Comments for my 1984 paper Orthogonal polynomials with weight function $(1-x)^{\alpha}(1+x)^{\beta}+M \delta(x+1)+N \delta(x-1)$
by Tom Koornwinder, thkmath@xs4all.nl
last modified: July 24, 2023
These are comments for the paper
T. H. Koornwinder,

Orthogonal polynomials with weight function $(1-x)^{\alpha}(1+x)^{\beta}+M \delta(x+1)+N \delta(x-1)$, Canad. Math. Bull. 27 (1984), 205-214.
The orthogonal polynomials $P_{n}^{\alpha, \beta, M, N}(x)$, defined by (2.1), are semiclassical by their property

$$
\begin{equation*}
\left(1-x^{2}\right)^{2} \frac{\mathrm{~d}}{\mathrm{~d} x} P_{n}^{\alpha, \beta, M, N}(x)=\sum_{j=-3}^{3} c_{n, j} P_{n+j}^{\alpha, \beta, M, N}(x) \tag{K1}
\end{equation*}
$$

for certain foefficients $c_{n, j}$.
Proof of (K1). Recall that the polynomials $P_{n}^{\alpha, \beta, M, N}(x)$ are orthogonal with respect to a measure $\mu_{\alpha, \beta, M, N}$ on $[-1,1]$ which is defined by

$$
\int_{-1}^{1} f(x) \mathrm{d} \mu_{\alpha, \beta, M, N}(x)=C_{\alpha, \beta} \int_{-1}^{1} f(x)(1-x)^{\alpha}(1+x)^{\beta} \mathrm{d} x+M f(-1)+N f(1) \quad(f \in C([-1,1]),
$$

where

$$
C_{\alpha, \beta}=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)} .
$$

Now let $n \geq 4$ and let $q(x)$ be a polynomial of degree $\leq n-4$. Then

$$
\begin{aligned}
& \int_{-1}^{1}\left(1-x^{2}\right)^{2} q(x) \frac{\mathrm{d}}{\mathrm{~d} x} P_{n}^{\alpha, \beta, M, N}(x) \mathrm{d} \mu_{\alpha, \beta, M, N}(x) \\
& =C_{\alpha, \beta} \int_{-1}^{1}(1-x)^{\alpha+2}(1+x)^{\beta+2} q(x) \frac{\mathrm{d}}{\mathrm{~d} x} P_{n}^{\alpha, \beta, M, N}(x) \mathrm{d} x \\
& =-C_{\alpha, \beta} \int_{-1}^{1} P_{n}^{\alpha, \beta, M, N}(x) \frac{\mathrm{d}}{\mathrm{~d} x}\left((1-x)^{\alpha+2}(1+x)^{\beta+2} q(x)\right) \mathrm{d} x \\
& =-\int_{-1}^{1} P_{n}^{\alpha, \beta, M, N}(x)\left(((\alpha+2)(1+x)+(\beta+2)(1-x))\left(1-x^{2}\right) q(x)\right. \\
& \left.\quad+\left(1-x^{2}\right)^{2} q^{\prime}(x)\right) \mathrm{d} \mu_{\alpha, \beta, M, N}(x)=0 .
\end{aligned}
$$

In the same way we can prove that

$$
\begin{equation*}
\left(1-x^{2}\right)(1+x) \frac{\mathrm{d}}{\mathrm{~d} x} P_{n}^{\alpha, \beta, M, 0}(x)=\sum_{j=-2}^{2} c_{n, j} P_{n+j}^{\alpha, \beta, M, 0}(x), \tag{K2}
\end{equation*}
$$

and that the orthogonal polynomials $L_{n}^{\alpha, N}(x)$, defined by (4.8), satisfy

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}}{\mathrm{~d} x} L_{n}^{\alpha, N}(x)=\sum_{j=-2}^{1} c_{n, j} L_{n+j}^{\alpha, N}(x) . \tag{K3}
\end{equation*}
$$

I thank Kenier Castillo [K1] for pointing out to me that the polynomials $P_{n}^{\alpha, \beta, M, N}(x)$ are semiclassical, and that this is already implied by Maroni's result [K2, Theorem 3.1]. Note also that Kwon \& Park [K3] explicitly mention that the polynomials $P_{n}^{\alpha, \beta, M, N}(x)$ are semiclassical.

References

[K1] K. Castillo and D. Mbouna, Epilegomena to the study of semiclassical orthogonal polynomials, arXiv:2307.10331.
[K2] P. Maroni, Sur la suite de polynômes orthogonaux associée à la forme $u=\delta_{c}+\lambda(x-c)^{-1} L$, Period. Math. Hungar. 21 (1990), 223-248.
[K3] K. H. Kwon and S. B. Park, Two-point masses perturbation of regular moment functionals, Indag. Math. (N.S.) 8 (1997), 79-93.

