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1. Introduction

In 1978 Gosper [5] published an algorithm for indefinite summation of terminating hypergeometric
series. Procedures incorporating this algorithm were for instance included long ago in the standard
library of Maple V . Around 1990 Zeilberger [17], [18] showed that definite summation of terminating
hypergeometric series can often be reduced in an algorithmic way to Gosper’s indefinite summation.
He wrote a long Maple procedure implementing his algorithm and he kindly made available his code
to all interested people. Zeilberger’s algorithm turned out to have a q-version, for which Zeilberger
wrote a less widely circulated Maple procedure.

The author [8] wrote a critical survey paper about Maple’s potential to handle hypergeometric
series. There he also briefly described Gosper’s and Zeilberger’s algorithms. It is the purpose of the
present paper to describe these two algorithms as well as their q-versions in a very rigorous way.

A companion to this paper are two Maple V procedures, called zeilb and qzeilb, implement-
ing the Zeilberger and q-Zeilberger algorithm, respectively. These procedures are highly rewritten
versions of the original procedures written by Zeilberger (see [19] for the most reecent versions of
Zeilberger’s procedures). It is the intention that this Maple code matches the rigor of the present
paper. Thus the present paper together with the source code should convince the reader that the
output produced by the procedures can be trusted. Furthermore, input and output are arranged in
such a way that evaluation formulas of terminating hypergeometric or q-hypergeometric series as
given in Bailey [1] respectively Gasper & Rahman [4] (in particular Appendix II) can be compared
very easily with the results appearing on the computer screen. The source codes are available
on the web page http://www/science.uva.nl/~thk/art/zeilbalgo/. Since the first version of
this paper appeared, much further work has been done and more powerful implementations of the
(q)-Zeilberger algorithm have been written:

• Petkovšek, Wilf & Zeilberger wrote a book [14] about Zeilberger’s and related algorithms.
Maple implementations [19] are available (procedures EKHAD and qEKHAD).
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• Paule & Schorn [12] implemented Zeilberger’s algorithm for Mathematica, while Paule & Riese
[11] implemented its q-analogue for Mathematica. See their web page http://www.risc.uni-

linz.ac.at/research/combinat/risc/software/ for downloads.
• W. Koepf wrote a book [6] about Zeilberger’s and related algorithms. Maple implementations

[7] are available. (packages hsum and qsum). The qsum algorithm is documented in a paper by
Böing & Koepf [2].

The contents of this paper are as follows. In Section 2 the idea of Zeilberger’s algorithm is
explained by a simple example. Section 3 describes Gosper’s algorithm, Section 4 Zeilberger’s
algorithm and Section 5 the q-versions. Finally Section 6 provides the help information for the
functions zeilb and qzeilb.

Definitely not included in this paper is the theoretical background concerning holonomic sys-
tems (cf. Zeilberger [16] and Cartier [3]) and further generalizations of the method of Zeilberger’s
algorithm (cf. for instance Petkovšek [13] and Wilf & Zeilberger [15]).

A slightly shortened version of this paper appeared in [9]. The present version of the paper will
be regularly updated together with the Maple procedures zeilb and qzeilb. The present version
of these Maple procedures can be used under Maple 6 and under Maple V, Release 4 or 5. Some
minor bugs have been corrected.

Acknowledgements. I thank Doron Zeilberger for sending me his preprints and the source codes
of his Maple procedures. George Gasper provoked me to use Minton’s summation formula as a
testing case. André Heck was always very helpful in answering questions about Maple. Peter
Paule, Axel Schorn, Wolfram Koepf and René Swarttouw gave useful comments concerning my
Maple implementation.

2. A simple example

Consider the Chu-Vandermonde summation formula

2F1(−n, b; c; 1) :=

n∑

k=0

(−n)k (b)k

(c)k k!
=

(c − b)n

(c)n
, n = 0, 1, 2, . . . , (2.1)

and its special case for c := −n:

n∑

k=0

(b)k

k!
=

(b + 1)n

n!
, n = 0, 1, 2, . . . . (2.2)

Here the shifted factorial is defined by

(a)k :=
Γ(a + k)

Γ(k)
, k ∈ Z. (2.3)

In identity (2.2) there is an arbitrary upper boundary n for the summation, while the summand
is independent of n. We call it indefinite summation. Verification of (2.2) is straightforward by
checking that

(b + 1)n

n!
−

(b + 1)n−1

(n − 1)!
=

(b)n

n!
, n = 1, 2, . . . ;

(b + 1)0
0!

=
(b)0
0!

. (2.4)
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However, in identitity (2.1), the summand depends on the upper boundary n of summation.
There would be no explicit evaluation for an arbitrary upper boundary m. It works just for upper
boundary n or for any upper boundary m = n, n + 1, . . . or ∞ (since the terms in (2.1) with k > n
vanish). So n is a natural upper boundary for the summation. We call this definite summation.
Observe also that verification of (2.1) is not as straightforward as was possible for (2.2) by means
of (2.4).

In fact, we can find an indefinite summation formula which implies (2.1). Put

Σ(n) :=
n∑

k=0

A(n, k), (2.5)

where

A(n, k) :=
(−n)k (b)k

(c)k k!
. (2.6)

We want to prove that
Σ(n) = (c − b)n/(c)n , (2.7)

or equivalently, that Σ(0) = 1 and

Σ(n) + σ(n)Σ(n − 1) = 0, n = 1, 2, . . . , (2.8)

where

σ(n) := −
c − b + n − 1

c + n − 1
. (2.9)

Now the indefinite summation formula

m∑

k=0

(
A(n, k) + σ(n)A(n − 1, k)

)
=

(−n + 1)m (b)m+1

(c + n − 1) (c)m m!
(2.10)

can immediately be proved by checking that

(−n + 1)m (b)m+1

(c + n − 1) (c)m m!
−

(−n + 1)m−1 (b)m

(c + n − 1) (c)m−1 (m − 1)!
= A(n,m) + σ(n)A(n − 1,m), m = 1, 2, . . . ,

(2.11)
and

(−n + 1)m (b)m+1

(c + n − 1) (c)m m!

∣∣∣∣
m=0

= A(n, 0) + σ(n)A(n − 1, 0). (2.12)

(Note that, in (2.6), (2.9), (2.10), (2.11) and (2.12), n can be arbitrarily complex. It can be
considered as a parameter, just as b and c.) Now (2.10) for m = n yields

Σ(n) + σ(n)Σ(n − 1) =

n∑

k=0

A(n, k) + σ(n)

n−1∑

k=0

A(n − 1, k) =

n∑

k=0

(
A(n, k) + σ(n)A(n − 1, k)

)
= 0,

(2.13)
since the right-hand side of (2.10) vanishes for m = n. Hence we obtain (2.8).

Note that (2.10) can be rewritten as an indefinite summation for a certain hypergeometric
series which is truncated arbitrarily:

m∑

k=0

(−n)k (b)k (bn(n + c − b − 1)−1 + 1)k

(c)k (bn(n + c − b − 1)−1)k k!
=

(−n + 1)m (b + 1)m

(c)m m!
.
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3. Gosper’s algorithm

Let F be the field of rational functions in some fixed number of indeterminates (not including k)
over Q. Let F(k) denote the field of rational functions in k over F and let F[k] be the ring of
polynomials in k over F. Let a(k) (k = 0, 1, . . . ) be a sequence of nonzero elements of F such that
a(k)/a(k − 1) is in F(k). Call a sequence s(k) (k = −1, 0, 1, . . . ) in F an indefinite sum for the a(k)
if

s(n) − s(m) =

n∑

k=m+1

a(k), n,m = −1, 0, 1, . . . , m < n, (3.1)

or, equivalently,
s(k) − s(k − 1) = a(k), k = 0, 1, . . . . (3.2)

Then the s(k) are unique up to a constant term. Gosper’s algorithm will do the following:
1) It determines whether there is a solution s(k) to (3.2), nonzero for k = 0, 1, 2, . . . , such that

s(k − 1)/s(k) is rational in k over F.
2) If the answer to 1) is positive then it will produce this solution explicitly.

In order to justify the algorithm we need a few lemmas.

Lemma 3.1. Let b(k) be a nonzero element of F(k). Then there are elements p(k), r1(k) and
r2(k) of F[k], unique up to a constant factor, such that

b(k) =
p(k)

p(k − 1)

r1(k)

r2(k)
, (3.3)

gcd(r1(k), r2(k + j)) = 1 (3.4)

for all integers j ≥ 0, and

gcd(r1(k), p(k − 1)) = 1 = gcd(r2(k), p(k)). (3.5)

Proof We first prove the existence statement. Suppose that, for some i = 1, 2, . . . , identity (3.3)
holds together with (3.4) for j = 0, 1, . . . , i − 1 and with (3.5). This is certainly possible with
i := 1 and p(k) := 1. We now describe a successive rewriting of p(k), r1(k), r2(k) such that this
process comes to an end and the end result has the desired properties. If r1(k) has a prime factor
γ(k) such that γ(k − i) is a factor of r2(k) then put r̃1(k) := r1(k)/γ(k), r̃2(k) := r2(k)/γ(k − i),
p̃(k) := p(k) γ(k) γ(k−1) . . . γ(k− i+1). Then (3.3), (3.4) for j = 0, 1, . . . , i−1, and (3.5) still hold
when p(k), r1(k), r2(k) are replaced by p̃k, r̃1(k), r̃2(k), respectively. In order to see this for (3.5)
observe that any common factor of p̃(k) and r̃2(k) must be γ(k − j) for some j = 0, 1, . . . , i − 1.
But this cannot be a factor of r2(k) while γ(k) is a factor of r1(k), Similarly, any common factor
of p̃(k− 1) and r̃1(k) must be γ(k− j) for some j = 1, 2, . . . , i. But this cannot be a factor of r1(k)
while γ(k − i) is a factor of r2(k).

Next we prove the unicity statement. Suppose p(k), r1(k), r2(k) and p̃(k), r̃1(k), r̃2(k) are two
triples satisfying (3.3), (3.4) for all integers j ≥ 0, and (3.5). Then

p(k) r1(k) p̃(k − 1) r̃2(k) = p̃(k) r̃1(k) p(k − 1) r2(k).

Suppose γ(k) is a prime factor occurring in p(k) with higher multiplicity than in p̃(k). We may
assume that for all positive integers i the prime factor γ(k+i) does not occur with higher multiplicity
in p(k) than in p̃(k). Then γ(k) must be a factor of r̃1(k). Let j ≥ 0 be the maximal integer such
that γ(k − j) occurs in p(k) with higher multiplicity than in p̃(k). Then γ(k − j − 1) must be a
factor of r̃2(k). Thus gcd(r1(k), r2(k + j + 1)) 6= 1, which is a contradiction. Similarly we show
that no prime factor occurs in p̃(k) with higher multiplicity than in p(k). Thus p(k) equals p̃(k) up
to a constant factor. Hence r1(k)/r2(k) and r̃1(k)/r̃2(k) are equal up to a constant factor, which
implies the unicity statement.
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Lemma 3.2. Let b(k) be in F(k) such that b(k) is a nonzero element of F for each k = 1, 2, . . . .
Let b(k) be written as (3.3), where p(k), r1(k), r2(k) are in F[k], satisfy (3.4) for all integers j ≥ 0,
and also satisfy

gcd(r1(k), p(k − 1)) 6= 0 6= gcd(r2(k), p(k)) for k = 1, 2, . . . . (3.6)

Then p(k) 6= 0 in F for k = 0, 1, 2, . . . and r1(k), r2(k) 6= 0 in F for k = 1, 2, . . . .

Proof Clearly, because of (3.3), (3.4) and (3.6), r1(k) and r2(k) must be nonzero for k = 1, 2, . . . .
If p(k) = 0 for some k = 0, 1, 2, . . . then there will be a highest nonnegative integer j for which
p(j) = 0. Then b(k) will have a pole at k = j + 1, which is contrary to the assumption.

We now assume that, for each integer k ≥ 0, a(k) is a nonzero element of F and that

a(k)

a(k − 1)
=

p(k)

p(k − 1)

r1(k)

r2(k)
, k = 1, 2, . . . , (3.7)

such that (3.4) holds for all integers j ≥ 0. Assume also that p(k) 6= 0 in F for k = 0, 1, 2, . . . and
r1(k), r2(k) 6= 0 in F for k = 1, 2, . . . . Because of Lemma 3.2 these inequalities will be certainly
satisfied if (3.5) or the weaker (3.6) are valid. It follows from (3.7) that

a(k + 1) r2(k + 1)

p(k + 1)
=

a(k) r1(k + 1)

p(k)
, k = 0, 1, 2, . . . . (3.8)

Let s(k) and f(k) be elements of F defined for k = −1, 0, 1, . . . such that

s(k) =
r2(k + 1) a(k + 1)

p(k + 1)
f(k), k = −1, 0, 1, . . . . (3.9)

In view of (3.8) we also have

s(k) =
r1(k + 1) a(k)

p(k)
f(k), k = 0, 1, 2, . . . . (3.10)

Note that, for k = 0, 1, 2, . . . , we have s(k) 6= 0 iff f(k) 6= 0 (because the other factors in (3.9) are
nonzero). We will always assume that s(k) and f(k) are nonzero elements of F for k = 0, 1, 2, . . . .

Lemma 3.3. Under the above assumptions the identities

s(k) − s(k − 1) = a(k) (3.11)

and
r1(k + 1) f(k) − r2(k) f(k − 1) = p(k) (3.12)

are equivalent for each k = 0, 1, 2, . . . .

Proof Identity (3.11) can be equivalently written as

r2(k + 1) a(k + 1)

p(k + 1)
f(k) −

r2(k) a(k)

p(k)
f(k − 1) = a(k)

and identity (3.12) can be equivalently written as

r1(k + 1) a(k)

p(k)
f(k) −

r2(k) a(k)

p(k)
f(k − 1) = a(k)

(use that a(k) and p(k) are nonzero for k = 0, 1, 2, . . . ). Now apply (3.8).
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Lemma 3.4. Under the earlier assumptions, let (3.11) and (3.12) be valid for k = 0, 1, 2, . . . .
Then s(k − 1)/s(k) is in F(k) iff f(k) is in F(k).

Proof By (3.11) and (3.10) we have

1 −
s(k − 1)

s(k)
=

a(k)

s(k)
=

p(k)

r1(k + 1)

1

f(k)
.

Lemma 3.5. Under the earlier assumptions, let f(k) be in F(k) such that (3.12) holds. Then
f(k) is in F[k].

Proof Assume that f(k) is not a polynomial. Then

f(k) =
c(k)

d(k)
,

where c(k) and d(k) are polynomials in k over F without common factors and d(k) has positive
degree and

d(k) d(k − 1) p(k) = r1(k + 1) c(k) d(k − 1) − r2(k) c(k − 1) d(k). (3.13)

Let j be the largest integer such that

g(k) := gcd(d(k), d(k + j)) 6= 1.

This j exists and j ≥ 0. Then

gcd(d(k − 1), d(k + j)) = 1 = gcd(d(k − 1), g(k))

and

gcd(d(k − j − 1), d(k)) = 1 = gcd(g(k − j − 1), d(k)).

Now g(k) divides d(k) and is relatively prime to d(k − 1) and c(k). Hence, by (3.13), g(k) divides
r1(k + 1), so g(k − 1) divides r1(k). Also, g(k − j − 1) divides d(k − 1) and is relatively prime to
d(k) and c(k − 1). Hence, by (3.13), g(k − j − 1) divides r2(k), so g(k − 1) divides r2(k + j). Thus
r1(k) and r2(k + j) have a common factor of positive degree, contradicting (3.4).

In the following we will mean by deg(g(k)) the degree of a polynomial g(k) and we will put
this equal to −1 if g(k) = 0.

Lemma 3.6. Under the earlier assumptions, let f(k) be a nonzero element of F[k] and a solution
of (3.12). Then:
(a) If deg

(
r1(k + 1) + r2(k)

)
≤ deg

(
r1(k + 1) − r2(k)

)
then

deg(f(k)) = deg(p(k)) − deg
(
r1(k + 1) − r2(k)

)
.

(b) If l := deg
(
r1(k + 1) + r2(k)

)
> deg

(
r1(k + 1) − r2(k)

)
then let el be the coefficient of kl in

r1(k + 1) + r2(k) and dl−1 be the coefficient of kl−1 in r1(k + 1) − r2(k).
(b1) If −2dl−1/el is not a nonnegative integer then

deg(f(k)) = deg(p(k)) − l + 1.

(b2) If −2dl−1/el is a nonnegative integer then

deg(f(k)) ≤ max{−2dl−1/el , deg(p(k)) − l + 1}.
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Proof Rewrite (3.12) as

p(k) =
(
r1(k + 1) − r2(k)

) f(k) + f(k − 1)

2
+

(
r1(k + 1) + r2(k)

) f(k) − f(k − 1)

2
.

By our assumptions, p(k) is a nonzero polynomial and r1(k + 1) − r2(k) and r1(k + 1) + r2(k)
will not be both equal to zero. Case (a) is now evident. In case (b) let f(k) have degree m with
coefficient cm of km. Then

p(k) = (dl−1 + 1
2 m el) cm kl+m−1 + O(kl+m−2).

Cases (b1) and (b2) are now evident.

Lemma 3.7. Under the earlier assumptions, if (3.12) has solutions f(k) belonging to F[k] then
these form a zero or one dimensional set. In case of dimension one, the solution space has the
form f0(k) + c f1(k), where f0(k) is some special polynomial solution of (3.12), f1(k) ia a nonzero
polynomial solution of

r1(k + 1) f1(k) − r2(k) f1(k − 1) = 0, (3.14)

and c is an arbitrary element of F. If such a solution f1(k) of (3.14) exists then f1(k) 6= 0 for
k = −1, 0, 1 . . . and r2(0) 6= 0.

Proof Clearly, if (3.12) has two distinct polynomial solutions then their difference f1(k) is a
nonzero polynomial solution of (3.14), unique up to a constant factor. If f1(k) = 0 for some
k = −1, 0, 1, . . . or if r2(0) = 0 then f1(k) = 0 for infinitely many values of k, which would
contradict that f1(k) is a nonzero polynomial.

We can now describe the successive steps of Gosper’s algorithm. Let a(k) be given.

Step 1. Check that a(k), for k = 0, 1, 2, . . . , is a nonzero element of F. Also check that a(k)/a(k−1)
is in F(k).

Step 2. Determine p(k), r1(k), r2(k) in (3.7) by the algorithm given in the proof of Lemma 3.1
(existence statement).

Step 3. Find, by Lemma 3.6, an upper bound d for the degree of a nonzero polynomial f(k)
satisfying (3.12). If d is negative then there will be no solution s(k) of (3.11) with the desired
properties.

Step 4. Put

f(k) :=

d∑

i=0

fi ki, (3.15)

where the fi are yet unknown elements of F. Find the most general solution of the system of linear
equations in the fi obtained by putting the coefficients of the various powers of k in

r1(k + 1) f(k) − r2(k) f(k − 1) − p(k) (3.16)

equal to 0. If no solution is found then there will be no solution s(k) of (3.11) with the desired
properties. Otherwise, the solution space may have dimension 0 or 1.

Step 5. In case the solution space has dimension 0, check if f(k) 6= 0 for k = 0, 1, 2, . . . . When
this is not the case, there will be no solution of (3.11) with the desired properties.
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Step 6. Obtain the desired solution(s) s(k) of (3.11) from (3.9). Then

s(n) − s(−1) =
n∑

k=0

a(k). (3.17)

Our Maple program implements Gosper’s algorithm for

a(k) :=
(α1)k . . . (αr)k

(β1)k . . . (βs)k

zk

k!
, (3.18)

being the coefficients of a truncated hypergeometric series. Here α1, . . . , αr, β1, . . . , βs and z are
elements of F. In order that a(k) is in F for each k = 0, 1, 2, . . . , we require that

β1, . . . , βs 6= 0,−1,−2, . . . . (3.19)

Also, in order that a(k) 6= 0 for k = 0, 1, 2, . . . , we require that

α1, . . . , αr 6= 0,−1,−2, . . . and z 6= 0. (3.20)

Now a(k)/a(k − 1) is certainly in F(k):

a(k)

a(k − 1)
=

(α1 + k − 1) . . . (αr + k − 1) z

(β1 + k − 1) . . . (βs + k − 1) k
.

Remark 3.8. If, in (3.18),
α1, . . . , αr 6= 1, 2, 3, . . . (3.21)

then k will be a factor of r2(k), so r2(0) = 0 and s(−1) = 0 by (3.9). Hence, for such αi’s, (3.11)
has at most one solution s(k) and such a solution will satisfy s(−1) = 0. We will always make this
assumption (3.21).

Example 3.9. Consider (2.2), so

a(k) :=
(b)k

k!
, (3.22)

F := Q(b) and conditions (3.19), (3.20) and (3.21) are satisfied. From

a(k)

a(k − 1)
=

b + k − 1

k
(3.23)

we get
p(k) = 1, r1(k) = b + k − 1, r2(k) = k.

Hence
r1(k + 1) + r2(k) = 2k + b, r1(k + 1) − r2(k) = b,

so we are in the case (b1) of Lemma 3.6 and every nonzero solution f(k) of (3.12) will have degree
0. Equation (3.12) becomes

(b + k) f(k) − k f(k − 1) = 1,

so f(k) = b−1, which is nonzero for k = 0, 1, 2, . . . . Now equation (3.9) yields

s(k) =
k + 1

b

(b)k+1

(k + 1)!
k = −1, 0, 1, . . . .
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Thus, indeed, s(−1) = 0 and

s(k) =
(b + 1)k

k!
, k = 0, 1, 2, . . . .

Example 3.10. We continue the previous example, but we now assume that b in (3.22) is a fixed
positive integer. Then F = Q and condition (3.21) is no longer satisfied. We can rewrite (3.22) as

a(k) =
(k + 1)b−1

(b − 1)!
,

which is a polynomial of degree b − 1 in k. (In the previous example, a(k) was certainly not
polynomial in k.) From (3.23) we now get

p(k) =
(k + 1)b−1

(b − 1)!
= a(k), r1(k) = 1, r2(k) = 1.

We are now in case (b2) of Lemma 3.6 and find that f(x) must have degree ≤ b. Equation (3.12)
becomes

f(k) − f(k − 1) =
(k + 1)b−1

(b − 1)!
,

Its general solution is

f(k) =
(k + 1)b

b!
+ const. .

Then (3.9) becomes

s(k) = f(k).

We obtain

s(n) − s(−1) =
(b + 1)n

n!
.

It is curious to observe that the specialization of (3.22) to some special positive integer value
of b causes Gosper’s algorithm to solve a system of b + 1 instead of 1 linear equations. For large b
this will consume much more computing time.

4. Zeilberger’s algorithm

Let F be the field of rational functions in some fixed number of indeterminates (not including k
and n) over Q. Let A(n, k) be such that
(i) A(n, k) ∈ F for n, k = 0, 1, 2, . . . ;
(ii) A(n, k) is a nonzero element of F(n) for k = 0, 1, 2, . . . ;
(iii) A(n, k) = 0 for integer n, k with 0 ≤ n < k;
(iv) A(n, k)/A(n, k − 1) is in F(n, k);
(v) A(n, k)/A(n − 1, k) is in F(n, k).

Put

Σ(n) :=

n∑

k=0

A(n, k), n = 0, 1, 2, . . . . (4.1)
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Fix l = 1, 2, . . . . Zeilberger’s algorithm will search for σj(n) (j = 1, 2, . . . , l) in F(n) such that Σ(n)
satisfies the lth order recurrence

Σ(n) +

l∑

j=1

σj(n)Σ(n − j) = 0, n = l, l + 1, l + 2, . . . . (4.2)

In particular, if such a recurrence can be found for l = 1 then Σ(n) can be obtained by iteration of
(4.2) from the starting value Σ(0) = A(0, 0).

Zeilberger’s algorithm reduces the problem to Gosper’s algorithm as follows. Let the σj(n) be
yet undetermined elements of F(n). Put

a(k) := A(n, k) +
l∑

j=1

σj(n)A(n − j, k). (4.3)

Then a(k) (k = 0, 1, . . . ) is a sequence of elements of F(n). Assume that the σj(n) are such that
the a(k) are nonzero elements of F(n). From (4.3) we obtain

a(k)

a(k − 1)
=

1 +
∑l

j=1 σj(n)A(n − j, k)/A(n, k)

1 +
∑l

j=1 σj(n)A(n − j, k − 1)/A(n, k − 1)

A(n, k)

A(n, k − 1)
, (4.4)

so a(k)/a(k − 1) is in F(n)(k).
Now suppose Gosper’s algorithm has supplied explicit σj(n) and an explicit solution s(n) =

S(n, k) of (3.2), where s(k) is, for each k = −1, 0, 1, . . . , an element of F(n), nonzero if k =
0, 1, 2, . . . . (In a moment we will discuss the details of this application of Zeilberger’s algorithm.)
Suppose that s(−1) = 0. Then, by (3.17),

S(n,m) = s(m) =
m∑

k=0

a(k) =
m∑

k=0

A(n, k) +
l∑

j=1

σj(n)
m∑

k=0

A(n − j, k), m = 0, 1, 2, . . . . (4.5)

Suppose that also S(n, n) = 0. Then, by (4.1) and Assumption (iii) on the A(n, k), the case m = n
of (4.5) yields (4.2).

We now discuss the details of the application of Gosper’s algorithm. Write

A(n, k)

A(n − 1, k)
=

B(n, k)

C(n, k)
, (4.6)

where B(n, k) and C(n, k) are coprime elements of F[n, k], and

A(n, k)

A(n, k − 1)
=

D(n, k)

E(n, k)
, (4.7)

where D(n, k) and E(n, k) are coprime elements of F[n, k]. Then B(n, k), C(n, k), D(n, k) and
E(n, k) are nonzero elements of F(n) for k = 0, 1, 2, . . . . We obtain from (4.4) that

a(k)

a(k − 1)
=

p0(k)

p0(k − 1)

r10(k)

r20(k)
, (4.8)
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where

p0(k) :=

l−1∏

i=0

B(n − i, k) +

l∑

j=1

σj(n)

j−1∏

i=0

C(n − i, k)

l−1∏

i=j

B(n − i, k), (4.9)

r10(k) := D(n, k)

l−1∏

i=0

B(n − i, k − 1), (4.10)

r20(k) := E(n, k)

l−1∏

i=0

B(n − i, k). (4.11)

Then r10(k) and r20(k) are elements of F(n)[k] and nonzero elements of F(n) for each k = 1, 2, . . . .
Now use the algorithm of Lemma 3.1 in order to write

r10(k)

r20(k)
=

p1(k)

p1(k − 1)

r1(k)

r2(k)
, (4.12)

where p1(k), r1(k), r2(k) are elements of F(n)[k], such that

gcd(r1(k), r2(k + j)) = 1

for all integers j ≥ 0 and

gcd(r1(k), p1(k − 1)) = 1 = gcd(r2(k), p1(k)).

Put
p(k) := p0(k) p1(k). (4.13)

Then (4.8), (4.12) and (4.13) yield (3.7).
Note that, by (4.9), (4.3) and (4.6)

p0(k) =
a(k)

A(n, k)

l−1∏

i=0

B(n − i, k).

Thus, by (3.9) and (4.13):

S(n, k) = s(k) =
r2(k + 1) f(k)A(n, k + 1)

p1(k + 1)
∏l−1

i=0 B(n − i, k + 1)
, k = −1, 0, 1, . . . . (4.14)

We can now describe the successive steps of Zeilberger’s algorithm. Let A(n, k) be given.

Step 1. Check conditions (i)–(v) of the beginning of this section. Write A(n, k)/A(n, k − 1) and
A(n, k)/A(n − 1, k) as in (4.6) and (4.7).

Step 2. Determine p1(k), r1(k), r2(k) in (4.12) by the algorithm of Lemma 3.1. Check if r2(0) = 0,
otherwise the algorithm fails. Determine p(k) (with yet undetermined σj) by (4.13) and (4.9).

Step 3. Find by Lemma 3.6 an upper bound d for the degree over F(n) of a solution f(k) of
(3.12) which lies in F(n)[k]. (Here we take for deg(p(k)) the degree of p(k) with yet undetermined
σj(n), so, with a priori knowledge of the σj(n), d might have been lower.) If d is negative then the
algorithm fails.
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Step 4. Now substitute (3.15) in (3.16) and obtain a system of linear equations over F(n) in the
fi (i = 0, . . . , d) and σi (i = 1, . . . , l) by putting the coefficients of the various powers of k in (3.16)
to 0. Solve this system of equations. If no solution is found then the algorithm fails. Otherwise,
the solution space may have dimension 0 or higher. In case of higher dimension, we will have some
free parameters with which we extend the field F.

Step 5. With the solutions from Step 4 substituted, we have to reevaluate some expressions in
order to be sure that the conditions are still valid under which Gosper’s algorithm works. Check if
p(k) is a non-zero element of F(n) for k = 0, 1, 2, . . . and if a(0) is a nonzero element of F(n). Then,
by (3.7), a(k) is a nonzero element of F(n) for k = 0, 1, 2, . . . . Check if f(k) 6= 0 for k = 0, 1, 2, . . . .
If one of the checks gives negative answer then the algorithm fails.

Step 6. Obtain the solution s(k) = S(n, k) of (3.11) from (3.9). Then s(−1) = 0 by (3.9) since
r2(0) = 0. Now we have to check if posssibly for certain n = l, l + 1, l + 2, . . . the fi(n) and σi(n)
have poles. Suppose there are no poles for integer n > n0 ≥ l − 1. Consider (4.5) only for such
n. Check if possibly S(n, n) 6= 0 for some integer n > n0. We can do this by inspection of (3.9).
Because of (4.3) and Assumption (iii) on A(n, k) we have a(k+1)|k=n = 0 for integer n > n0. Thus
we have to check if possibly r2(k + 1)|k=n has a pole or p(k + 1)|k=n has a zero for integer n > n0.
If this is the case then we can get integer n1 ≥ n0 such that S(n, n) = 0 for n > n1. Define Σ(n)
by (4.1). Then the recurrence (4.2) is valid for n > n1.

Our Maple program implements Zeilberger’s algorithm for sums (4.1) with

A(n, k) :=
(−n)k

k!

(α2 + i2n)k . . . (αr + irn)k

(β1 + j1n)k . . . (βs + jsn)k
zk,

being the coefficients of a hypergeometric series

rFs

[
−n, α2 + i2n, . . . , αr + irn

β1 + j1n, . . . βs + jsn
; z

]
.

We assume that no upper indices coincide with lower indices of the hypergeometric function, that
α2, . . . , αr, β1, . . . , βs and z are elements of F and that i2, . . . , ir, j1, . . . , js ∈ Z. In order that
A(n, k) is in F for n, k = 0, 1, 2, . . . we require that

βt /∈ Z if jt = −1,−2, . . . (4.15)

and
βt 6= 0,−1,−2, . . . if jt = 0. (4.16)

In order that A(n, k) 6= 0 as element of F(n) for k = 0, 1, 2, . . . we require that z 6= 0 and

αt 6= 0,−1,−2, . . . if it = 0. (4.17)

Now A(n, k) = 0 for integer n, k with 0 ≤ n < k. We get

A(n, k)

A(n, k − 1)
=

−n + k − 1

k

(α2 + i2n + k − 1) . . . (αr + irn + k − 1)

(β1 + j1n + k − 1) . . . (βs + jsn + k − 1)
z (4.18)

and
A(n, k)

A(n − 1, k)
=

n

n − k

r∏

t=2

(αt + it(n − 1) + k)it

(αt + it(n − 1))it

s∏

t=1

(βt + jt(n − 1))jt

(βt + jt(n − 1) + k)jt

, (4.19)

where the shifted factorial (a)k is defined by (2.3), also for negative integer k. Clearly, the right
hand sides of (4.18) and (4.19) are elements of F(n)(k).

We can now perform Step 1 and Step 2. In order to obtain r2(0) = 0 in Step 2 we require that

αt 6= 1, 2, . . . if it = 0. (4.20)

Next we can perform Steps 3, 4, 5 and 6.
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Example 4.1. Consider (2.1), so A(n, k) is given by (2.6), F := Q(b, c) and conditions (4.15),
(4.16), (4.17) and (4.20) are satisfied. Let the desired order of recurrence l be equal to 1. Then

a(k) := A(n, k) + σ1(n)A(n − 1, k),

A(n, k)

A(n − 1, k)
=

n

n − k
,

A(n, k)

A(n, k − 1)
=

(−n + k − 1) (b + k − 1)

(c + k − 1) k
.

Then we get (3.7) with

p(k) = −n + σ1(n) (k − n), r1(k) = (k − n − 1) (k + b − 1), r2(k) = k (k + c − 1).

We are in the case (b1) of Lemma 3.6 and find that deg(f(k)) ≤ 0. So f(k) = f0(n). We have to
solve

(r1(k + 1) − r2(k)) f0(n) − p(k) = 0,

i.e. the system {
(b − c − n + 1) f0(n) − σ1(n) = 0,

−nbf0(n) + n + nσ1(n) = 0.

As unique solution we find

f0(n) =
1

c + n − 1
, σ1(n) = −

n + c − b − 1

n + c − 1
.

Now all checks of Step 5 have positive answer and in Step 6 we find that n0 and n1 are equal to
0. Thus we obtain (2.8) with σ(n) given by (2.9) and hence we obtain (2.7). We also obtain (2.10)
from (4.14).

Example 4.2. Let m1, . . . ,mp be nonnegative integers and let n be integer such that n ≥
m1 + · · · + mp. Minton [10] showed that

p+2Fp+1

[
−n, b, c1 + m1, . . . , cp + mp

b + 1, c1, . . . , cp
; 1

]
=

n!

(b + 1)n

(c1 − b)m1
. . . (cp − b)mp

(b1)m1
. . . (bp)mp

.

Put the left-hand side equal to Σ(n). Then

Σ(n)

Σ(n − 1)
=

n

b + n
, n > m1 + · · · + mp.

So we have the complication here that the evaluation of the ratio Σ(n)/Σ(n − 1) is not valid for
the lowest values of n, up to m1 + · · · + mp. Let us analyse this with Zeilberger’s algorithm in the
simple special case

Σ(n) := 3F2

[
−n, b, c + 1

b + 1, c
; 1

]
=

n∑

k=0

A(n, k),

with

A(n, k) :=
(−n)k

k!

b(c + k)

(b + k)c
.
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Then F := Q(b, c), and conditions (4.15), (4.16), (4.17) and (4.20) are satisfied. Let the desired
order of recurrence l be equal to 1. Then

a(k) := A(n, k) + σ1(n)A(n − 1, k),

A(n, k)

A(n − 1, k)
=

n

n − k
,

A(n, k)

A(n, k − 1)
=

−n + k − 1

k

(c + k) (b + k − 1)

(b + k) (c + k − 1)
.

Then we get (4.8) with

p0(k) = −n + σ1(n) (k − n), r10(k) = n (−n + k − 1) (c + k) (b + k − 1),

r20(k) = n k (c + k − 1) (b + k).

Hence we get (3.7) with

p(k) = (c + k) (−n + σ1(n) (k − n)), r1(k) = (−n + k − 1) (b + k − 1), r2(k) = k (b + k).

We are in the case (b1) of Lemma 3.6 and find that deg(f(k)) ≤ 1. Solution of the resulting equation
(3.12) yields

σ1(n) = −
n

b + n
, f(k) =

c

n + b
+

nk

(n + b) (n − 1)
.

Now all checks of Step 5 have positive answer. In Step 6 we find that f1(n) has a pole at n = 1.
We obtain n0 = 1 = n1. Thus

Σ(n)

Σ(n − 1)
= −σ1(n) =

n

b + n
for n = 2, 3, . . . .

5. The q-case

Consider the q-Chu-Vandermonde summation formula

2φ1(q
−n, b; c; q, q) :=

n∑

k=0

(q−n; q)k (b; q)k

(c; q)k (q; q)k
qk =

(c/b; q)n

(c; q)n
bn, n = 0, 1, 2, . . . , (5.1)

and its special case for c := q−n:

n∑

k=0

(b; q)k

(q; q)k
qk =

(bq; q)n

(q; q)n
, n = 0, 1, 2, . . . . (5.2)

Here the q-shifted factorial is defined by

(a; q)k :=
(a; q)∞

(aqk; q)∞
, k ∈ Z; (a; q)∞ :=

∞∏

j=0

(1 − aqj). (5.3)

As with (2.2), formula (5.2) is an indefinite summation which can be verified immediately. Formula
(5.1) is a definite summation which can be treated along similar lines as (2.1). Write the sum in
(5.1) as (2.5) with

A(n, k) :=
(q−n; q)k (b; q)k

(c; q)k (q; q)k
qk, k = 0, 1, 2, . . . .
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Then A(n, k) = 0 for integer n, k such that k > n. Since (5.1) evidently holds for n = 0, the general
case of (5.1) would follow from (2.8) with

σ(n) :=
−b + qn−1c

1 − qn−1c
.

Now the indefinite summation formula

m∑

k=0

(
A(n, k) + σ(n)A(n − 1, k)

)
=

(q−n+1; q)m (b; q)m+1

(1 − cqn−1) (c; q)m (q; q)m
(5.4)

can be immediately be proved by checking that

(q−n+1; q)m (b; q)m+1

(1 − cqn−1) (c; q)m (q; q)m
−

(q−n+1; q)m−1 (b; q)m

(1 − cqn−1) (c; q)m−1 (q; q)m−1
= A(n,m) + σ(n)A(n − 1,m)

for m = 1, 2, . . . , and that

(q−n+1; q)m (b; q)m+1

(1 − cqn+1) (c; q)m (q; q)m

∣∣∣∣
m=0

= A(n, 0) + σ(n)A(n − 1, 0).

Note that, in the above formulas, qn can be treated as a complex parameter. Since the right-hand
side of (5.4) vanishes for m = n, (2.8) will follow by (2.13).

Surprisingly, Gosper’s and Zeilberger’s algorithms can be carried over to the q-case almost
unchanged. Let us briefly indicate which adaptations have to be made in our descriptions of these
algorithms.

In §3, F will now be the field of rational functions in some fixed number of indeterminates
including q (but not including k) over Q. The q-Gosper algorithm will look for solutions s(k) to
(3.2), nonzero for k = 0, 1, 2, . . . such that s(k− 1)/s(k) is rational in qk over F. Throughout in §3
replace F(k) by F(qk) and F[k] by F[qk].

In Lemma 3.1, p(k) will be only unique up to a factor which is a constant times some power
of qk.

In Lemma 3.5 the conclusion will be that f(k) is in F[qk, q−k], i.e. a Laurent polynomial in qk

over F.
In the reformulation of Lemma 3.6 let deg(g(k)) and ldeg(g(k)) mean the highest occurring

degree m2 and the lowest occurring degree m1 in a nonzero Laurent polynomial

g(k) :=

m2∑

j=m1

cj qjk, m1,m2 ∈ Z, m1 ≤ m2, cm1
6= 0 6= cm2

.

We now have:

Lemma 5.1. Under the suitably reformulated assumptions of §3, let f(k) be a nonzero element
of F[qk, q−k] and a solution of (3.12). Then:
(a) If ldeg(r1(k)) 6= ldeg(r2(k)) then

ldeg(f(k)) = ldeg(p(k)) − min{ldeg(r1(k)), ldeg(r2(k))}.
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(b) If l := ldeg(r1(k)) = ldeg(r2(k)) then let dl and el be the coefficients of qkl in r1(k) respectively
r2(k).
(b1) If q log(el/dl) /∈ Z then

ldeg(f(k)) = ldeg(p(k)) − l.

(b2) If q log(el/dl) ∈ Z then

ldeg(f(k)) ≥ min{q log(el/dl), ldeg(p(k))} − l.

Also:
(a)′ If deg(r1(k)) 6= deg(r2(k)) then

deg(f(k)) = deg(p(k)) − max{deg(r1(k)),deg(r2(k))}.

(b)
′

If l := deg(r1(k)) = deg(r2(k)) then let dl and el be the coefficients of qkl in r1(k) respectively
r2(k).

(b1)′ If q log(el/dl) /∈ Z then
deg(f(k)) = deg(p(k)) − l.

(b2)
′

If q log(el/dl) ∈ Z then

deg(f(k)) ≤ max{q log(el/dl),deg(p(k))} − l.

Remark 5.2. We may relax the assumptions on p(k) by allowing that p(k) is a Laurent polyno-
mial instead of an ordinary polynomial in qk. Suppose m is the lower bound found for ldeg(f(k))
in Lemma 5.1. Now put

f̃(k) := q−mk f(k), p̃(k) := q−mk p(k), r̃1(k) := r1(k), r̃2(k) := q−m r2(k).

Then (3.7) and (3.12) are still satisfied with f̃(k), p̃(k), r̃1(k), r̃2(k) instead of f(k), p(k), r1(k),

r2(k), and f̃(k) is in F[qk] but p̃(k) is possibly in F[qk, q−k]. If p̃(k) has terms with negative powers
of qk them (3.12) will have no solution.

Steps 1–6 in §3 can now be performed in the q-case with the obvious minor adaptations. In
particular, in Step 3 we determine a lower bound for ldeg(f(k)), then rewrite f(k), p(k), r1(k),
r2(k) as in Remark 5.2, and finally find an upper bound d for deg(f(k)). If ldeg(p̃(k)) < 0 or if
d < 0 then the algorithm fails. In Step 4 we put

f(k) :=

d∑

i=0

fi qki.

Our Maple program implements the q-Gosper algorithm for

a(k) :=
(α1; q)k . . . (αr; q)k ((−1)k qk(k−1)/2)s−r+1 zk

(β1; q)k . . . (βs; q)k (q; q)k
.

Here α1, . . . , αr, β1, . . . , βs and z are elements of F. In order that a(k) is in F for each k = 0, 1, 2, . . .
we require that

β1, . . . , βs 6= 1, q−1, q−2, . . . .
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Also, in order that a(k) 6= 0 for k = 0, 1, 2, . . . , we require that

α1, . . . , αr 6= 1, q−1, q−2, . . . and z 6= 0.

Now a(k)/a(k − 1) is certainly in F(qk):

a(k)

a(k − 1)
=

(1 − α1q
k−1) . . . (1 − αrq

k−1) (−qk−1)s−r+1 z

(1 − β1qk−1) . . . (1 − βsqk−1) (1 − qk)
.

If
α1, . . . , αr 6= q, q2, . . .

then 1 − qk will be a factor of r2(k), so r2(0) = 0 and s(−1) = 0 by (3.9). We will always make
this assumption.

For the q-version of Zeilberger’s algorithm we make slight adaptations of Zeilberger’s algorithm
as described in §4. In assumptions (iv) and (v) let A(n, k)/A(n, k−1) and A(n, k)/A(n−1, k) be in
F(qn, qk). Throughout replace rational or polynomial dependence on n, k by a similar dependence
on qn, qk. The other adaptations in Steps 1–6 of §4 can be made in a similar way as for the q-Gosper
algorithm. In connection with Remark 5.2 observe that the substitution p̃(k) := q−mkp(k) will be
caused by a substitution p̃1(k) := q−mkp1(k) (cf. (4.12) and (4.13)), while p0(k) (cf. (4.9)) remains
unaffected.

Our Maple program implements the q-Zeilberger algorithm for sums (4.1) with

A(n, k) :=
(q−n; q)k (qni2α2; q)k . . . (qnirαr; q)k

(q; q)k (qnj1β1; q)k . . . (qnjsβs; q)k
((−1)kqk(k−1)/2)s−r+1 (qnvζ)k,

being the coefficients of a q-hypergeometric series

rφs

[
q−n, qni2α2, . . . , q

nirαr

qnj1β1, . . . , qnjsβs
; q, qnvζ

]
.

We assume that no upper indices coincide with lower indices of the q-hypergeometric function, that
α2, . . . , αr, β1, . . . , βs and ζ are elements of F and that i2, . . . , ir, j1, . . . , js, v ∈ Z. As in (4.15),
(4.16), (4.17), (4.20) we require that

q log βt /∈ Z if jt = −1,−2, . . . ; q log βt 6= 0,−1,−2, . . . if jt = 0;
q log αt /∈ Z if it = 0; ζ 6= 0.

We get

A(n, k)

A(n, k − 1)
=

(1 − q−n+k−1) (1 − qni2+k−1α2) . . . (1 − qnir+k−1αr)

(1 − qk) (1 − qnj1+k−1β1) . . . (1 − qnjs+k−1βs)
(−qk−1)s−r+1 qnv ζ

and
A(n, k)

A(n − 1, k)
=

1 − q−n

1 − q−n+k

r∏

t=2

(q(n−1)it+kαt; q)it

(q(n−1)itαt; q)it

s∏

t=1

(q(n−1)jtβt; q)jt

(q(n−1)jt+kβt; q)jt

qvk,

where the q-shifted factorial (a; q)k is defined by (5.3), also for negative integer k.
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6. Implementation of the algorithms in Maple 6

The procedures below should work in Maple 6 and in Maple V, Releases 4 and 5.

FUNCTION: zeilb — summation of terminating hypergeometric series by Zeilberger’s algorithm.

CALLING SEQUENCE:
zeilb([a1, a2, . . . ], [b1, b2, . . . ], z, f(n), l, t)

PARAMETERS:
[a1, a2, . . . ] — list of numerator coefficients
[b1, b2, . . . ] — list of denominator coefficients
z — argument of hypergeometric function
n — truncate hypergeometric series as a sum from 0 to n
f(n) — user proposed name of truncated hypergeometric series as function of n
l — required order of recurrence looked for in Zeilberger’s algorithm
t — optional, positive integer determining talklevel of output, default max(1,printlevel)

DESCRIPTION:
– The function zeilb(a, b, z, f(n), l) tries to evaluate (if l = 0 or 1) the truncated hypergeometric

series

f(n) :=
n∑

k=0

(a1)k (a2)k . . .

(b1)k (b2)k . . .

zk

k!

or to find a recurrence relation in n of order l (if l ≥ 2) for it.

– If l ≥ 1 then one of the numerator coefficients must equal −n.

– If l = 0 then Gosper’s algorithm is applied.

– If l = 0 or 1 and if evaluation of the sum is possible for all n = 0, 1, 2, . . . as a quotient
of products of shifted factorials then the function will return in this form, with the notation
fac(c, k) being used for the shifted factorial (c)k.

– In all other cases, where the algorithm succeeds, the function will return as a recurrence
expressing f(n) in terms of f(n− 1), f(n− 2), . . . , f(n− l), followed by the inequality n > n1
for which the recurrence is valid.

– If the algorithm fails then nothing is returned.

– If l > 0, t > 2 and the algorithm succeeds then a short proof of the outcome will be printed.
There f(n, k) will denote the kth term of f(n).

– This function should be defined by inputting the file zeilb with the read command.

EXAMPLES:
> zeilb([-n,b],[c],1,f(n),1);

fac(-b + c, n)

--------------

fac(c, n)

> zeilb([b],[ ],1,f(n),0);

(b + n) fac(b, n)

-----------------

fac(1, n) b
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> zeilb([-n,b,c+1],[b+1,c],1,f(n),1);

n f(n - 1)

----------, 1 < n

b + n

> zeilb([-n,b],[c],z,f(n),2);

(z n + z b - c + 2 - 2 n - z) f(n - 1) (z - 1) (n - 1) f(n - 2)

- -------------------------------------- + ------------------------, 1 < n

n - 1 + c n - 1 + c

> zeilb([-n,n+3,-y],[2,z],1,g(n),2);

(z + 2 y) (2 n + 1) g(n - 1) (n - 1) (n - z + 2) g(n - 2)

---------------------------- + ----------------------------, 1 < n

(n + 2) (n + z - 1) (n + 2) (n + z - 1)

> zeilb([-n,n+3,y+z],[2,z],1,h(n),2);

(z + 2 y) (2 n + 1) h(n - 1) (n - 1) (n - z + 2) h(n - 2)

- ---------------------------- + ----------------------------, 1 < n

(n + 2) (n + z - 1) (n + 2) (n + z - 1)

Thus for the last two inputs g(n) = (−1)nh(n). (Check case n = 1 by hand.)

FUNCTION: qzeilb — summation of terminating q-hypergeometric series by the q-version of
Zeilberger’s algorithm.

CALLING SEQUENCE:
qzeilb([a1, a2, . . . ], [b1, b2, . . . ], q, z, f(n), l, t)

PARAMETERS:
[a1, a2, . . . ] — list of numerator coefficients
[b1, b2, . . . ] — list of denominator coefficients
q — base of q-hypergeometric function
z — argument of q-hypergeometric function
n — truncate q-hypergeometric series as a sum from 0 to n
f(n) - user proposed name of truncated q-hypergeometric series as function of n
l — required order of recurrence looked for in Zeilberger’s algorithm
t — optional, positive integer determining talklevel of output, default max(1,printlevel)

DESCRIPTION:
– The function qzeilb(a, b, q, z, f(n), l) tries to evaluate (if l = 0 or 1) the truncated q-hyper-

geometric series

f(n) :=

n∑

k=0

(a1; q)k (a2; q)k . . .

(b1; q)k (b2; q)k . . .

((−1)kqk(k−1)/2)r−s+1 zk

(q; q)k

or to find a recurrence relation in n of order l (if l ≥ 2) for it. Here r is the number of
terms in the list of numerator coefficients and s the number of terms in the list of denominator
coefficients.
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– If l ≥ 1 then one of the numerator coefficients must equal q−n.

– If l = 0 then the q-version of Gosper’s algorithm is applied.

– If l = 0 or 1 and if evaluation of the sum is possible for all n = 0, 1, 2, . . . as a quotient of
products of q-shifted factorials then the function will return in this form, with the notation
qfac(c, q, k) being used for the q-shifted factorial (c; q)k.

– In all other cases, where the algorithm succeeds, the function will return as a recurrence
expressing f(n) in terms of f(n− 1), f(n− 2), . . . , f(n− l), followed by the inequality n > n1
for which the recurrence is valid. Here f(n) denotes the series given by the input, in its
dependence on n.

– If the algorithm fails then nothing is returned.

– If l > 0, t > 2 and the algorithm succeeds then a short proof of the outcome will be printed.
There f(n, k) denotes the kth term of f(n).

– This function should be defined by inputting the file qzeilb with the read command.

EXAMPLES:
> read qzeilb;

> qzeilb([q^(-n),b],[c],q,q,f(n),1);

(-n)

qfac(c/b, q, n) (1/b)

-------------------------

qfac(c, q, n)

> qzeilb([b],[ ],q,q,f(n),0);

(n + 1)

(-q + b q ) qfac(b, q, n)

-------------------------------

qfac(q, q, n) q (b - 1)

> qzeilb([q^(-n),b,q*c],[q*b,c],q,q,f(n),1);

n

(q - 1) b f(n - 1)

-------------------, 1 < n

n

b q - 1

> qzeilb([q^(-n),b],[c],q,z,f(n),2);

2 2 n n n 2 n n 2

- (z q - q q - c q q + (q ) q c - q z b q + (q ) c) f(n - 1)

n n

/ n n (q - q ) (z b q - q c) f(n - 2)

/ (q q (-q c + q)) + --------------------------------, 1 < n

/ n n

q q (-q c + q)
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> qzeilb([a^2,q*a,-q*a,b,c,d,a^4*q^(n+1)/b/c/d,q^(-n)],

> [a,-a,a^2*q/b,a^2*q/c,a^2*q/d,b*c*d*a^(-2)*q^(-n),a^2*q^(n+1)],q,q,f(n),1);

2 2 2

q a q a q a 2

qfac(----, q, n) qfac(----, q, n) qfac(----, q, n) qfac(q a , q, n)

d c b c d b

2 2 2 2

/ q a a q a q a q

/ ( qfac(-----, q, n) qfac(----, q, n) qfac(----, q, n) qfac(----, q, n) )

/ b c d c d b
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