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1. Introduction 

Jacobi functions q~a (t) of order (~, fl) are the eigenfunctions of  the differen- 
tial operator (A (t))-l(d/dt)(A (t) d/dt), A (t)=(et--e-~)~'+l(et +e-t) 2p+I, such that 
~0z (0) = 1, r (0) - O. The Jacobi transform 

(1.1) f ^  (;t) = (2~/~/F(c~ + 1)) f o f ( t )  (p~(t)A (t) at, 

which generalizes the Mehler-Fok transform, was studied by Titchmarsh [23, w 17], 
Olevskii [21], Braaksma and Meulenbeld [2], Flensted--Jensen [9], [11, w and w 
and Flensted--Jensen and Koornwinder [12]. Some papers by Ch6bli [3], [4], [5] 
deal with a larger class of  integral transforms which includes the Jacobi transform. 
An even more general class was considered by Braaksma and De Shoo [24]. 

In the present paper short proofs will be given of  a Paley--Wiener type theorem 
and the inversion formula for the Jacobi transform. The L2-theory, i.e. the Plancherel 
theorem, is then an easy consequence. These results were earlier obtained by 
Flensted--Jensen [9], [11, w and by Ch6bli [5]. However, to prove the Paley--  
Wiener theorem these two authors needed the L2-theory, which can be obtained 
as a corollary of the Weyl - S t o n e - - T i t c h m a r s h K o d a i r a  theorem about the 
spectral decomposition of  a singular Sturm--Liouville operator (cf. for instance 
Dunford and Schwartz [6, Chap. 13, w The proofs presented here exploit the 
properties of Jacobi functions as hypergeometric functions and no general theorem 
needs to be invoked. Furthermore, it turns out that the Paley--Wiener theorem, 
which was proved by Flensted---Jensen [11, w for real c~, fi, ~ > -  1, holds for all 
complex values of ~ and ft. 

The key formula in this paper is a generalized Mehler formula 

( l. 2) (F (~ + 1)) -~ A (t) ~o ~ (t) = ~ - 1/~ fo  co S 2s A (s, t) ds, 
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where for Re ~ > R e / ~ > - � 8 9  A(s, t) is given as an integral of  elementary functions. 
Substituting (1.2) in (1.1) we can write the Jacobi t r a n s f o r m f  ̂  as the Fourier-cosine 
transform of F( f ) ,  where the mapping F consists of two successive Weyl type frac- 
tional integral transforms. Thus the Jacobi transform is factorized as the product 
of  three integral transforms with elementary kernels and the Paley--Wiener theorem 
follows from the mapping properties of these elementary transforms. 

For '  certain discrete values of  c~ and fl the mapping F has a geometric and 
group-theoretic interpretation as a Radon transform on rank one symmetric spaces 
(cf. Helgason [16, Chap, 1,2]). For  integer of  half integer values of  e and fl such 
that e ~ f l = > - � 8 9  a similar interpretation was given by Flensted--Jensen [10] on 
certain pseudo-Riemannian symmetric spaces. A large class of  integral transforms 
for which the corresponding mapping F is positive was examined by Ch6bli [5], 
Finally, Flensted--Jensen and Ragozin [13] wrote a note on the analogue of  (1.2) 
for spherical functions on non-compact symmetric spaces of arbitrary rank. 

In section 2 of  this paper some properties and formulas for Jacobi functions 
are given. Section 3 contains the proof  of  the Paley--Wiener theorem for all complex 

and ft. Formula (1.2) is the only result on Jacobi functions which is needed there. 
In section 4 the inversion formula is derived by using the Paley--Wiener theorem, 
some estimates for Jacobi functions and a formula for Jacobi functions of the 
second kind which is dual to (1.2). The paper concludes with some remarks, in 
particular about the Plancherel theorem and about Paley--Wiener type theorems 
for the Hankel transform and for Jacobi series. 

Notation. This is mainly similar to the notation used in [12]. For  reasons of  
elegance and in order to avoid singularities if ~=  - 1 ,  --2 . . . . .  some constant factors 
have been changed. I f  no confusion is possible the indices c~,/~ denoting the order 
may be deleted. 

2. Jacobi functions 

Consider for e,/~, ZEC (the set of all complex numbers) and 0 < t < o o  the 
differential equation 

(2.1) (A, .p( t ) ) ,  1 A , , p ( t ) ~ j  ----- , (2~  +Q~)u(t), 

where 0 = e + B + 1 and 

(2.2) A~,,~(t) = (e' - e-t)2~+l(e ~ + e-t)  ~+1. 
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By substituting z - - - ( s i n h t )  2 in (2.1) a hypergeometr ic  differential equat ion is 
obtained (cf. [7, 2.1 (1)]) with parameters  � 8 9 1 6 2 1 8 9  ~ + 1 .  Hence,  if 
c~ ~ - 1, - 2, - 3, ... then the funct ion 

(2.3) qg~', P) (t) --- F(�89 (Q + i2), �89 (Q - i2); ~ + 1 ; - (sinh t )8) 

is the solution o f  (2.1) which satisfies qg~ (0) ---1, q~(0)=0 .  Here the hypergeometr ic  
funct ion F(a, b; c; z)denotes the unique analytic cont inuat ion for z~[1,  co) o f  the 
power series 

(a)n(b)n n Z L o  z, Izl< 1. (c),n! 

Note  that  (F(0~+ 1))-109(z~,P)(t ) is an entire function o f  c~, fl and 2 (also for  ~ = -  l, 
- 2  . . . .  ). 

Fo r  2 ~  - i ,  - 2 i ,  - 3 i  . . . .  another  solution of  (2.1) (cf. [7, 2.9 (9)]) is given by 
the funct ion 

(2.4) ~J~,P) (t)  = (e t -  e-t) '~-~. 

.Y(�89 l --i2),  � 8 9  1 -- /2);  1 - - i2 ;  - ( s i n h  t)-~). 

This solution is characterized by the proper ty  that  Cz(t)=eUZ-o)t(l+o(1)) for  
t~oo.  The functions ez ( t )  and ~ , ( t )  are called Jacobi functions o f  the first and 
second kind, respectively. 

Using [7, 2.10 (2) and 2.10 (5)] we obtain for  non-integer 2 the identity 

~rll2(F(ct + 1))-~ q~ (t) = �89 c(2) ~z (t) + �89 c ( - 2 )  ~_~( t ) ,  (2.5) 

where 

(2.6) 

(2.7) 
and 

2"+~+'r(�89 i2) r(�89 ~- i2)) 
c~,# (2) = F (�89 (~+ fl + 1 + i2))F(�89 (~ -- fi + 1 + i2)) '  

Note  that for  real 2, ~, t ,  e (2) -=- e ( -  2). 
It follows easily f rom (2.1) and the definitions of  q~a(t), ~ ( t ) ,  A( t )and  e(2) 

that  

{ 

~0~(2 -1/2" -1/~') (t) = cos 2t, ~ - l /~ , -x /~) ( t  ) ___ eiat, 

A _ v ~ . _ , ~ d t )  = l ,  ~ _ ~ , _ v ~ ( 2 )  = I ,  

(2.8) 
q ~ ] " ) ( t )  ---- ~ ' , - 1 / 2 ) ( 2 t ) ,  ~ ] ' ~ ) ( t )  = ~ t , , - 1 / 2 ) ( 2 t )  ' 

A~,~(t) = A,,_~lz(2t ), c,.~(22) ----- e~, _1/~(2). 

The first two formulas o f  (2.8) can also be interpreted as quadrat ic  t ransformations 
for  hypergeometr ic  functions, cf. [7, 2.11 (2) and 2.11 (26)]. 
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Application of [7, 2.8 (20) and 2.8 (27)] gives the differentiation formulas 

(2.9) (F (a + 1))-1 dq~ ~' ~) (t) _ 
dt 

---- --�88 ((a+ t +  1)~ + 2~) (F(a +2)) -a sinh 2t qgz~+a'a+a)(t) 
and 

(2.10) (F(~ + 2 ) ) -  a --d-i'd [(sinh2t)_aA~+a,~+l(t)cp~+a,p+a)(t) ] ---_ 

= 16 (F (a+  1))-aA~,~(t)cp~z"P)(t). 

Next we derive some useful integration formulas for Jacobi functions. It follows 
from Bateman's integral [7, 2.4 (2)] and the identity 

(2,.11) F(a, b; c; z) = (1 --z)C-a-bF(c--a, c - b ;  e; z) 

(cf. [7, 2.1 (23)]) that for y > 0 ,  R e y > 0 ,  Re c > 0  

(2.12) (F(c+tz))-ayC+/*-a(1 +y)"+b-c+/*F(a+It, b + # ;  c+/~; - y )  

It follows from Askey and Fitch [1, (2.10)] that for x > 0 ,  Re/z>0,  Re b > 0  

(2.13) F(b)x-~F(a, b; c; - x  -a) =- 

-- F - ~  .Ix Y - b - / * F f a ' b + # ; c ; - Y - ~ ) ( Y - X ) ~ - Z d Y "  

Translating (2.12) and (2.13) in terms of Jacobi functions we obtain 

(2.1.4) ( F ( ~ + / t •  1))-aA~+,,p+,~t~'~+~'P+~)(t)Jv,~ , = 

2 3/*+lsinh2t f t  
: F ( ~ + I ) F ( # )  J o  d~'p(s)q~'~)(s)(c~176 

where t > 0 ,  R e # > 0 ,  R e a > - - l .  and 

(2.15) (c~, a (-- 2))-~ ~ ' ,  P) (s) = 

= 23u+1 ~ + " ' a  +/*) (t) (cosh 2t - cosh 2s)/*-1 sinh 2t dt, 
e,+~,p+~(-2)F(/0 

where s > 0 ,  R e # > 0 ,  I m 2 > - R e ( a + f l + l ) .  
The inetgrals (2.14) and (2.15) connect Jacobi functions of order (a, t )  with 

functions of order ( ~ - f l - � 8 9 1 8 9  and Jacobi functions of order ( ~ - f l - � 8 9  
a - t - � 8 9  with functions of order ( - � 89  -�89 Hence, by (2.7), (2.8), (2.14) and (2.15) 
we conclude that for R e ~ > R e f i >  - 1  

(2.16) (F (a + 1))-1 A (t)q~x (t) = 7r-1/2 c o s  2s A (s, t) ds 
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and 

(2.17) e iz~ = (c (-- 2)) - 1 f~o ~ (t) A (s, t) dt, 

where the kernel is given by 

Im2 > 0 ,  

(2.18) A=,~(s, t) = 

_-- 2~+5/~ sinh 2t ( cosh2 t_cosh2w)P_ l l2 (coshw_coshs )~_p_~s inhwdw.  
r (~ -/~) r (/~ + �89 

By substituting v = ( c o s h t - c o s h w ) / ( c o s h  t - c o s h s )  in (2.18) and using Euler's 
integral [7, 2.1 (10)] we obtain 

(2.19) A,,~(s, t) = 23~+~P+3/2(F(~ + �89 -1 (sinh 2t)(cosh t)  p-1/~ �9 

( c~ t - - c ~  / 
�9 ( c o s h t - c o s h s ) ~ - l / 2 F  �89 �89 a t � 8 9  2cosh t  " 

Combination of (2.19) and (2.11) gives 

(2.20) A,,a(s, t) = 2"+2a+5/2(F(~ + �89 (sinh 20 (cosh t) p-~ �9 

. (cosh 2t - cosh 2s) ~- 1/2 F [~ + fl, ~ - / / ;  ~ + �89 
cosh t cosh s 

2 c--0-~; ) 

Note that for O<-s<t the argument of the hypergeometric functions in (2.19) and 
(2.20) has its value between 0 and �89 Hence these hypergeometric functions are 
bounded functions in s and t. By analytic continuation with respect to e and /3 
and by using the expressions (2.19) or (2.20) for the kernel it follows that formula 
(2.16) is valid for Re e > - � 8 9  and formula (2.17) holds if Re e>- - �89  I m 2 > 0 .  
It is clear from (2.19) and (2.20) that A~,p(s, t ) > 0  if O ~ s < t ,  ~ > -  �89 and [fl <= 
<= max (�89 a). 

From (2.16) and (2.20) we have the integral representation 

(2.21) 
F ( ~ +  1) 1 

~o~,,~)(t) = 2-~+~1~ 
F(a+�89189 (sinh t )~(cosht)  "+~ 

�9 / : c o s 2 s ( c o s h 2 t  cosh2s)~- l /ZF[~+f l ,  ~ - f l ;  
cosh t - cosh s 

+ �89 2 cosh t J ds, 

valid for Re a :> - �89 In view of (2.9), formula (2.21) in the case of order (a + 1, fl + 1) 
gives an integral representation for d~p(z"P)(t)/dt. This last integral can be rewritten 
by using integration by parts and by [7, 2.8 (27)]. Thus we obtain the integral 
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representat ion 

(2.22) dqg~z"a)(t) _2_,+3/2  F ( a +  1) ( ~ + f l T  1 )2+~ ~ 
dt -- ? ( ~ + � 8 9 1 8 9  ~. 

' rl 
" (sinh t) 2~+~ (cosh t) ~+~ o sin 2s sinh s (cosh 2 t -  cosh 2s) ~-x/2- 

�9 F ~ + f l + l ,  c ~ - - f l - l ;  c~+�89 2 c o s h t  

which is also valid for  Re c ~ > - � 8 9  

We shall need some est imates which are essentially due to Flenste~ Jensen 
[9, Theorem 2], [11, w but  which will be stated here for  all e, flEC. The p r o o f  
o f  L e m m a  2.3 below is different f rom the p r o o f  given in [9]. 

Lemma  2.1. For each o~, f l ( C  and 6 > 0  there exists a positive constant K sueh 
that for  all t>-6 and all 2EC with I m  2->0 

�9 ~ '~)( t )  <= Ke-(ImZ+Re~)L 

Lemma  2.2�9 For each a, f lEC and r > 0  there exists a positive constant K such 

that i f  2EC, Im 2 ~ 0  and 2 is at distance larger than r f rom the p o l e s o f ( e , , p ( - 2 ) )  -x 
then 

lc~.~(--,~)l -x --<-- K O  + I,~l) ~+~/~- 

L e m m a  2.1 follows by  extending the p r o o f  of  [9, L e m m a  7] to the case o f  comp-  
lex a and  ft. L e m m a  2.2 follows f rom (2.6) and  Stirling's formula .  

Lemma  2.3. For each a, flEC and for  each non-negative integer n there exists 
a positive constant K such that for  all t~=O and all 2EC 

t( )) a. F(a+ 1 - 1  q~("#)(t) ~ K(1 -~ I~)"+k(1 + t)e 01mzl -ReQ)t, 

where k = 0  / f  R e ~ > - � 8 9  and k = [ � 8 9  t f  R e ~ - � 8 9  

Proof. Consider  first the case that  n = 0  and Re 0c> - � 8 9  I t  follows f rom (2.21) 
that  

]q~" a) (t)] <= const, e (rim ~l +Re (~ -/D) t . 

�9 (sinh t cosh t)-2Re~ f 0  (cosh 2t - cosh 2s) R~ ds = 

= const, e (I Im 21 + Re (~  --  # ) )  t r  (Re a, Re a) ( t ) .  
"t'0 

Applying  [7, 2.10(7)] we have the est imate 

q~0(Re"R~')(t) ~ const. (1 ~- t )e  -(~a~'+l)t. 
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By combining the last two equalities the lemma is proved for n =0 .  The estimate 
in the case that n = l ,  Re a > - � 8 9  and 121<1 follows from (2.9) and the estimate 
for rp(~'+1'P+l)(t). If  n =  1, Re e > - � 8 9  and 12[_->1 then we conclude from (2.22) that 

I <= const. (1-}-[2[)8('Im'tl+Re(~-P))t~00(Re~'Ree)(t) 

= const. (1 7- 21) (1 + t )e  (llmxl -Re~)t 

The case that n = 0 ,  1 and Re ct <- �89 follows by complete induction with respect 
to k=[ �89  c~] where formulas (2.9) and (2.10) are used. Finally we prove the 
case that n=2 ,  3, ... by a complete induction with respect to n using the formula 

dn--2 
(F(c~+ D]-I"" at"d" ~01,,,)(t) = _ ( e ~ + , ~ )  ( F ( ~ +  1))_ 1 dt "-~ ~o~,,~)(t) + 

+�89  d "-~ dt"-2 [(0 cosh at +e-/3)~0]'+~'~+~)(t)l. 

This formula follows by differentiating the formula 

d2 - 2 . ~2, [ 0 cosh 2t + ~ - fl ~0~ + 1, p + 1) (t) ] 
dt-- ~ q~(~'g)(t) -- (0 . , t  ) [ ~ - -~- ]~  -.(p~(~'~)(t) , 

which is a consequence of  (2.1) and (2.9). [] 

3. A P a l e y - - W i e n e r  type  theorem 

Let C o be the class of  all even infinitely differentiable functions on R (the 
set of  all real numbers) with compact support. Let d4t' be the class of even, entire, 
rapidly decreasing functions of  exponential type, i.e., g e a r  if and only if g is an 
even and entire analytic function on C and there exist  positive constants A and 
K, (n=0,  1, 2, ...) such that for all 2EC and for all n =0 ,  1, 2, ... 

(3.1) lg(2)l <= K,( !  + 21)-"e aI~m~l. 

Let for fq  C o and Re a >  - 1 the Fourier--Jacobi transform f~ f~p  be defined 
by 

(3.2) f~a(2) (21/~/r(~+ l ) ) f  o f(t)~o(Z'P)(t)A,.a(t)dt. 
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Clearly f~p()o) is analytic in ~, ~, 2EC with Re ~ >  1. Substitution of (2.10) in 
(3.2) and repeated integration by parts gives 

(-1)"  s inh2t  dr (t) �9 (3.3) f~p(2) = 24.F(e + n + 1) 

.~(~+" P+")tt~ A .(t)dt. n = O, 1,2, 
�9 W,Z ' \ ) ~ o ~ + n , p +  . . . .  

This formula defines the analytic continuation off~.a(2) for Re c ~ > - n - 1 .  Hence 
f~p(2) is an entire function of ~, fi, 2. 

If  ~ - - f l - - - � 89  then (3.2) reduces to the Fourier-cosine transform 

(3.4) fslic. -z/2(2) = (2/~z) 1/~ fof(t) cos 2t dt. 

Theorem 3.1. (Paley and Wiener). The Fourier-cosine transform is a bijection 
from C o onto ~ .  

For a proof see for instance H6rmander [17, Theorem 1.7.7]. In this section 
we shall generalize theorem 3.l to general complex values of ~ and /3. 

Let for fCC o and Re ~>-- �89 the mapping f~ F , , r  be defined by 

(3.5) (F,,p(f))(s) = f~f(t)A~,p(s,  t)dt, s > O. 

Note that (F,,p(f))(s) is analytic in ~ and /L In particular, if Re ~ > R e / 3 : > - � 8 9  
then by (2.18) we have 

(3.6) 

(F,, ~ ( f ) )  (s) = 
2 3~+3/2 1 "~ 

F(~_ fl) f s~ [ F(fl-+ �89 J ~ f (t) (c~ 2t--c~176 2t)] " 

�9 (cosh w - cosh s) "-p- ld(cosh w). 

Combining (2.16), (3.2) and (3.5) we obtain that for f t C  o and Re c~> �89 

(3.7) f~  ~ ('~) -- (2/~)1/2 f o  (F,, p ( f ) )  (s) cos )os ds. 

This means that the Jacobi transform of order (a, fi) o f f  is the cosine transform 
of F,,p(f). 

To analyze the transform F,,r consider the Weyl fractional integral transform 
which is for aER, gCCo([a, ~)) and Re p > 0  defined by 

(3.8) (g)) (y) -- ( r  f g (x) (x - y ) . -  1 ax 

(cf. [8, Chap. 13]). Here Cg([a, ~o)) denotes the class of infinitely differentiable 
functions on the interval [a, ~ )  (right differentiable in a) with compact support. 
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Repeated integration by parts in (3.8) gives 

(3.9) ( ~ / ~ , ( g ) ) ( y ) - ( - - 1 ) n  J i  ~ [ dn ) 
�9 rOt+n)  -d-~g(x ) (x-y)U+"-~dx,  n = O, 1,2 . . . . .  

By (3.8) and (3.9) (~r (g)) (y) is defined as an entire function in #, continuous in 
(/z, y )EC•  ~,). Clearly, the function ~ ( g )  has also compact support and, since 
(~//~(g)) '=~(g') we conclude that ~r Co([a, ~')). It is an easy exercise to prove 
that ~00=id, ~F_~(g)= - g ' ,  "//~o~r162 In particular, ~ o ~ r  
This proves the following theorem. 

Theorem 3.2. For all aER and #EC the mapping ~r defined by (3.9), is bOective 
from C O ([a, co)) onto itself. 

Let us next define for f E C o ,  Re # > 0 ,  or>O, s=>0 

(3.10) ( ~  ( f ) )  (s) = ( s  (cosh cr t -  cosh ~s)"- ld(cosh ~rt). 

Again we can extend (~//~ (f))(s) so an entire function of U by 

(3.11) 
d" 

( -1)"  f ~  [.d(co_~ ~t). f ( t ) j (cosh ~rt_cosh as)~+._ld(cosh at )" ( ~ r  (s) -- r(/z Jr-n)J, 

n = O. 1, 2 . . . . .  Re# :>- -n .  

Let f ( t )=g(coshat) .  Then f E C  o if and only if gECo([1, co)). Hence it follows 
from theorem 3.2 that for each /~EC the mapping ~ is bijective from C O onto 
itself. The inverse mapping of  ~r "~ is ~_~. Applying this result to (3.6) we obtain 

Corollary 3.3. I f  fE C O then (F~,p(f))(s) has an analytic continuation to an entire 
function in c~ and fl which is given by 

(3.12) r=,a(f ) = 28=+z/z~C~L ~o"lC/'p% a/2(f). 

For all ~, fl E C the mapping F=, ~ is bijective from C o onto itself. The inverse mapping 
is given by 

(3.13) f =  2-3=-3/2~FZa_~/2o~Fpt_=oF=,p(f). 

Combination of  Theorem 3.1, corollary 3.3 and formula (3.7) gives the Paley 
Wiener type theorem for the Jacobi-transform. 

Theorem 3.4. For all c~, /3EC the mapping f ~f~p is bijective from C o onto ~". 
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4. The inversion formula 

It is well-known that the inversion formula for the cosine transform is given by 

(4.1) f ( t )  ----- (2/re) 1/~ fof'__l/2, _ a/2 (4) cos 2t d2, 

where fE Co and fSll2, -1/~(2) is defined by (3.4). Substituting cos 2t=�89 et~t+�89 e -i)'" 
and changing the path of  integration in (4.1) we also have 

(4.2) f ( t )  = (2n)-~/2 f ~ - S  f'--1/~, - ~1~ (2) e TM d2, 

where q is an arbitrary real number. In this section we shall generalize (4.1) and 
(4.2) to inversion formulas for the Jacobi transform. 

Let for g E ~ ,  t > 0  and e, flEC 

(4.3) g~,~(t) = (2rc)-~/~ f/"+_S g(2)~,P)(t)(c~,p(-2))-X d2, 

where ~/->0, r / > - - R e ( c t + f l + l ) , ~ / > - R e ( c ~ - f l + l ) ,  i.e., ( % ~ ( - 2 ) )  -a is a regular 
function of  2 for Im 2_->q. Let for g E ~ ,  A be a positive constant such that the esti- 
mates (3.1) hold and choose 6 >0.  Then by lemmas 2.1 and 2.2 there is a positive 
constant K such that for all t>=6 and all 2EC with Im 4->_0 and 2 outside arbitrary 
small neighborhoods of  the poles of ( % ~ ( - 2 ) )  -~ we have 

(4.4) [ g ( 2 ) ~ ' P ) ( t )  (c~,~(--2)) -1' <: Ke-~t(1 + 21)-2e (a-')Im~ 

It follows that the integral in (4.3) absolutely converges and that its value does 
not depend on the choice of  q. In particular, if Re/~ < R e ( a +  1) then we can put 
~/=0 in (4.3) and by (2.5) we obtain 

1/2 j i=  g(A)~p~"P)(t) d2. 
(4.5) g~,p(t)- r(~71) c~,~(2)c~,p(-2) 

v C,~ Lemma 4.1. Let Reck>--�89 and Re/~l<zRe(~+l).  I f  g E ~  then g,,~E o and 
(g~, p)~,, =g.  

Proof. It follows from (4.3) and (4.4) by letting ~ ~ that g~,p(t)=O if  t>A.  
It is clear from (4.5) that g~,p is even. The estimates from lemmas 2.2 and 2.3 and 
formula (3.1) show that 

_--< const. (1 +t)e-(Re~ +2)  -2, 
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uniformly if  2, t->0. Hence, by (4.5), g~,a~C o. To prove the second part  o f  the 
theorem observe that for  t / > 0  and s > 0  

(F~, ~ (g~,.)) (s) = 

= (2~)-1'~ f / & , ~ ( s ,  t) dtf/,~*_2 g(2)r  (c, ,  a ( - -  2)) -1  d2 = 

= .(2,~)-1'~. .f"+=,,= [ f 7  ~>,,(t)(~..~(-.~))-~ a.,~(., t)dt ] g(2) a2, 

where the interchanging of  integrals is allowed by Fubini 's  theorem, in view of  (4.4) 
and the estimate 

fA~,a(s, t)l <= const, eet(t--s) ~-1/~. t > s > O, 

which is evident f rom (2.20). Inserting (2.17) we find that 

(F. , , (g; , , ) )  (~) = ( 2 ~ ) - ~ f 2 _ + ~  g(2)e'~d2. 

By inverting th~s formula  it follows that  

(g~,p);,a(2) = (2/rc)l/Z f o  (F~,p(g;,p)) (s) cos 2sds = g(2). [] 

Theorem 4.2. Let a, flCC.. Then fCC o and g=f~a i f  and only i f  gG,~f and f =  

--g~, o" 

Proof. In  view of  theorem 3.4 it is sufficeint to prove that (fs if 

fCCo,  t > 0  and c~, flEC. By theorem 4.1 this is true for  Re ce> --�89 IRe f i l < R e ( ~ +  1). 
By (3.3) and (4.3) (f,~p)~,a(t) is an entire function of  cr and /3. Hence the theorem 
follows by analytic continuation.  [] 

5. Some remarks 

Remark 1. Suppose that ( % p ( - - 2 ) )  -1 has N poles 2 i ,22 ,  . . . ,2N such that  
Im 2, >0 .  Then a formula  similar to (4.5) can be derived with additional terms of  
the type e (~'~),, f2 ~ ,~ (~' ~) ft~ ..., n ~" ~ . ~  "~a, , ~, n - -  1, 2, N (cf. Flensted--Jensen [11, w Complica-  
tions arise if  some pole o f  (G ,p (=2) )  -1 is not  simple or lies on the real axis or  
coincides with a pole o f  (e,, p (2))-1. 

Remark 2. Let f E C  o and g~o~/Y. Suppose for  convience that ( G , a ( - 2 ) )  -1 has 
no poles for  Im  2->0, i.e., [ R e / T < R e ( c ~ + l ) .  Then it is clear f rom (3.2) and (4.5) 
that 

fo f ( t )g"  (t)A (t) d t =  fof" (2)g(2) (e(2)c(--2))  -1 d2. 
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Here Fubini's theorem is used together with the estimates of lemmas 2.2 and 2.3 
and formula (3.1). It follows by theorem 4.2 that for f~,f2CC o 

(5.1) f~f~(t)f2(t)A(t)dt = f ~ f?  (2)f~ (2)(c(2)c(-2))-l d2. 

Remark 3. For real ~ and fl, f l [<~+  1, formula (5.1) implies Parseval's formula 

(5.2) f U yl (t)f2 (t) A (t) d t= f o fZ (2)f2" (4) [c (4) -2 d2 

where f l ,  f2 C Co.  Hence, since Co is dense in L z (A) and ~ is dense in L2(lc O~)l-z), 
the Jacobi transform can be extended to an isometric mapping from L2(A) onto 
L~(lc(,~)l-2). This gives an alternative proof  for the Plancherel theorem obtained 
by Flensted--Jensen [9, Prop. 3]. If ( c ( - 2 ) )  -1 has poles for hn  2 > 0  then a discrete 
spectrum must be added (cf. [11, w 

Remark 4. A Paley--Wiener type theorem for the Hankel transform can be 
proved by similar methods as in section 3. Let J , ( t )  be a solution of the differen- 
tial equation u"(t)+(2~+l)t-lu'(t)+u(t)=O, ~ 1, 2, ..., such that ~ ( 0 ) = 1 ,  
J~ ' (0 ) -0 .  Then J~(t)=2~F(c~+l)t-~J~(t), where J~(t)  is a Bessel function. I f  Re 
~ > - � 8 9  then if follows from the Poisson integral representation 

F(c~+ 1) f ~  j~(t) = 7W2F(a+�89 ) eitc~ ~o)~d~0 

that 

(5.3) t 2~ j~  (2t) _ r?/2 F (c~2F(~++I)�89 31'o c~ ds. 

Define for fC Co and Re ~ > -  I the Hankel transform by 

(5.4) f ' ( 2 )  -- 2~F(~+ 1) f(t)J~(2t)t~+~dt. 
Then 

f0 (5.5) f^ (2)  = (2/~) ~/2 cos2sds 2~+1/2F(~+�89 

�9 f = f ( t ) ( t  2 s2)=-l/2d(tZ), R e a > - � 8 9  

Formula (5.5) is analogous to (3.6) and (3.7) and it can be used in a similar way. 

Remark 5. For certain discrete values of  a and fl Jacobi functions are the spheri- 
cal functions on non-compact symmetric spaces of rank one. In this context many 
formulas and results of  [9] and the present paper were earlier obtained. Formula 
(3.7) corresponds to Helgason [15, (9)]. The function e-~*(F~,t~(f))(s) has a geo- 
metric interpretation as a Radon transform, where f is a radial function on the 
symmetric space (cf. Helgason [16, Chap. 1, 2]). The Paley--Wiener theorem for 
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the spherical Fourier transform on non-compact symmetric spaces of rank one 
was first proved by Helgason [151. 

Remark 6. Formulas (2.16) and (2.18) generalize the classical Mehler Dirichlet 
formula (cf. Mehler [20]) 

2~__~_~f ~ cos (v +�89 
Pv (cos 0) = o (cos ~p - cos 0) 1/2 d~o, 

where Pv(x) is a Legendre function. These formulas can also be obtained from the 
Laplace type integral representation 

2Y(~-t-1) f~  f~  (5.6) ~o~'P)(t) = rcl/2F(--d-Z-~-ff~(fl+�89 c o s h t + s i n h t  reiq~liz-e. 

1 �9 (1-r~)~-P-lr~P+l(sin~k)2Pdrd~k, t > O. Re~ > Refl :> 2 

(cf. [18, (4)], [9, (3.5)]) by substituting first cosh t+s inh  t rei~'=e~e iz and next cosh 
w - c o s  Z cosh t. A general method of transforming integrals of type (5.6) into 
integrals of type (2.16) is discussed in [19, w 

Remark 7. Let R~,~'~)(x)~-P~,~'P)(x)/P~,P)(1), where P~,~,~)(x) is a Jacobi poly- 
nomial. Then 

R~,P)(cos 0) = F(--n,  n + c ~ + ~ +  1; c~+ 1; sin2 �89 . . . .  ~'~,+~+B+I~i~(~'P) ~1i0) �9 

Analogous to (2.16), (2.18) and (2.19) we obtain 

2~-2a-1/2F(~ 1) (sin�89189 (5.7) R,~"O)(cos 0) = rcl /2F(~_fl)F(f l+�89 ) 

. fo  ~ ~cos 6 - cos 0)~-~/~ sin �89 ~ d~, f0  ~ cos (n + �89 (~ +/~ + 1)1 ~o- 

�9 (cos�89189 Re~ > ReB :> - 3 ,  0 < 0 < ~z, 

2~-~/2F(~ + 1) (sin �89 �89 -a-~/2 �9 (5.8) Rn (~t'~) (COS 0) = 7~112r(0 ~ "~- �89 

f ;  / cos �89 - cos �89 ) 
�9 c o s (n+ �89  F �89 �89 ~+�89 2cos�89 a~o, 

R e ~ : >  3, 0 <  0<~z .  

Quadratic transformation of  the hypergeometric function in (5.8) by means of 
[7, 2.11 (22) ]gives another integral representation for R~'a~(cos 0), which was inde- 
pendently obtained by Gasper [14] in a quite different way. 
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Remark 8. Suppose that  f is an even C=-funct ion on ( - r e ,  re) with compac t  

support .  I f f  is expanded in a Four ier  Jacobi  series with respect  to R~"P)(cos 0) 
( e > f l : > - � 8 9  then the Four ier  coefficients are given by 

(5.9) 
f ^  (n) = (F(~ + l))-lj'o=f(O)R(. ",a) (cos 0) (sin �89 l~Qh2fl+1,40 2 w j  ~ v  

n = 0 , 1 , 2  . . . . .  

Substi tut ion of  (5.7) in (5.9) gives 

(5.10) f'(n) = re,/2r(-7-~-y-F(/~+�89 ~ c o s ( n + � 8 9  

�9 f;=q~ (COS �89 ~0 - -  COS �89 "-f1-1 d(cos �89 f o = ,  f(O) (cos r -- cos 0) ~ -1/2 d(cos 0). 

In  the same way as in section 3 we can write 

(5.11) f ^ ( n )  = foCOS(n+ �89  (r(f))(~o)dq~, 

where the mapp ing  F is a bijection f rom the class of  even C=-funct ions  on ( - r e ,  re) 
with compac t  suppor t  onto  itself. Then the funct ion f ~  is well-defined and  analytic 
for  all complex values of  its argument .  N o w  the classical Pa l ey - -Wiene r  theorem 

implies a Pa l ey - -Wiene r  type theorem for  Jacobi  series. 

Theorem 5.1. Let c ~ > f l > - � 8 9  The function f ^  is the Fourier--Jacobi trans- 

form of  an even C=-function on ( - r e ,  ~) with compact support i f  and only i f  there 

is a function gC #f' such that A <re in (3.1) and f ~ (n)=g (n+ �89  1)), n = 0 ,  1, 2, .... 

Since g is o f  exponential  type less than re an appl icat ion of  Car lson 's  theorem 
(cf. T i tchmarsh  [23, w 81]) shows that  g is uniquely determined by  f~a(n) ,  n =  
= 0 ,  1, 2, .... Just  as in section 3 theorem 5.1 remains valid for  all c~,/3~C. R. Askey 
informed me that  in the case ~ = t =  0 this theorem is due to Beurling (unpublished).  
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