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CLEBSCH-GORDAN COEFFICIENTS
FOR SU(2) AND HAHN POLYNOMIALS

T.H. KOORNWINDER

The Clebsch-Gordan coefficients for SU(2) are introduced in an
algebraic way, in the context of polynomials in four variables, homo-
geneous of certain degrees in the first and second pair of variables,
respectively. Next it is shown that the Clebsch-Gordan coefficients
can be expressed in terms of Hahn polynomials and that the Clebsch-
Gordan coefficients and Hahn polynomials can be identified with each

other as orthogonal systems.
1. INTRODUCTION

WILSON [ 18] proved that there is a class of discrete orthogonal

polynomials expressible in terms of 4F hypergeometric functions of

unit argument such that the 6-j symbolz (or Racah coefficients) are
expressible in terms of these polynomials and the orthogonality
relations for the 6-j symbols and the orthogonal polynomials coincide.
With knowledge of this result it is a natural question to ask for a
similar, but more simple result concerning 3-j symbols (or Wigner
coefficients or Clebsch-Gordan coefficients). In this paper we will
prove that the orthogonality relatiohs for the 3~j symbols coincide
with the orthogonality relations for Hahn polynomials (or their duals).
Of course, this is no surpirse, since both 3-j symbols and Hahn poly-
nomials have explicit expressions in terms of 3F2 hypergeometric func-
tions of unit argument. In fact, the result is well-known in a small
circle of people interested in the relationship between special func-
tions and group theory, but, as far as I know, no proof or even state-

ment of the result appeared in the literature until now.*)

*)

R. Askey called my attention to his mentioning the statement in
Applicable Analysis 8 (1979), 5-10.
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Before proving this result in Section 4 we give a rather self-
contained introduction to Clebsch~Gordan (= CG) coefficients in Section
3, while some properties of the canonical matrix elements of irredu-
cible representations of SU(2) are recapitulated in Section 2. Section
5 contains some historical notes. We have tried to give a possibly
original approach to CG coefficients. The key formulas (3.12) together
with (3.2) are derived in a very elegant algebraic way, with hardly any
calculations. However, we have to make our hands dirty in deriving
(2.10), (3.5) and (4.2). We could not resist to derive, in passing,
Regge's beautiful formula (3.19), which implies a symmetry group of
order 72 for CG coefficients.

This paper is related to some other work by the author. In [7] we
proved that Krawtchouk polynomials (discrete orthogonal polynomials
expressible as 2F1's) are related to matrix elements for irreducible
representations of SU(2). In a forthcoming paper we will give an uni-
fication of the present group theoretic interpretation of Hahn poly-
nomials as CG coefficients and another interpretation as spherical
functions on symmetric groups. A similar identification in the

Krawtchouk polynomial case was made in [7].

2. THE CANONICAL MATRIX ELEMENTS OF THE IRREDUCIBLE UNITARY
REPRESENTATIONS OF SU(2)

1 1 3
Let £ € '2‘ZZ+ = {01511151

geneous polynomials of degree 2% in two complex variables. Choose an

2,...}. Let Hl be the space of homo-

inner product on H, such that an orthonormal basis of Hz is given by

L
the functions wﬁ (n = -2,-24+1,...,%):
% _ 7223 %-n f4n
(2.1) v xey) a= (7 )3T

Let Tz be the representation of GL(2,€) on HQ defined by

(2.2) (Tz(i )0 (yy) = flaxtyy,Bxedy), £ e H,.

It is well-known that Tl is irreducible as a representation of

GL(2,€¢), U(2) or SU(2), unitary as a representation of U(2) or SU(2)
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and that each irreducible unitary representation of SU(2) is equivalent
2
to some T (& € %Z+), cf. for instance HEWITT & ROSS [5, Theorems
(29.20), (29.27)1.
2
The canonical matrix elements tmn of Tl are given by
2

(2.3) Tl(g)wl = z t
n
m=—4

L
mn

@0, g eL2,0.

L
The unitariness of T IU(2) implies

2 v, -1
(2.4) tmn(g) = tnm(g ) ge U(2).

It follows from (2.1), (2.2) and (2.3) that

2

28 1} %-n f4n 2 40 By, 28 y3 2-m f+4m
(2.5) (x_n) (axtyy) ” ~ (Bx+Sy) = mgLQ tmn(y 6)(£-m) * )
Hence

% 0By % ;0B
(2.6) tmn(Y 5) = tmn(? S)'

It follows from (2.4) and (2.6) that

2oy By _ % a0y
(2.7) tmn(Y 5) = tnm(B 5)

o8 ) e GL(2,0) .

for (Y 6) € U(2) and, by analytic continuation also for (a B

Yy 8
Formulas (2.5) and (2.7) imply:

LEMMA 2.1.

(a) tin($ g) is a homogeneous polynomial of aegree 2% in o,B8,Y,8 with

real coefficients.

(b) tin is homogeneous of degree %-m in o,f and homogeneous of degree
24m in v,S§.

(c) ti,n is homogeneous of degree %-n in o,y and homogeneous of degree

2+n in B8,6.

It follows from (2.5) that

L 40 By & S v
(2.8) tmn(Y s) = t_m,_n(B o)
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Combination with (2.7) yields:

tQ (u 8) = tl (6 B)

(2.9) mn'y § -n,-m'y o

For fixed % the set {(m,n) | m,n ¢ {-2,-2+1,...,2}} is the union

of the four subsets

{{m,n) l m+tn = 0, m~-n 2= 0},
{ (m,n) l m+n > 0, m-n < 0},
{ (m,n) | mn £ 0, m~-n = O},
{{(m,n) I m+n € 0, m-n < O}.

Because of the symmetries (2.7), (2.8), (2.9), tin($ S) is completely
known if it is known for (m,n) restricted to one of these four sub-
sets.

It can be derived from (2.5) that, for mn 2 0, m-n 2 0, we have:

£ oo By
(2.10) tmn(_Y <S) =

1
1__{(a+m) ! (&+n) 1\? 2-m_f-n m+n . ad
(m+n)!\(£—m)!(l—n)!) Yo 8 Fl(—l+m,—2+n,m+n+1, )

2 By

(By-a8) ¥ ™™ .

1
1 ((+m) ! (4+n) ! \2 m-n mn
{(m+n) I\ (2-m) ! (2-n) !

ad
. 2F1(—£+m,£+m+1,m+n+1,a5_BY)

; .
/(E+m)!(2—m)!>2 m-n mtn £~m (m+n,m-n)fBY+a6)
\(2#n) 1T (2-n) ! 8 (By-ad) Pz—m \By-as/’

where [3, 2.1(22) and 10.8(16)] are used and Péu’s)(x) denotes a

Jacobi polynomial (cf. VILENKIN [14, Ch.3, §3] or XKOORNWINDER [7, §271).

Then Schur's orthogonality relations on SU(2) for the matrix elements
L

tmn imply the orthogonality relations for Jacobi polynomials

P8 (x) (a,8 € 2,).
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3. THE DEFINITION OF THE CLEBSCH-GORDAN COEFFICIENTS FOR SU(2)

From now on, a condition on indices like |j| < £ will mean that
j runs over the integers or half integers £,2-1,...,-2+1,-2.

The tensor product H21 ® HQZ can be identified with the space of
polynomials in four complex variables x, y, u, v, homogeneous of
degree 221 in x, y and homogeneous of degree 222 in u,v. An orthonormal

basis of H21 ® le is given by the polynomials

21 22
(3.1) (wj ® Y. )(lelulv) = (

r
1 I3

l l = . = =
221 >2( 222 )2 Xﬂl 31y£1+31u22 32V22+32
44731/ \p3,

Byl = 2y, 13,1 <8,

L L
T 1 ® T 2 is an irreducible unitary representation of SU(2) x SU(2) on

*
Hzl ® le‘ The restriction of this representation to SU(2) :=
diag(SU(2) x SU(2)) is unitary but in general not irreducible.

THEOREM 3.1.

08, Lty .
(a) T ® T % = T (direct sum).
Su(2) £=|2 -3 I
1 72
Denote the subspace of Hgl ® ng corresponding to o by H21,£2,2.
(b} For suitable complex constants a11,2211 # 0 the functions
Lyrlarl
j1 27131 < %) defined by
L4485,% ' 2.+ -2
102y 2 2 Xy
(3.2) ¢j (x,y,u,v) := a21’£2'£(xv-yu) t22'21’j a v?

form an orthonormal basis for H£1r12:2' . .
(c) The matrix elements of the representation T legr 2'SU(2)* on
H21,£2,£ with respect to the basis'{¢§1’£2’z} are equal to t_ , so
ll,lz,l B _ _ _
(3.3) o (ax-By, Bx+ay,au~-pv,Bfutav) =
2 2..%,,2

L 1772’
mgig tmn(f% §)¢m (%, y,u,v), (f% g) € SU(2).
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Lo,8 .
is a polynomial,

%
PROOF. By (3.2) and Lemma 2.1(b) the function ¢j1'
homogeneous of degree 221 in its first two variables and homogeneous

of degree 2%, in its last two variables, so it belongs to Hgl ® ng.

Formula (3.3? is clear from (3.2) and the homomorphism property of T .
Since the representations TQ are irreducible and mutually inequivalent,
part (b) of the theorem is implied by (3.3). Finally, the completeness
of the orthonormal system {¢§1'22'l} in Hﬁl ® HQZ follows from the
equality of dimensions:

L, +8

172
) (2041) = (28,+1) (22,+1) . O
=2, -2, | 2
1 72
THEOREM 3.2. The constant 2 4 2 is uniquely determined by the con-
r r
dition 12
L,,2.,,% 2 2
1772 1 2
(3.4) (9, b, @ v, ) > 0.
1 1
Then 1
- ] v 2
. ] . 1)21+22>2/ (20+1) (22 )1 (201
- - - - 1 [l -
L \(21+22 DHORTREFEY
PROOF. It follows from (2.5) that
2 8 2% % 2 2+
o -m %+m
(3.6) tml(y 6) - (K—m) 8 6 '
so combination with (3.2) yields
Ql,lz,ﬁ
¢1 (XIYIuIV) =
1 - - -
. 0 \E %y 22+zv 21+22+z( i )21+22 L
2,0 ,0\0, -0 +8) ¥ xv-yu =
et 2 2, 8-
3 17 9 0 Lk
a (2 > (-1 12 .
21,22,1\11-12+2 Ko
1 -5 % 2
L, +8,~2\ 20, \72 2%, 2 ™ 2
'< L2 >< k1> (£1+22—2—k wxl—k(x’y)w-z1+z+k(“'V)

by tEe'Einomial formula and (2.1). Thus (3.4) implies that
0+
(-1 172 a9,,%,.8 > 0. By taking squared L2—norms in the first and

last member of the above identities we obtain



146 T.H. KOORNWINDER

L,+%, -2 -1 -1

2
[a 12( 29 ) 1 z2 (l1+£2 E) (211\ ( 222 ) _
L PR AN TR LY A k k / \appe,-0-k
PERCIPRYCIET O
lazl,%z,z[ (20 T(%,~T+0) ! 2F1 TRttty
- ' 1
2 (21+22 1).(21+22+2+1).

Ia T ] -
11,22,1 (2£+1)(211)-(2£2).

+2+1; —22 ;1) =

Here we used the Chu-Vandermonde sum

(c=~b)

n
(3.7) 2F1(—n,b;C;1) = -725::',

ne Z+j c-b,c # 0,-1,...,-n+1, cf. SLATER [11, (1.7.7)]1. O
290%5,0
Note that (3.5), (3.2) and Lemma 2.1(a) imply that ¢ is

a polynomial in x,y,u,v with real coefficients.

The symmetries (2.7), (2.8), (2.9) applied on (3.2) yield corre-

L1,%9,%
sponding symmetries for ¢ (x,y,u,v):

' IR
t 1 2 -
((211)-(222)~) ¢j (XIYIuIV)

-3 2(21+5L ,%(21+£2+j),2
v . =
((11+£2 3).(£1+22+3).) ¢£2 21 (x,u,y,v)

Ly Ryikyid
(3.8) ((20,)1(22)1) 7% 6 ] (v,u,y,%) =

1 l(21+2 +3), (£1+£2—j),l
+H+3) (L +£ —j) ). 2 ¢Q 2 (V,¥,u,%) .
1

((2
L1

We have introduced two canonical ort%onormal bases for Hli ® ng
one basis consisting of the polynomials wjl ® wjz (IJ | < 1,
]jzl < 22), which behaves nicely with respect to the subgroup
S(U(1) x U(1)) x S(U(1) x U(l)) of SU(2) x SU(2), and another basis
consisting of the polynomials ¢§1'22'2 (|£1—£2I < g < £1+£2, 131 <2y,
which behaves nicely with respect to the subgroup SU(2)*. The matrix

elements of the unitary matrix which maps the one basis onto the other

. .. 9,1,9,2,2,
basis are called Clebsch-Gordan coefficients C.:~ .7 .3
Jqr3ge3

2 2
21,22,2 1 2 21,22,2 21 12
(3.9) b Y c. B.oe ..

3 L . 340350373 3
3=t L, 1772 1 2
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Now observe that

i¢ Y
tl (e -i¢> = e 2im¢ s
mn\ 0 e m,n

and apply

2, 76id L /it
ife? 0o 2(e 0
T ( 0 e-l¢) e \ 0 e'i¢>

on both sides of (3.9). It follows that

l1,22,£
(3.10) c., . .=0 if i, +J .
Jirdsed ]1 ]2 73
1772
Thus we only need to consider CG coefficients with parameters satis-
fying

(3.1D) =gl sesnien,, 131se, 1300y, 13,18, 3 = 3,45,

It follows from (3.9) and (2.1) that

1 21,22,1
(3.12) ((221)!(222)!) 2 ¢j (x,y,u,v) =
o %y 2730 MM Rty Bty g s
z X v u v 1772
5 ] 3 T 3 ¥ 3 ¥ - ¥ %bjlljzlj
31——21 32——12((21-31).(11+31).(£2-32).(12+32)-) :
vy =3
11,2 ML
Note that, by (3.12), the coefficients Cj Yor3 are real-valued. By
1 27
combination of (3.8) and (3.12) we obtain symmetries for these coeffi-
cients:
Lokt B3 R (R 0 HT) L0240
(3.13) c 1772 - C 172 172 ) _ 2"

=C
o . 1. i 1. s _ s s
3113213 z( £1+12+]1 ]2)12( 21+22 31+32)122 21 ]21 ]11 J

%(21+22+j),%(21+22-j),2

Cl _ P 1 o0 _a . -
20 =2y%3173) 12 (0 =0y=31#35) s 40y

The set of points in (Ql,kz,l,jl,jz,j)—space satisfying the inequal-

ities (3.11) is the union of four subsets determined, respectively,
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by the inequalities

. _ . _ g <4 < L5 oas o
(i) SL1 JZ,2S3322 Sl,lsﬂ,SQ,lﬂLz, Q,i_jl_SLl, 31+32 Jj.

<R 40 -85

. B Do g . 4 i = s
(ii) 2.-%2 Sj_SLl 22 1ty 2_]2—22, ]1+]2 J-

(3.14) 21

1) 2 €0 g <ot < . _g <
(1_'L1)j_£1 22_ 3_2*21+JL2, !Ll 3

(iv) -3 SR -2, STSRE L0 3 < by

2 172

Those four subsets are mapped onto each other by the symmetries (3.13).
Thus it is sufficient to know the CG coefficients with parameters
restricted to one of the four above subsets.

By combination of (3.12), (3.2), (3.5), (2.7) and (2.5) we obtain
the formula

2,48, -4 2, =2 +L -2 +£2+2
(3.15) (—xv+yu) (sx+ty) (su+tv)

((21+22—1)!(£

>

I
- L = 1y 2
q £2+2).( 21+22+2).)

/(21+22+x+1): 3 4 % 3 Lirky il
\ 29+1 > . ELQ . ELl .2;2 le,j2,j )
34570 37 7

3=13,+3,

L
X

1731 23y 273y BotIn g aas
y u v s t

) 1
— 1 3 1 _ 1 5 ] R sy 1y 2
(=3 DT EHT D T (R=F,) E (R 43,) 1 (2-3) 1 (44+3) 1)
This can be considered as a generating function for the CG coeffi-

cients. Note that, by putting v = 0 in (3.15), one concludes

L0 8,,8
(3.16) C 12 > 0.

Lyrmlyrdy=ty

This corresponds to VILENKIN's [14, Ch.3, 88.2 (9)] normalization.

For reasons of symmetry, two other notations for CG coefficients
are used:

L. 5. 2 %, =8+ IR NS
(3.17) <,1 2 .) = (<) Y % it 2
jl 32 -3 3113213

{(Wigner's 3-j symbol) and
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- -0 -
D N ) Byt by
(3.18) 2. -3 2. -3 249 = (-1) (20+1) °c,” |
11 22 3403543
21+31 L2+]2 -3

(Regge's 3%3 array). Note that the points of (21,£2,2,j1,j2,j)—space

satisfying the inequalities (3.11) and also £ 4-22+-2==L for some Le Z,

1
are in one-to-one correspondence by (3.18) with 3x3 arrays having non-

negative integer entries such that for each row and each column the
sum of the entries equals L.

Replace in (3.15) x,y,u,v,s,t by x 3’ res-—

217 %317 %00 %327 %337 %)
pectively, multiply both sides by
(_1)21-12+1 R I
*11 %12 *13

((22+Z—21)!(2+11—R2)1(11+12—2)!)

1
2

and sum upon all %,,%.,% such that [21—2

1772
(3.18), we obtain the beautiful formula

2| < g < £1+22. Then, by using

*11 %12 *13 . )
- (_ ] ye
(3.19) %51 Xyn Xgg = (-1) L@+ D)
%31 *32 *33
31 P2 3] 3 ox, M
. Z a a a m 1J
21 22 23y, L, o F
ai. a a a i,j=1 (ai N
3 31 %32 233 J

a11+...+a33=3L

This formula is due to REGGE [9] (apart from a minor error in the
coefficient in front of the summation sign). Regge pointed out in [9]
that the symmetries of the determinant under row or column permutation
and transposition, together with (3.19), yield a symmetry group of

order 72 for the CG coefficients.
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4. EXPRESSION OF CLEBSCH-GORDAN COEFFICIENTS IN TERMS OF
HAHN POLYNOMIALS

In the generating function (3.15) the left hand side is elementary
but the right hand side involves a double summation. We now derive
another generating function from (3.12), which only involves a single
summation, but which has not an elementary left hand side. It follows

from (3.12), (3.2), (3.5) and the second .F, in (2.10) that

271
1
(+3) 1 (=% +8, +2) ! (20+1) 2
(4.1) 1 12 )
° - 3 RN _ ] _ 1 T
( 21+12+3):\(£ I IR =0 FR) TR L =R) T (R +HRHD) !
—21+22—3 —£1+£ +3 2%
T u v (~xv+yu) .
. ZFl\—21+22—2,—21+£2+2+1;—21+£2+3+1; oy =
4y [ 29734 At A3, 21T,
1772 X v u v
j. = APEEPYS ((2,=3,) (2 +3 )1 (8 =3.) 1 (2. 4] )-)% '
171 (RS RS TS S M5 R HE S M
343,73

where 11—22 <3< 22—11 £ L2 < 21+12. Expand the left hand side as a

power series (double summation) and compare coefficients:

L,-3
g,0.,0 (1) T haey

1772 1

4.2) ¢ s

]11321] 17%9 J/ e
. 1
= 5 v sy Yo v 2
) ( ) (22+1)(£2 32)!(22+32).(l+j).( £1+22+1). )

(21—31)!(£1+31)5(%—3)!(21—22+£):(£1+22—2)!(21+£2+£+1):

. A T T P S PR P B 1)
. 1
372\ %48, +3+1, =20,
where the parameters satisfy (3.14) (i) and the 3F2 stands for the
series
L,-%, +L R
172 (—21+22—Z)k(—21+£2+2+1)k(—21+31)k
_ ; _ v .
k=0 (=2, +8,+3+1) ( 28,0 k!
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*
Let N € Z+‘ and o, > -1 or a,B < =N. Hahn polynomials )

Qn(X;u,B,N)(n=:0,1,2,...,N) are orthogonal polynomials in X on the set

{0,1,2,...,N} with respect to the weights

(1) (B+1) o

x! (N-x)! '

cf. KARLIN & McGREGOR [6], we use the slightly different notation from
ASKEY [1, (2.36)]. Hahn polynomials can be expressed in terms of 3Fz's:

(=n), (=x): (n+at+B+1)
. _ -n,~-x,n+o+B+1 \ . ° k ¥ k
4.3 9, o, BN = 3F2< Nyl (1) kZO (N, (o+T) K :

The precise form of the orthogonality relation is:

(0L+1)x (B+1)

. N
: N-x N!
f0 ) 0 (x5a,8,M0Q , (xi0,B,N) ; — =
PM e M n x! (N-x) ! ((1+B+2)N
(2n+a+8+1)(u+1)n(a+8+2)nN! -1
\(n+a+s+1)<s+1)n(N+a+s+2)nn:(N-n):> 6n,n' :

Now return to (4.2). Let

3
{x = 21‘135 n = 21—22+2, N = 2%1,

LR HE, B = =8 R

(o

Then (3.14) (i) is equivalent to the condition that x,n,N,c,B are

integers and

0<x<N, 0<n<N, a20, B=0.
We derive from (4.2) and (4.3):
iN, § (N+o+B) ,n+3 (a+R) - (-1) ¥t .
IN-x, } (a~B-N) +x, } (a-B) a:

(4.5)

. ((2n+a+B+1)(N—x+8)!(x+a)!(n+a)!(n+a+B)!

1
2
X! (N-%) | (n+B) In? (N-n) ! (N4n+o+p+1) ! ) Q0 (x5, 8,

By (3.9) we have the orthogonality relations

Tchebychef (Oeuvres, Tome II, pp. 219-242) already obtained in
1875 the general Hahn polynomials, their orthogonality relations
and a discrete Rodrigues type formula (communication by R. Askey).
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4.6) If N, § (W+o+B) ,ntd (at+BR) C%N,%(N+oc+8),n'+%(ou+8)

Lo Cas, 3 (0B 43,3 (0B) CBN-3x,3 (0B +x,} (a=B) BB

In view of (4.5) these are precisely the orthogonality relations (4.4).

Of course there are also orthogonality relations dual to (4.6):

@ 1§ C%N,%(N+a+5),n+%((x+8) C%N,%(N+a+8) i+ (a+B) _

neo  N-x,}(0-B-N)+x,}(a-8) PN-x',}(a-B-N)+x',}(a-B) X/X'-
Let
(4.8) R_(n(ntotB+1);0,8,N) := Q (xio,B,N)

for n,x ¢ {0,1,...,N}. Then, by (4.3), the function y Rx(y;a,B,N)
extends to a polynomial of degree x in y: the so-called dual Hahn
polynomial (cf. XARLIN & McGREGOR [6]). They satisfy orthogonality

relations dual to (4.4):

N
) R_(n(n+a+B+l);a,B8,MR_, (n{n+o+p+1);o,8,N) -
n=0 X X
(2n+a+8+1)(a+1)n(u+6+2)nN1

(4.9) ‘ (n+o+B+1) (B+1)_(N+a+B+2) n!(N-n) ! =

((a+1)x B+ -1
Uox! (N-x) ! (a+B+2) x,x'"

In view of (4.7) and (4.5) these are precisely the orthogonality
relations (4.7).

Now we claim that

(—B—N)X

R (n(ntot+B+l);o,8,N) = —(EIT);

(4.10)

. Rx(n(n+a+6+1)—N(N+a+B+1);—N—B—l,—N~u-1,N).

Indeed, for x = 0,1,...,N the functions y - Rx(y;a,B,N) and

y > Rx(y-N(N+u+B+1);—N—B—l,—N—a—l,N) are both polynomials of degree x
which are, because of (4.9), orthogonal at the points y=n(n+o+f+1)
(n =0,1,...,N) with respect to the same weights. Thus the two func-
tions are equal up to a factor not depending on n. This factor can be

determined by putting n = N. By (4.8), (4.3) and the Chu-Vandermonde
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sum we obtain:

RX(N(N+a+B+1);u,B,N) = QN(x;a.B,N) =

(—B-N)x

T oa+D)
X

2Fl(—x,N+0L+B+1;0L+1;1)
It follows from (4.10) and (4.8) that

(-B-N)
X
(4.11) Q (xia,B,N) = —75137:: QN_n(X;—N-B—l,fN-d-l,N)-

Combination with (4.5) yields

iN, 3 (N+a+8) ,N-n+1 (o+B)
= {(a+N) IN! -
iN-x,1(B-a-N)+x, 3 (B-a)

LWV

(4.12) A (2N-2n+0+B+1) (n+B) ! (ntatp) ! \
’ \x! (N~x) ! (0+N-x) ! (B+x) In! (N-n)! (N-n+8)! (2N-nta+B+1) !/

. Qn(x;—N—a—l,—N—B—l,N),
where x,n,N,0,B are integers and 0 £ x <N, 0 £n <N, a =0, B20.
In view of (4.12), the orthogonality relations (4.4), with o,8
replaced by ~-N-o-1, -N-B-1, are the same as the orthogonality rela-
tions for the CG coefficients in the left hand side of (4.12) as a

function of x.

5. NOTES

5.1. See SPRINGER [13, p.68,69] for a short description of the

19-th century concept of "development in a Clebsch-Gordan series".

5.2. CG coefficients in their present meaning (also called
Wigner coefficients) were first introduced in VON NEUMANN & WIGNER
[8, anhang]. WIGNER [16, (17.27)] first derived a 3F2(1) type summa-
tion formula for these coefficients. The notation using 3-j symbols

was introduced in WIGNER [17], where he also discussed 3n-j symbols

for more general n.
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5.3. Formula (3.15) occurs in SCHWINGER [10, (3.39)1; see also
VILENKIN [14, Ch.3, §8.9] (where a factor (—1)£1+£2‘2 is missing). A
variant of (3.19) (an expansion for exp(det(xij))) is also derived by
SCHWINGER [ 10, (3.42)]. Formula (3.19) and the resulting symmetries

are given by REGGE [9].

5.4. GELFAND, MINLOS & SHAPIRO [4, Supplement III] (see also
VILENKIN [14, Ch.3, §8.7]) point out that CG coefficients are, in a
certain sense, analogous to Jacobi polynomials, since they can be
expressed by means of a Rodrigues type formula involving repeated dif-
ferences. In view of our expressions of CG coefficients in terms of
Hahn polynomials (cf. §4) and the Rodrigues type formula for Hahn
polynomials (cf. WEBER & ERDELYI [15]), this is no surprise.

5.5. The theory of CG coefficients was highly motivated by the
quantum theory of angular momentum, cf. the introduction and further
papers in BIEDENHARN & VAN DAM [2]. A useful survey is also given by
SMORODINSKII & SHELEPIN [12].
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