y))Y2# dx dy
R

l(l X2 y/)Z"+)((D/)k+ f(x, y))y2 dx dy.

By these equalities and by (2.7), formula (2.9) is proved if > 1,/3 > 0. The case
of general fl follows by analytic continuation with respect to ft. Q.E.D.

We mention two other second order differential recurrence formulas for Jacobi
polynomials, although we do not need these formulas in the following sections. If
the identity

n 2 2F -n -n-fl’e+ l’x+
is substituted in (2.2) and (2.3), then we obtain the formulas

(de_X2+ 2+1dxdx (1 --}-" X2)"P’t) -1-+- )2X2)
(2.10)

X2

4(n + )(n + fl)(1 + X2) l__._l
+XSP’/){

d2 20 + d
2)- --/-x2 "1"-

x
(l --}- x --n-1 + X2

(2.11)
4n(n + 0 + fl)(1 + x2)-"---
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Repeated application of (2.11) gives a Rodrigues type formula

1)"22"n !( + / + 1).(1 + x2) a- 1p.,t) i+x21
x2

(2.12)

(d 2+ d)"/ (1 / xe)--a-
x

This formula is particularly nice, since for fixed and it expresses Jacobi poly-
nomials P’), n 0, 1, 2,..., as functions which are obtained by n-fold applica-
tion of a second order differential operator to an elementary function not depend-
ing on n. Tricomi obtained a simpler formula of this type for Gegenbauer poly-
nomials C, n 0, 1, 2, where 2 is fixed. His formula [3, 10.9 (37)] involves the
first order operator d/dx. There does not exist a straightforward generalization of
Tricomi’s formula to general Jacobi polynomials, because they cannot be written
as a solution of Truesdell’s F-equation (cf. Truesdell [11], Miller [9, ff 6.2]). How-
ever, formula (2.12) may be considered as a substitute.

3. A class of orthogonal polynomials in two variables. The addition formula
for Gegenbauer polynomials (cf. [3, ff 3.15.1 (19)] or (5.1)) can be considered as an
expansion of the function P’")(xy + y2t)(x, y fixed, > -)in
terms of the orthogonal polynomials P-/2’-/2(t), k 0, 1,2,..., i.e., with
respect to the weight function (1 t) / on the interval (- 1, 1).

Similarly, the addition formula for Jacobi polynomials (cf. [4, (3)] or (4.14))
can be considered as an orthogonal expansion of the function

P’a)((1 + x)(1 + y) + (1 x)(1 y)rz +i ye r cos 1)

,)tr(x,y fixed and a>> ) in terms of the functions ,l ,), k>l>0,
defined by

(3.) ’/(, ) e’--,+-/(2 )-/e5/,"-/(cos ),

which are orthogonal on the region {(r, )[0 < r < 1, 0 < < n} with respect to
the measure (1 re)--r2#+ (sin )a dr d. We shall prove that in terms of
suitable coordinates the functions , are orthogonal polynomials.

Let us define the functions o,)t, v) n > k > 0, in terms of Jacobi poly-
nomials by

(3.2) p,a)t,, V) p,#+n-k+ 1/2)(2v 1)Vn-k)/20#,)tV- /2U)an,k an-k

Since a Gegenbauer polynomial of degree n is even or odd according to whether n
is even or odd it follows that o’,)(u, v) is a polynomial in u and v. Comparing (3 1)In,

and (3.2) we obtain that

(3.3) ,a)t. (7- fl- 1,fl 1/2 r2, ,., ) , (r cos , ).

Let S denote the region {(u, v)lu2 < v < }, bounded by the straight line v and
by the parabola v u2 (cf. Fig. 1). The mapping (x, y) (u, v) defined by u x,
v x + y2 is a diffeomorphism from the upper half unit disk R onto the region S.
If r, 6 are polar coordinates on R such that x rcos , y r sin 4, then u

r cos , v r2 and #(u, v)/(r, ) 2r2 sin 4.
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FG.

THEOREM 3.1 Let , fl >- Then the polynomials Pt’t)tu v) satisfy then,k

following properties"

(n + + fl + 3/2)k(n- k + 2fl + 1),_ku,_kvk(i) --.,kP(’t)t"", V)
2" kk (n k)

is a polynomial ofdegree less than n;

an, ,., v)P,)(u, v)(1 v)(v u2) du dv 0

if (n, k) (m,l).

Furthermore, conditions (i) and (ii) define the polynomials Pt’)tu v) uniquely.n,k

Proof It is clear from (3.2) that for some constant c the polynomial
Pt’)(u, v) Cu"-kvk has degree less than n. The value of c follows from [3, 10.8,n,k

(5)].

To prove (ii) note that if u r cos , v r2, then (1 v)(v- u2) dudv
2(1- rZ)r2+2(sin 4)2+ldr dO. Hence part (ii) follows by using (3.2) and

the orthogonality relations for Jacobi polynomials. It is clear from (i) and (ii)
that

for each polynomial q of degree less than n.
Conditions (i) and (ii)’ uniquely determine the polynomials Pt’)tu ) Q.E.D.
Since the region S is bounded, it follows that the polynomials t’)t,, ) formn,k

a complete orthogonal system on S with respect to the weight function (1 )
( u). Hence the functions t’)tk. v, ) form a complete orthogonal system with
respect to the weight function (1 r)--lr X(sin ), 0 r l, 0 .

The author is preparing a paper in which the orthogonal polynomials
Pt’)t,, ) and the related classes of orthogonal polynomials inside the circle andn,k

inside the triangle are discussed in more detail.

4. The proof of the addition formula. It was pointed out in [8, 5] that the
integral representations for a Jacobi polynomial P’)(x), for the product P’)(x)
P’)(y) of two Jacobi polynomials and for the product J(x) J(y) of two Bessel
functions (cf. [8, (3.1), (3.7), (3.8)) all have the form

(4.1) f(ar + 2abr cos 4 + b) dm.(r, 4),
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where f is a C-function, a and b are positive real numbers, and
> > -1/2, denotes the measure

(4.2) dm=,/3(r, ) =/.t,/3(1 r2)a-fl- tr2/3+ t(sin b)2t dr dqb,

with the constant p,/3 such that

fffodm,(r, ck)=l, i.e., p,/3
2F( + 1)

,f r( fl)r( + 1/2)

The functions ,/3ttrg,,, qS), defined by (3.1), are orthogonal with respect to the
measure dm./(r, di)). Hence the integral (4.1) can be considered as the first term of
the orthogonal expansion of f(aZr2 + 2abr cos q5 + b2) in terms of the functions
i/3)(r, 4)). For the three cases mentioned above we shall derive this expansion in
an explicit way and thus obtain three different addition formulas.

If f is a C-function on [0, o), then let f" denote the nth derivative of f
and define the function fk,l, k >= O, on [0, ) by

(4.3) f,l(t2)
d2 2(/3 + kt- 1) + _7)/f(k_/)(/2).

LEMMA 4.1. Let > fl > -1/2 and k >= >= O. Then jbr all C-functions f and
positive real numbers a, b there is the identity

fo: f(a2r2 + 2abr cos q + b2)0a,i/3)(r, 4)) dm,/3(r, dp)

(4.4)
(0 fl)l(fl nt- 1/2)g- ag + ’bg-

22tl!(k 1)!(z 4- 1)g+

fg,l(a + 2abr cos + be) dm+g+l,/3+g_l(r, 49).

(4.5)

Proof The idea of the proof is to substitute Rodrigues’ formula

d
/( /1)"2"n !(1 x)(1 + x)/3P’/3)(x) x [(1 x)" + x)" /3]

and the Rodrigues type formula (2.6) in the explicit expression (3.1) for .g.’)t-,., qS)
and then to perform repeated integration by parts. Let I be such that/z,/3I equals
the left-hand side of (4.4). Then

I f(a2r2 + 2abr cos 4) + b2)p_- 1/2,/3-1/2)(C0S )

(sin b)2/3 dq)lPl-e- 1’/3+-l}(2r2 1)(1 r2)-/3- ’r2/3+g-’+ dr.
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By using (4.5) and by repeated integration by parts it follows that

fk-t)(a2r2 + 2abr cos q5 + b2)

PI-- 1’//+k-/)(2r2 1)(1 r2)a-it- ’(r sin )2(/+k-/)r drd49

(ab’-l f f(k -[i! fk-l)((ax + b)2 +

pla-/-1,/+k-/)(2(x2 _at_ y2)_ 1)(1 x2 y2)-a-1(y2)+-/dx dy,

where R denotes the upper half unit disk. Then, by Lemma 2.1,

(ab)k-I

2211!(k- 1)!(1 + - )l

2 2 2(fl + k- 1) c )’ f(-’)((axx2 + y2 +
y

+ b)2 + (aY)2)

(1 X2 y2)7-fl+2l-l(y2)+k-I dxdy.

Note that if ax + b cos ,, ay sin ,, then

Hence, by substituting x r cos 4) and y r sin 05 in the last expression for I, it
follows that/A,aI is equal to the right-hand side of (4.4). Q.E.D.

For the three choices of the functionf in which we are interested the functions

f, can easily be evaluated. We have

(4.6)

(4.7)

(4.8)

f(t2) 2",

221n!(n + fl + 1)/ t2n_ 2k k < ?lf"(t2)
(n k)!

f(t2) n’t)(2t2- 1),

fl(t2) 22/(n + a + fl + 1)(n- + fl + ln+k+l’t+-t)(2t2 1)II

f(t2) t-/J/(t),
f,(t2) =(_1)2 +t IS + lJe+k_l(t).

k<=n,

In (4.6) and (4.7),f./= 0 if k > n. Formula (4.6) is evident. Formula (4.7) follows
lp(+ 1,/+ 1)(2x 1).from (2.4)and the formula (d/dx)P.")(2x- 1)= (n + a + fl + -,_._
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To prove (4.8) we need the formulas (d/dt)(t-Jt(t))=-t-Jt+l(t)
((d/dt)2 + (2fl + 1)t- l(d/dt))(t-tS(t)) t-tS(t).

(4.9)

and

Using (4.4), (4.6), (4.7), (4.8) and [8, (3.1), (3.7), (3.8)] we obtain

fl f (1/2(x+ 1)+ 1/2(x- 1)r2+ x//x2-1r cos q)"i’(r, b)dm,(r, d)

n!(o- fl)l(n -l + fl + 1)/(fl + )k-l
2kl(k- l)(e + 1).+/

"(X- 1)(k+l)/2(X + 1)(k-l)/2D(+k+l’B+k-l)(x) if k < nan-k

(4.10)

fol 

P?’t)(1/2(1 + x)(1 + y) + 1/2(1 x)(1 y)r2

+ -w/1 y2r cos 05 1)ia’(r, 4))dm,(r, 49)

(n- k)!(n + o + fl + 1)k(O fl)t(n --l + fl + l)/( + 1/2)k-l

(X 2 4- y2r2 4- 2xyr cos b) -/2

ifkn,

(4.11)

The left-hand sides of (4.9) and (4.10) are zero if k > n.
By using (3.1), (4.2) and 3, 10.8 (4) it follows that

(4.12)
.k,t ,., 4))2 dm,l(r, dp)

(k 4- o)((k- I)/2 4- 3)(3 4- 1/2)k-l(3 4- 1/2)k-l( 4- 1)k(@
(k + + a)(k + fl)(2fl + 1),_(k l)!(a +

Hence the expansions corresponding to (4.9) and (4.10) are

(1/2(x + 1)+ 1/2(x 1)r2 + x//x2 r cos 05)"

(4.13) L L (k + l+ )(k -l+ /3)(2/3 + 1),_t(n- 1+ + 1)In!
,=o/=o’2’(k + )((k 1)/2 + fl)(fl + 1/2),_t(fl + 1),(e + k + 1),,_,+t

(X 1)(k +/)/2(X 4- )(k-l)/2p+ + l, + --l)(x

pl-t-,,+-)(2r2 1)r-lpt 1/2,- t/2)(cos b),
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p(,,)t+/-t 4- x) (1 + y) + 1/2(1 x) (1 y)r2

+x//1-x2x//1-y2rcosch- 1)- (k+l+)(k-l+fl)
k=0 /=0

( + +/ + )(2 + )_( + + 1)( k)
(4.14) 2(k + )((k )/2 + )( + )( + )_(k + +

(1 x)t/2(1 + x)-/2’-.._(x)
(1 y)t/2(1 + y)t-/2pt,a-(y)--n-

p-a-.ak-)(2r2 1)rk-pta- /2.-/2)(COS )k-l

Formula (4.14) is the addition formula for Jacobi polynomials (cf. [4, (3)]). We
call (4.13) the degenerate addition formula for Jacobi polynomials (cf. 5,
Remark 4).

The formal expansion corresponding to (4.1 l) is

(x2 + y2r2 + 2xyr cos )-a/2Ja((x2 + y2r2 + 2xyr cos )/2)
2r( + )(-)(k + + )(k- + )(2 + 1)_( + 1)

=0 =o (k + )((k )/2 + )( + )_( + 1)

x-ad_(x)y-d_(y)
p-a- .a+k-)(2r2 1)rk-pa 1/2,a-x/2)(cos ).

By rough asymptotic estimates it follows that in the right-hand side of (4.15) the
term of index (k, l) is of order (F(k c))- if k , where c is some real constant.
This estimate is uniform in l, 0l k. Hence the series in (4.15) converges
absolutely and the identity holds.

5. Discussion of the results. We conclude this paper with some remarks about
the addition formulas (4.13), (4.14), (4.15). No proofs will be given in this section.

Remark 1. If both sides of (4.13) or (4.14) are differentiated once with respect
to , then the same formula is obtained with n, , fl replaced by n l, + l,
fl + respectively. If the partial differential operator

2 2fl+ 2 cotO
Or2 2flr r r2 OOz r2

is applied on both sides of (4.13) or (4.14), then the same formula is obtained with
n, ,/3 replaced by n 1, + 2,/3, respectively. The same is true for (4.15) except
that the parameter n does not occur here. Both sides of(4.13) and (4.14) are rational
functions in and/3. It follows that if these two formulas are known in one specific
case (o, flo), then they can be proved in the case of general (,/3) by repeated
differentiation and by analytic continuation with respect to and/3.

Remark 2. Using the results in [8] Gasper obtained another analytic proof of
the addition formula (4.14) (personal communication to the author). He first
proved (4.9) by reducing the left-hand side of (4.9) to a multiple summation and by
manipulating this sum, and next he derived (4.10) from (4.9) by using Bateman’s
formula [8, (2.19)].
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Remark 3. If either e fl > -1/2 or e > fl -1/2, then (4.13), (4.14) and (4.15)
degenerate to orthogonal expansions in terms of functions of one variable. For
instance, putting e fl and r in (4.14) we obtain Gegenbauer’s addition
formula

P’’(xy + x//i x2v/1 y2 cos tk)

(5.1)
(k + e)(n + 2e + 1)k(2 + 1)k(n- k)!

=o/-" 2(k/2 + )( + 1/2)( + 1).

(1 x’2k/219(+k’t + a’2k/2D(+k’a+
--,-k k)(x)( k)(y)ptk 1/2,-1/2)(COS q).Y an-k

The same formula with n, x, y, cos th replaced by 2n, ((1 + x)/2) 1/2, ((1 + y)/2)/2, r,
respectively, is obtained by putting fl 1/2 and b 0 in (4.14) and by substituting
the quadratic transformation formulas for Gegenbauer polynomials.

Remark 4. We call (4.13) the degenerate addition formula for Jacobi poly-
nomials, since it can be derived from the addition formula (4.14) by dividing both
sides of (4.14) by y" and then letting y

Remark 5. The generalized addition formula (4.15) for Bessel functions is also
a limit case of (4.14). The formula is obtained by dividing both sides of (4.14) by
pt,,,a(_ 1) and then letting n , where the formulas [8, (3.9), (3.10)] are applied.

Remark 6. In Fig. 2 it is indicated how several related results concerning the
addition formula for Jacobi polynomials follow from each other. Here an arrow
denotes a direction of proof.

Laplace representation
for fl

Laplace representation degenerate

general T addition formula
and fl/

I, product formula addition formula

addition formula
for any one specific (a,

FIG. 2

In the approach used in [4], [5], [6] the author started at the bottom of Fig. 2
( 1, 2,... and fl 0). In the approach used in the present series of papers we
start at the top of Fig. 2.

Remark 7. The addition formula (4.14) in the case that fl 0 is also a special
case of the addition formula for the so-called disk polynomials (cf. apiro [10,
(1.20)] and Koornwinder [6, (5.4)]. In these two references the addition formula for
disk polynomials was proved by group theoretic methods. An analytic proof of
this formula might be given by using the methods of the present paper, starting
from the product formula [5, (4.10)] for disk polynomials.

Remark 8. There is yet another limit case of the addition formula (4.14).
Replacing the variables x, y,r in (4.14) by 2e- x l, 2y l, t- /2r, respectively,
letting 0 oe and using that lim_ Pt,’a)(2e- ix 1) (- 1)"L(x) and
lim_, e P, ’a)(2x 1) x"/n , we obtain that
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L.(xy + (1 y)r2 + 2w/y( y)r cos

@ (--1)k+t(k- 1/ fl)(2fl + 1)k_t(n
k=O =0 ((k- 1)/2 + fl)(fl + 1)k(fl + )k-t

(5.2)
X(k-l)/Zl+k-l(x)yn-(k+l)/2(1 y)(k+l)/2n-k

+-(r)?-p- /,-1/2(cos )k-l

This is a kind of addition formula for Laguerre polynomials L(x). Integration of
(5.2) gives

L.(x)y 2
L.(xy + (1 y)r2 + 2x/xy(1 y) r cos b)

(5.3) x/ F(fl + 1/2)
+e r2/ (sin (/))2fl dr dO, fl > -.

Dividing both sides of (5.3) by y" and letting y + m we finally obtain

L(x) 2( 1)"

r( + )
(.4)

(x r2 + 2i r cos

It was pointed out by Askey (personal communication) that the integral representa-
tion (5.4) can also be proved from the Laplace type integral representation for
Gegenbauer polynomials by using Askey and Fitch [2, (3.29)].
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