
ASKEY-WILSON POLYNOMIALS

FOR ROOT SYSTEMS OF TYPE BC

Tom H. Koornwinder

Abstract. This paper introduces a family of Askey-Wilson type orthogonal polyno-
mials in n variables associated with a root system of type BCn. The family depends,

apart from q, on 5 parameters. For n = 1 it specializes to the four-parameter family

of one-variable Askey-Wilson polynomials. For any n it contains Macdonald’s two
three-parameter families of orthogonal polynomials associated with a root system of

type BCn as special cases.

1. Introduction

In recent years, some families of orthogonal polynomials associated with root
systems were introduced. The families studied by Heckman & Opdam [6], [4], [5]
become Jacobi polynomials for root system BC1. The families studied by Mac-
donald (see [11] for root system An and [12] for general root systems) become con-
tinuous q-ultraspherical polynomials for root system A1 and continuous q-Jacobi
polynomials for root system BC1 (see Askey & Wilson [1, §4]). For all root systems
Macdonald’s polynomials tend to the Heckman-Opdam polynomials as q tends to 1.

This paper introduces a family of Askey-Wilson type polynomials for root system
BCn which depends, apart from q, on 5 parameters. For n = 1 it specializes to the
four-parameter family of Askey-Wilson polynomials. For any n it contains Macdon-
ald’s two three-parameter families as special cases: for the pair (BCn, Bn) directly
and for the pair (BCn, Cn) when q is replaced by q2. Moreover, the weight function
integrated over the orthogonality domain was explicitly evaluated by Gustafson [3]
as a generalization of Selberg’s beta integral.

The proofs in this paper are very much inspired by Macdonald’s proofs in [12],
in particular by his proofs in case of root systems E8, F4, G2, where there is no
minuscule fundamental weight available.

The contents of this paper are as follows. Section 2 summarizes Macdonald’s
results. The special case BCn of these results is discussed in §3 and the further
specialization to BC1 in §4. The long section 5 introduces Askey-Wilson polyno-
mials for root system BCn, shows that these polynomials are eigenfunctions of a
certain difference operator and establishes the full orthogonality of the polynomials.
Finally, in §6, special cases and open problems are discussed
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2. Summary of Macdonald’s results

In this section we summarize Macdonald’s [12] results on orthogonal polynomials
associated with root systems. See Humphreys [7] and Bourbaki [2, Chap.6] for
preliminaries on root systems. Let V be a finite dimensional real vector space with
inner product 〈 . , . 〉. Write |v| := 〈v, v〉1/2 for the norm of v ∈ V . Write

v∨ := 2v/|v|2, 0 6= v ∈ V.

Let R be a not necessarily reduced root system spanning V . Let S be a reduced
root system in V such that the set of lines {Rα | α ∈ R} equals {Rα | α ∈ S}.
Then the pair (R, S) is called admissible and R and S have the same Weyl group
W . Now, for each α ∈ R, there is a (unique) uα > 0 such that α∗ := u−1

α α ∈ S.
Assume that R is irreducible. It can be arranged, after possible dilation of R and
S, that uα takes values in {1, 2} or in {1, 3}.

Let 0 < q < 1. Put qα := quα . Let α 7→ tα be a W -invariant function on R,
taking values in (0, 1) (for convenience). Then tα only depends on |α|. Put tα := 1
if α ∈ V \R. Let kα ≥ 0 be such that qkα

α = tα.
Let R+ be a choice for the set of positive roots in R. Let

Q := Z-Span(R), Q+ := Z+-Span(R+).

Here, and throughout the paper, Z+ := {0, 1, 2, . . .}. Let

P := {λ ∈ V | 〈λ, α∨〉 ∈ Z ∀α ∈ R}, P+ := {λ ∈ V | 〈λ, α∨〉 ∈ Z+ ∀α ∈ R+}

be respectively the weight lattice of R and the cone of dominant weights. Define a
partial order on P by λ ≥ µ iff λ − µ ∈ Q+.

For λ ∈ P let eλ be the function on V defined by

eλ(x) := ei〈λ,x〉, x ∈ V.

Extend this holomorphically to V + iV . If f is a function on V then put (wf)(x) :=
f(w−1x) for w ∈ W , x ∈ V . Hence weλ = ewλ. Let A be the complex linear span
of the eλ (λ ∈ P ). Let AW denote the space of W -invariants of A. Put

mλ := |Wλ|
−1

∑

w∈W

ewλ =
∑

µ∈Wλ

eµ, λ ∈ P+.

Here Wλ denotes the stabilizer of λ in W . The mλ (λ ∈ P+) form a basis of AW .

Note that mλ(x) = mλ(−x) (λ ∈ P+, x ∈ V ). If −id ∈ W then f(x) = f(−x) for
f ∈ AW . In particular, we will then have that mλ is real-valued on V .
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Let R∨ := {α∨ | α ∈ R} be the root system dual to R. Let Q∨ := Z-Span(R∨).
Then T := V/(2πQ∨) is a torus. Let ẋ be the image in T of x ∈ V . Let dẋ be the
normalized Haar measure on T . For λ ∈ P the function ẋ 7→ eλ(x) is well-defined
on T . For a, a1, . . . , ak ∈ C put

(a; q)∞ :=

∞∏

j=0

(1 − aqj), (a1, . . . , ak; q)∞ :=

k∏

i=1

(ai; q)∞.

Define

∆ :=
∏

α∈R

(t
1/2
2α eα; qα)∞

(tα t
1/2
2α eα; qα)∞

, ∆+ :=
∏

α∈R+

(t
1/2
2α eα; qα)∞

(tα t
1/2
2α eα; qα)∞

.

Then ∆ = ∆+ ∆+. Define a hermitian inner product on AW by

〈f, g〉 := |W |−1

∫

T

f(ẋ) g(ẋ)∆(x) dẋ.

Definition 2.1. For λ ∈ P+ let Pλ ∈ AW be characterized by the two conditions

(i) Pλ = mλ +
∑

µ<λ uλ,µ mµ for certain complex coefficients uλ,µ ;

(ii) 〈Pλ, mµ〉 = 0 if µ < λ.

Theorem 2.2.

〈Pλ, Pµ〉 = 0 if λ 6= µ.

Define
(Tvf)(x) := f(x − i(log q)v), x, v ∈ V,

for functions f being analytic on a suitable subset of V + iV containing V . Hence

Tve
λ = q〈v,λ〉 eλ, λ ∈ P.

Let σ ∈ V be such that 〈σ, α∗〉 takes just two values 0 and 1 as α runs through R+

(σ is a so-called minuscule fundamental weight for S∨). Such σ exists for all S not
being of type E8, F4 or G2. In these last three cases we can choose σ such that
〈σ, α∗〉 takes values 0, 1 and 2 as α runs through R+. Now put

Φσ :=
Tσ∆+

∆+
,

Eσf := |Wσ|
−1

∑

w∈W

w(Φσ Tσf),

Dσf := |Wσ|
−1

∑

w∈W

w(Φσ(Tσf − f)),

m̃σ(λ) := |Wσ|
−1

∑

w∈W

q〈wσ,λ〉,

ρk := 1
2

∑

α∈R+

kα α.
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Theorem 2.3. Dσ maps AW into itself. The Pλ are eigenfunctions of Dσ with
eigenvalue

q〈σ,ρk〉 (m̃σ(λ + ρk) − m̃σ(ρk)).

If S is not of type E8, F4 or G2 then Eσ maps AW into itself, the Pλ are also
eigenfunctions of Eσ with eigenvalue

q〈σ,ρk〉 m̃σ(λ + ρk).

and
Dσ = Eσ − Eσ(1)

with Eσ(1) scalar.

3. The case R = BCn

Identify V with Rn and let ε1, . . . , εn be its standard basis. Consider in V the
root systems

R := {±εj} ∪ {±2εj} ∪ {±εi ± εj}i<j of type BCn,

SB := {±εj} ∪ {±εi ± εj}i<j of type Bn.

SC := {±εj} ∪ { 1
2
(±εi ± εj)}i<j of type Cn.

Then SB and SC are reduced, R, SB and SC have the same Weyl groups and in
the mappings α 7→ u−1

α α of R onto SB and onto SC , uα take the values 1 and 2.
Note that R∨ = R and that the weight lattice P and the root lattice Q of R are

both given by

P = Q = {m1ε1 + · · · + mnεn | m1, . . . , mn ∈ Z}.

Take

R+ := {εj} ∪ {2εj} ∪ {εi ± εj}i<j .

Then

P+ = {m1ε1 + · · ·+ mnεn | m1 ≥ m2 ≥ . . . ≥ mn ≥ 0, m1, . . . , mn ∈ Z},

Q+ = {m1(ε1 − ε2) + · · · + mn−1(εn−1 − εn) + mnεn | m1, . . . , mn ∈ Z+}.

The torus T := V/(2πQ∨) becomes Rn/(2πZn). Recall that we have a partial
ordering on P such that λ ≥ µ iff λ − µ ∈ Q+.

For the pair (R, SB) we have

q±εj
= q, q±2εj

= q2, q±εi±εj
= q,

and there are three different parameters tα, which we write as

a := t±εj
, b := t±2εj

, t := t±εi±εj
.

(Recall that tα = 1 if α /∈ R.) Thus

(3.1) ∆+ = ∆+
1 ∆+

2 ,
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where

∆+
1 :=

n∏

j=1

(b1/2 eεj ; q)∞
(a b1/2 eεj ; q)∞

(e2εj ; q2)∞
(b e2εj ; q2)∞

=

n∏

j=1

(e2εj ; q)∞
(q1/2 eεj ,−q1/2 eεj , a b1/2 eεj ,−b1/2 eεj ; q)∞

(3.2)

and

∆+
2 :=

∏

α=εi±εj ; i<j

(eα; q)∞
(t eα; q)∞

.(3.3)

For the pair (R, SC) we have

q±εj
= q, q±2εj

= q2, q±εi±εj
= q2,

and there are three different parameters tα, which we write as

a := t±εj
, b := t±2εj

, t := t±εi±εj
.

Thus (3.1) holds with

∆+
1 :=

n∏

j=1

(b1/2 eεj ; q)∞
(a b1/2 eεj ; q)∞

(e2εj ; q2)∞
(b e2εj ; q2)∞

=

n∏

j=1

(e2εj ; q2)∞
(a b1/2 eεj , q a b1/2 eεj ,−b1/2 eεj ,−q b1/2 eεj ; q2)∞

(3.4)

and

∆+
2 :=

∏

α=εi±εj ; i<j

(eα; q2)∞
(t eα; q2)∞

.(3.5)

Since −id ∈ W in case of root system BCn, mλ will be real-valued and we can
read for condition (ii) of Definition 2.1 that

∫

T

Pλ(x) mµ(x) ∆(x) dẋ = 0 if µ < λ.

For the element σ of §2 we can take ε1 in the case SB and ε1 + ε2 + · · · + εn

in the case SC . In both cases σ is minuscule. So Theorem 2.3 is valid with these
choices of σ. In particular, in the case SB the polynomial Pλ is eigenfunction of
Dε1

with eigenvalue

(3.6)
n∑

j=1

(
ab t2n−j−1 (qλj − 1) + tj−1 (q−λj − 1)

)
.

The choice σ := 2ε1 in the case SC would give values 0, 1 and 2 for 〈σ, α∗〉 as α
runs through R+. It will turn out in §6.1 that, in case SC , the Pλ are not only
eigenfunctions of Eε1+···+εn

but also of D2ε1
.
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4. The case R = BC1

For n = 1 the two root systems SB and SC coincide and the results of §3 specialize
as follows. We have T = R/(2πZ), P = Q = Z, P+ = Z+, the partial order on P
is the ordinary total order on Z,

ml(x) =

{
eilx + e−ilx, l = 1, 2, . . . ,

1, l = 0.

and

∆+(x) =
(e2ix; q)∞

(q1/2 eix,−q1/2 eix, a b1/2 eix,−b1/2 eix; q)∞

=
(e2ix; q2)∞

(a b1/2 eix, q a b1/2 eix,−b1/2 eix,−q b1/2 eix; q2)∞
.

The inner product for W -invariant functions f, g becomes an integral over the period
of 2π-periodic even functions, so it can be written as

〈f, g〉 =
1

2π

∫ π

0

f(x) g(x)∆(x) dx.

Askey-Wilson polynomials pn(y; a, b, c, d | q) (n ∈ Z+) are defined, up to a con-
stant factor, as polynomials of degree n in y which satsify the orthogonality relations

(4.1)

∫ π

0

(pnpm)(cos x; a, b, c, d | q)

∣∣∣∣
(e2ix; q)∞

(aeix, beix, ceix, deix; q)∞

∣∣∣∣
2

dx = 0, n 6= m.

See Askey & Wilson [1]. Here a, b, c, d are real, or if complex, appear in complex
conjugate pairs, and |a|, |b|, |c|, |d| ≤ 1, but the pairwise products of a, b, c, d are not
≥ 1. When the condition |a|, |b|, |c|, |d| ≤ 1 on the parameters is dropped, finitely
many discrete terms have to be added to the orthogonality relation (4.1).

When we compare the expression for ∆+(x) with the Askey-Wilson weight func-
tion we see that Macdonald’s polynomials for root system BC1 coincide, up to a
constant factor, with Askey-Wilson polynomials

pl(cos x; q1/2,−q1/2, ab1/2,−b1/2 | q).

By Askey & Wilson [1, (4.16), (4.17), (4.20)] the continuous q-Jacobi polynomials
in M. Rahman’s notation can be expressed in terms of Askey-Wilson polynomials
by

P
(α,β)
l (cos x; q) =const. pl(cos x; q1/2,−q1/2, qα+1/2,−qβ+1/2 | q)

=const. pl(cos x; qα+1/2, qα+3/2,−qβ+1/2,−qβ+3/2 | q2).

Thus, if we put a := qα, b := q2β , then Macdonald’s polynomials for root sys-
tem BC1 coincide, up to a constant factor, with continuous q-Jacobi polynomals

P
(α+β−1/2,β−1/2)
l (cos x; q). This observation was already made by Macdonald [12,

§9].
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If n = 1 then, with σ := 1,

Φσ(x) =
(1 − a b1/2 eix) (1 + b1/2 eix)

1 − e2ix
.

Thus, if we write
Rl(e

ix) := Pl(x)

then Theorem 2.3 yields

Φσ(−x) Rl(q
−1eix) + Φσ(x) Rl(qe

ix) = (abql + q−l) Rl(e
ix).

Compare this with Askey & Wilson [1, (5.7), (5.8), (5.9)]:

A(−x)
(
Rl(q

−1eix) − Rl(e
ix)

)
+ A(x)

(
Rl(qe

ix) − Rl(e
ix)

)

= −(1 − q−l) (1 − ql−1abcd) Rl(e
ix),

where
Rl(e

ix) := const. pl(cos x; a, b, c, d | q)

and

A(x) :=
(1 − aeix) (1 − beix) (1 − ceix) (1 − deix)

(1 − e2ix) (1 − qe2ix)
.

If c = q1/2, d = −q1/2 (the continuous q-Jacobi case) then

A(x) =
(1 − aeix) (1 − beix)

1 − e2ix

and
A(x) + A(−x) = 1 − ab,

so
A(−x) Rl(q

−1eix) + A(x) Rl(qe
ix) = (q−l − qlab) Rl(e

ix).

Thus Macdonald’s difference equation for Pl in case R = BC1 coincides with the
continuous q-Jacobi case of the difference equation for Askey-Wilson polynomials.

5. Askey-Wilson polynomials for root system BCn

We use the notation of §2 and §3. Let

R+
1 := {2εj}j=1,... ,n, R+

2 := {εi ± εj}1≤i<j≤n,

R1 := R+
1 ∪ (−R+

1 ), R2 := R+
2 ∪ (−R+

2 ),

R+
ℓ := R+

1 ∪ R+
2 , Rℓ := R1 ∪ R2 = R+

ℓ ∪ (−R+
ℓ ).

Let R be the root system of type BCn of §3. Then Rℓ = {α ∈ R | 2α /∈ R},
a root system of type Cn in V with subsystems R1 of type nA1 and R2 of type
Dn. (The subscript ℓ stands for ‘long’.) Let W be the Weyl group of Rℓ. It is a
semidirect product of the group of permutations of the coordinates and the group



8 TOM H. KOORNWINDER

of sign changes of the coordinates. Let ρ, ρ1, ρ2 denote half the sum of the positive
roots of Rℓ, R1, R2, respectively. Then ρ = ρ1 + ρ2 and

ρ1 = ε1 + ε2 + · · ·+ εn, ρ2 = (n − 1)ε1 + (n − 2)ε2 + · · · + εn−1.

Let P , P+ and the partial order ≤ be as in §3. Write ε(w) := det(w) (w ∈ W ).
Let AW,ε consist of all f ∈ A such that wf = ε(w)f (w ∈ W ). Write

Jλ :=
∑

w∈W

ε(w) ewλ, λ ∈ P.

The Jλ+ρ (λ ∈ P+) form a basis of AW,ε. In particular, put

δ := Jρ =
∏

α∈R+

ℓ

(e
1
2
α − e−

1
2
α) = eρ

∏

α∈R+

ℓ

(1 − e−α)

and
χλ := δ−1 Jλ+ρ, λ ∈ P.

The χλ (λ ∈ P+) are in AW and form a basis of AW . We have

χλ = mλ +
∑

µ∈P+; µ<λ

aλ,µ mµ, λ ∈ P+,

for certain complex aλ,µ.
Fix q ∈ (0, 1) and a, b, c, d, t ∈ C. Let

(5.1) ∆+ :=
∏

α∈R+

1

(eα; q)∞

(ae
1
2
α, be

1
2
α, ce

1
2
α, de

1
2
α; q)∞

∏

α∈R+

2

(eα; q)∞
(teα; q)∞

and

(5.2) ∆(x) := ∆+(x) ∆+(−x).

We are now ready to introduce Askey-Wilson polynomials for root system BCn.

Definition 5.1. Assume a, b, c, d are real, or if complex, appear in conjugate pairs,
and that |a|, |b|, |c|, |d| ≤ 1, but the pairwise products of a, b, c, d are not ≥ 1.
Assume −1 < t < 1. Let T := [−π, π]n ⊂ V . For λ ∈ P+ define Pλ ∈ AW by the
two conditions

(i) Pλ = mλ +
∑

µ∈P+; µ<λ uλ,µ mµ for certain coefficients uλ,µ ;

(ii)
∫

T
Pλ(x) mµ(x) ∆(x) dx = 0 for µ ∈ P+, µ < λ.

We will generalize the case R = BCn of Theorem 2.2 by showing that the Pλ are
orthogonal on T with respect to the weight function ∆. The proof will be based
on two lemmas, the first one giving the action of a suitable difference operator on
the mλ, and the second one showing self-adjointness of this operator with respect
to ∆ on T , when acting on AW .

Let σ := ε1, similarly as in §3 for the pair (BCn, Bn). Define Φσ and Dσ as in
§2, with ∆+ being given by (5.1). Thus

(5.3) Φσ :=
Tσ∆+

∆+
,

and

Dσf :=|Wσ|
−1

∑

w∈W

w(Φσ (Tσf − f))

=|Wσ|
−1

∑

w∈W

(wΦσ) (Twσf − f), f ∈ AW .

(5.4)
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Lemma 5.2.

Dσmλ =
∑

µ∈P+; µ≤λ

aλ,µ mµ

with

(5.5) aλ,λ =

n∑

j=1

(
q−1 abcd t2n−j−1 (qλj − 1) + tj−1 (q−λj − 1)

)
.

Here a, b, c, d, t may be arbitrarily complex.

Proof. It will be convenient to replace a, b, c, d in the expression (5.1) for ∆+ by

a, −b, q
1
2 c, −q

1
2 d, respectively. Thus

(5.6) ∆+ :=
∏

α∈R+

1

(eα; q)∞

(ae
1
2
α,−be

1
2
α, q

1
2 ce

1
2
α,−q

1
2 de

1
2
α; q)∞

∏

α∈R+

2

(eα; q)∞
(teα; q)∞

.

By substitution of (5.6) in (5.3) we obtain

Φσ =
(1 − aeε1) (1 + beε1) (1 − q

1
2 ceε1) (1 + q

1
2 deε1)

(1 − e2ε1) (1 − qe2ε1)

∏

α=ε1±εl; l=2,... ,n

1 − teα

1 − eα

= abcd t2(n−1) (1 − a−1e−ε1) (1 + b−1e−ε1) (1 − q−
1
2 c−1e−ε1) (1 + q−

1
2 d−1e−ε1)

(1 − e−2ε1) (1 − q−1e−2ε1)

×
∏

α=ε1±εl; l=2,... ,n

1 − t−1e−α

1 − e−α

= abcd t2(n−1)
∏

α∈R+

2

1 − t−〈σ,α〉e−α

1 − e−α

n∏

j=1

[ (1 − a−〈σ,εj〉e−εj ) (1 + b−〈σ,εj〉e−εj )

(1 − e−2εj )

×
(1 − q−

1
2 c−〈σ,εj〉e−εj ) (1 + q−

1
2 d−〈σ,εj〉e−εj )

(1 − q−1e−2εj )

]
.

Hence
Φσ = δ−1 δ−1

q Ψσ,

where

(5.7) Ψσ := (abcd)〈σ,ρ1〉 t〈σ,2ρ2〉 eρ+2ρ1

∏

α∈R+

2

(1 − t−〈σ,α〉e−α)

×

n∏

j=1

[
(1 − qe−2εj ) (1 − a−〈σ,εj〉e−εj )(1 + b−〈σ,εj〉e−εj )

× (1 − q−
1
2 c−〈σ,εj〉e−εj ) (1 + q−

1
2 d−〈σ,εj〉e−εj )

]

and δq is the following element of AW :

δq :=

n∏

j=1

(q−
1
2 eεj − q

1
2 e−εj ) (q

1
2 eεj − q−

1
2 e−εj )

=e2ρ1

n∏

j=1

(1 − qe−2εj ) (1 − q−1e−2εj ).

(5.8)
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If E ⊂ ( 1
2R1) ∪ R2 then write

||E|| :=
∑

α∈E

α.

Expansion of (5.7) yields

(5.9) Ψσ =
∑

E0,... ,E4⊂
1
2
R+

1

∑

F⊂R+

2

cE0,... ,E4,F eρ+2ρ1−2||E0||−||E1||−···−||E4||−||F ||,

where

(5.10) cE0,... ,E4,F := (−1)|E0|+|E1|+|E3|+|F | q|E0|−
1
2
|E3|−

1
2
|E4|

× a〈σ,ρ1−||E1||〉 b〈σ,ρ1−||E2||〉 c〈σ,ρ1−||E3||〉 d〈σ,ρ1−||E4||〉 t〈σ,2ρ2−||F ||〉.

Now we can rewrite (5.4) as

Dσf = δ−1 δ−1
q D̃σf

with

(5.11) D̃σf := |Wσ|
−1

∑

w∈W

ε(w) (wΨσ) (Twσf − f).

Consider (5.11) with f := mλ (λ ∈ P+) and substitute (5.9). Then

D̃σmλ = |Wσ|
−1 |Wλ|

−1
∑

w1,w2∈W

∑

E0,... ,E4⊂
1
2
R+

1

∑

F⊂R+

2

cE0,... ,E4,F ε(w1)

× (q〈w1σ,w2λ〉 − 1) ew1(ρ+2ρ1−2||E0||−||E1||−···−||E4||−||F ||)+w2λ.

Put w2 = w1w. Then

(5.12) D̃σmλ = |Wσ|
−1 |Wλ|

−1
∑

w∈W

∑

E0,... ,E4⊂
1
2
R+

1

∑

F⊂R+

2

cE0,... ,E4,F (q〈σ,wλ〉 − 1)

× Jwλ+ρ+2ρ1−2||E0||−||E1||−···−||E4||−||F ||.

Hence D̃σmλ ∈ AW,ε. Now the J-function in (5.12) is either 0 or ε(w′) δ χν , where
w′ ∈ W , ν ∈ P+ and

w′(ν + ρ) = wλ + ρ + 2ρ1 − 2||E0|| − ||E1|| − · · · − ||E4|| − ||F ||,

so that

(5.13) ν + ρ = (w′)−1wλ

+ (w′)−1(3ρ1 − 2||E0|| − ||E1|| − · · · − ||E4||) + (w′)−1(ρ2 − ||F ||).

Now

(5.14) (w′)−1(3ρ1−2||E0||−||E1||−· · ·−||E4||) = (w′)−1
n∑

j=1

kjεj =
n∑

j=1

k′
jεj ≤ 3ρ1
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with kj , k
′
j ∈ {−3,−2,−1, 0, 1, 2, 3},

(5.15) (w′)−1(ρ2 − ||F ||) = (w′)−1
∑

α∈R+

2

kαα =
∑

α∈R+

2

k′
αα ≤ ρ2

with kα, k′
α = ±1

2
, and

(5.16) (w′)−1wλ ≤ λ.

Substitution of (5.14), (5.15), (5.16) in (5.13) yields

(5.17) ν + ρ ≤ λ + 3ρ1 + ρ2 = λ + ρ + 2ρ1.

Hence

(5.18) D̃σmλ =
∑

ν∈P+; ν≤λ+2ρ1

bν Jν+ρ

for certain coefficients bν .
In order to compute bλ+2ρ1

observe that equality in (5.17) holds iff equality holds
in (5.14), (5.15), (5.16), i.e., iff (w′)−1w ∈ Wλ and

(5.19) ||E0|| = ||E1|| = · · · = ||E4|| = 1
2 (ρ1 − w′ρ1),

(5.20) ||F || = ρ2 − w′ρ2.

Hence, by (5.12),

(5.21) bλ+2ρ1
= |Wσ|

−1 |Wλ|
−1

∑

w,w′∈W ; (w′)−1w∈Wλ

ε(w′) cE0,... ,E4,F (q〈σ,wλ〉 − 1),

where E0, . . . , E4, F are determined by (5.19), (5.20). It follows from (5.19), (5.20)
that

2||E0|| + ||F || = ρ − w′ρ, hence (−1)|E0|+|F | = ε(w′).

Substitution of (5.19), (5.20) into (5.10) now yields:

cE0,... ,E4,F = ε(w′) (abcd)
1
2
(1+〈(w′)−1σ,ρ1〉) tn−1+〈(w′)−1σ,ρ2〉.

When we substitute this last expression into (5.21) then we obtain

bλ+2ρ1
= |Wσ|

−1 |Wλ|
−1

×
∑

w,w′∈W ; (w′)−1w∈Wλ

(abcd)
1
2
(1+〈(w′)−1σ,ρ1〉) tn−1+〈(w′)−1σ,ρ2〉 (q〈(w

′)−1σ,λ〉 − 1)

= |Wσ|
−1

∑

w∈W

(abcd)
1
2
(1+〈wσ,ρ1〉) tn−1+〈wσ,ρ2〉 (q〈wσ,λ〉 − 1).
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Hence

(5.22) bλ+2ρ1
=

n∑

j=1

∑

ε=±1

(abcd)
1
2
(1+ε) tn−1+ε(n−j) (qελj − 1),

which is (5.5), when we take in account the replacement made for a, b, c, d.

Next we show that, for f ∈ AW , D̃σf given by (5.11) is divisible by δq. In view
of (5.8) this will follow if we can show that, for each w ∈ W , (wΨσ) (Twσf − f)

is divisible by the 4n prime factors 1 ± q±
1
2 e−εj . By (5.7), all but the two factors

1± q−
1
2 e−wσ are divisors of wΨσ. We will show that these two factors are divisors

of Twσf − f . Write f as a Laurent polynomial F (eε1 , . . . , eεn), invariant under the
transformations eεj 7→ e−εj . If wσ = εj then

Twσf − f = F (eε1 , . . . , qeεj , . . . , eεn) − F (eε1 , . . . , eεj , . . . , eεn)

becomes 0 for eεj = ±q−
1
2 , hence it is divisible by 1±q−

1
2 e−εj . A similar argument

is valid for wσ = −εj .
By (5.18),

(5.23) δ−1 D̃σmλ =
∑

ν∈P+; ν≤λ+2ρ1

cν mν

for certain coefficients cν , with cλ+2ρ1
= bλ+2ρ1

given by (5.22). Also, δ−1 D̃σmλ

will still be divisible by δq. By (5.8), δq ∈ AW with highest term m2ρ1
. Hence

Dσmλ = δ−1 δ−1
q D̃σmλ will be in AW with highest term bλ+2ρ1

mλ. �

We have

∆ =
∏

α∈R1

(eα; q)∞

(ae
1
2
α, be

1
2
α, ce

1
2
α, de

1
2
α; q)∞

∏

α∈R2

(eα; q)∞
(teα; q)∞

.

Hence
∆(x) = (w∆)(x) = (w∆+)(x) (w∆+)(−x), w ∈ W.

Lemma 5.3. With the assumptions of Definition 5.1 we have

(5.24)

∫

T

(Dσf)(x) g(x) ∆(x) dx =

∫

T

f(x) (Dσg)(x) ∆(x) dx, f, g ∈ AW .

Proof. Since −id ∈ W , f(x) = f(−x) and g(x) = g(−x). By (5.4) and (5.3),
formula (5.24) can be equivalently written as

(5.25)
∑

w∈W

∫

T

(Twσ(w∆+))(x)
(
(Twσf)(x) − f(x)

)
(w∆+)(−x) g(−x) dx

=
∑

w∈W

∫

T

(w∆+)(x) f(x) (Twσ(w∆+))(−x)
(
(Twσg)(−x) − g(−x)

)
dx.

Since T , f and g are W -invariant, formula (5.25) will be implied by the two identities

∫

T

(∆+f)(x − i(log q)σ) (∆+g)(−x) dx =

∫

T

(∆+f)(x) (∆+g)(−x − i(log q)σ) dx
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and
∑

w∈W

(Tσ∆+)(w−1x) ∆+(−w−1x) =
∑

w∈W

∆+(w−1x) (Tσ∆+)(−w−1x).

The second identity is obvious, since −id ∈ W . For the first identity observe that
the integral

∫

C

(∆+f)(z − i(log q), x2, . . . , xn) (∆+g)(−z,−x2, . . . ,−xn) dz

over the contour

C = [−π, π] ∪ [π, π + i log q] ∪ [π + i log q,−π + i log q] ∪ [−π + i log q,−π]

vanishes by Cauchy’s theorem. (By the assumptions on a, b, c, d, t there are no
singularities inside the contour.) Now the result follows, since ∆+f and ∆+g are
invariant under translations by 2πσ. �

It follows now immediately from Lemmas 5.2 and 5.3 that:

Theorem 5.4. DσPλ = aλ,λ Pλ with aλ,λ given by (5.5).

Now we are ready for the main theorem.

Theorem 5.5. If λ, µ ∈ P+, λ 6= µ, then

∫

T

Pλ(x) Pµ(x) ∆(x) dx = 0.

Proof. All integrals ∫

T

mλ(x) mµ(x) ∆(x) dx

are continuous in a, b, c, d, t. Hence the coefficients uλ,µ in Definition 5.1 are con-
tinuous in a, b, c, d, t. This implies that

∫

T

Pλ(x) Pµ(x) ∆(x) dx

is continuous in a, b, c, d, t. By Theorem 5.4 and Lemma 5.3,

∫

T

Pλ(x) Pµ(x) ∆(x) dx = 0

if aλ,λ 6= aµ,µ. Fix distinct λ and µ it follows from (5.5) that, for fixed nonzero
a, b, c, d, the eigenvalues aλ,λ and aµ,µ are distinct as polynomials in t. This implies
the orthogonality of Pλ and Pµ for a, b, c, d, t in a dense subset of the parameter
domain under consideration. Hence, by continuity, the theorem follows. �

The method of proof in this last theorem is different from the method used in
similar situations by Macdonald [12]. While Macdonald leaves the parameters fixed
and shows that equality of eigenvalues for all q implies (in most cases) equality of
weights, the above proof leaves q fixed and shows that equality of eigenvalues for
all parameter values implies equality of weights.
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6. Discussion of results

6.1. Special cases. When we compare (5.1) with (3.1), (3.2) and (3.3), then it is
clear that Askey-Wilson polynomials for root system BCn with a, b, c, d, t replaced
by q

1
2 ,−q

1
2 , ab

1
2 ,−b

1
2 , t become Macdonald’s polynomials for the pair (BCn, Bn).

The operator Dσ given by (5.4) then specializes to the operator for which Theorem
2.3 is valid in case (BCn, Bn), and the eigenvalue (5.5) specializes to the eigenvalue
in Theorem 2.3, cf. (3.6). We can also work then with Eσ instead of Dσ.

Next, when we compare (5.1) with (3.1), (3.4) and (3.5) then it is clear that

our polynomials with a, b, c, d, t, q replaced by ab
1
2 , qab

1
2 ,−b

1
2 ,−qb

1
2 , t, q2 become

Macdonald’s polynomials for the pair (BCn, Cn). The operator Dσ given by (5.4)
then becomes the operator D2ε1

for the pair (BCn, Cn). Theorem 2.3 does not
say anything about eigenfunctions of this operator, but Theorem 5.4 implies that
Macdonald’s polynomials for the pair (BCn, Cn) are eigenfunctions of D2ε1

. This
corresponds nicely with the cases E8, F4, G2 of Theorem 2.3, where 〈σ, α∗〉 takes
values 0, 1, 2 as α runs through R+ and we have to work with Dσ instead of Eσ. It
would be interesting to consider if Pλ might also be eigenfunction of Dσ for other
“quasi-minuscule” σ.

Comparison of (5.1) and (4.1) makes it evident that the BCn Askey-Wilson
polynomials reduce to the one-variable Askey-Wilson polynomials for n = 1.

6.2. A Selberg-type integral and a conjectured quadratic norm. Let ∆ be
given by (5.2) and (5.1) and let the parameters satisfy the inequalities of Definition
5.1. Gustafson [3, (2)] evaluated the Selberg type integral

1

(2π)n

∫ 2π

0

· · ·

∫ 2π

0

∆(x) dx = 2nn!

n∏

j=1

(t, tn+j−2abcd; q)∞
(tj, q, abtj−1, actj−1, . . . , cdtj−1; q)∞

.

On the other hand, Macdonald [12, (12.6)] conjectured an explicit expression for
the quadratic norm 〈Pλ, Pλ〉 for polynomials Pλ associated with any admissible pair
(R, S). It can be shown that Macdonald’s conjecture in case λ = 0 and (R, S) =

(BCn, Bn) coincides with Gustafson’s formula for (a, b, c, d) = (q
1
2 ,−q

1
2 , ab

1
2 ,−b

1
2 ).

In October 1991, when prof. Macdonald was visiting The Netherlands, first the
author has given a conjectured expression for 〈Pλ, Pλ〉/〈1, 1〉, where Pλ is an Askey-
Wilson polynomial for root system BCn, and next Macdonald [13] has rewritten
this as a conjectured expression for 〈Pλ, Pλ〉. On the same occasion, Macdonald
[13] has also extended his other conjectures in [12, §12] to the BCn Askey-Wilson
case.

6.3. The Askey-Wilson hierarchy for BCn. It is very probable that all spe-
cializations and limit cases of one-variable Askey-Wilson polynomials have their
analogues in the case of BCn. Someone should certainly write down the orthog-
onality relations and difference operators with explicit eigenvalues for all these
specializations. In some cases these explicit formulas may be rigorously proved by
straightforward limit transition from the general Askey-Wilson case. In other cases,
the limit transition may only give a formal proof and, for a rigorous derivation, the
proofs of the present paper will have to be imitated.

q-Racah-type polynomials for root system BCn should also be obtained. Here
analytic continuation from the BCn Askey-Wilson polynomials will be needed and
residues, possibly higher dimensional, will have to be taken. Similar problems will
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arise when the condition |a|, |b|, |c|, |d| ≤ 1 is dropped in Definition 5.1. In the
corresponding one-variable case discrete terms are then added to the orthogonality
relations.

6.4. Quantum group interpretations. It is known from work by Koornwinder
[9], [10], Koelink [8] and Noumi & Mimachi [15], [16] that one-variable Askey-
Wilson polynomials have an interpretation on the quantum group SUq(2). Noumi
[14] announces an interpretation of Macdonald’s polynomials for root system An−1

as zonal spherical functions on the quantum analogues of the homogeneous spaces
GL(n)/SO(n) and GL(2n)/Sp(2n). According to Noumi, this was already done
for the quantum analogue of SL(3)/SO(3) by Ueno & Takebayashi. It would be
interesting to find quantum group interpretations of Macdonald’s polynomials in
case of all root systems, and also of the BCn Askey-Wilson polynomials considered
in the present paper.
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Mathématique Avancée 372/S-20, Strasbourg, 1988, pp. 131–171.
12. , Orthogonal polynomials associated with root systems, preprint, 1988.

13. , Some conjectures for Koornwinder’s orthogonal polynomials, informal manuscript,
October 1991.

14. M. Noumi, Macdonald’s symmetric polynomials as zonal spherical functions on some quantum

homogeneous spaces, informal summary, March 1992.
15. M. Noumi and K. Mimachi, Askey-Wilson polynomials and the quantum group SUq(2), Proc.

Japan Acad. Ser. A Math. Sci. 66 (1990), 146–149.

16. , Rogers’ q-ultraspherical polynomials on a quantum 2-sphere, Duke Math. J. 63

(1991), 65–80.

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Current address: University of Amsterdam, Faculty of Mathematics and Computer Science,

Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
E-mail address: thk@fwi.uva.nl


