
Limit Transitions for BC Type Multivariable

Orthogonal Polynomials1

Jasper V. Stokman & Tom H. Koornwinder2

Abstract. Limit transitions will be derived between the five parameter family
of Askey-Wilson polynomials, the four parameter family of big q-Jacobi polyno-
mials and the three parameter family of little q-Jacobi polynomials in n variables
associated with root system BC. These limit transitions generalize the known
hierarchy structure between these families in the one variable case. Furthermore
it will be proved that these three families are q-analogues of the three parameter
family of BC type Jacobi polynomials in n variables. The limit transitions will
be derived by taking limits of q-difference operators which have these polyno-
mials as eigenfunctions.
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1 Introduction

Recently, a five parameter family of BCn-type Askey-Wilson polynomials and
a four resp. three parameter family of BCn-type big and little q-Jacobi polyno-
mials were introduced (cf. [K1] and [S1]), and full orthogonality was established
in both cases with the help of specific second order q-difference operators.

In the one variable case (BC1), limit transitions are known from the Askey-
Wilson polynomials to the big resp. little q-Jacobi polynomials, as well as a limit
transition from big q-Jacobi polynomials to little q-Jacobi polynomials. These
limit transitions show how the three families fit into the hierarchy of the Askey-
Wilson scheme. Furthermore, the one variable Askey-Wilson polynomials and
the big resp. little q-Jacobi polynomials are q-analoques of the classical Jacobi
polynomials in the sense that the polynomials tend to the Jacobi polynomials
when q tends to 1 (up to a possible dilation and translation).
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The main purpose of this paper is to generalize these limit transitions to the
BCn case. Explicit expressions of the polynomials, which immediately yield the
limit formulas in the one variable case, are no longer available for n > 1. In-
stead, we will derive limit formulas for the multivariable polynomials from limit
formulas for q-difference operators having these polynomials as eigenfunctions
and from limit formulas for the corresponding eigenvalues. Crucial for the proof
of the limit formulas is (2.2), which expresses the polynomials in terms of the
operators and the eigenvalues.

Macdonald introduced in [M1, §4] techniques to construct multivariable poly-
nomials, and to prove full orthogonality of these polynomials. In section 2 we
will describe these techniques in a slightly more general setting. In this setting,
the techniques can immediately be applied in the case ofBCn type Askey-Wilson
polynomials and the BCn type big resp. little q-Jacobi polynomials. We will
introduce these three families in section 3, as well as the three parameter family
of generalized Jacobi polynomials (cf. [V]). Generalized Jacobi polynomials are
related with BCn type Heckman-Opdam polynomials by a suitable change of
variables. In section 4 we give for each family a selfadjoint, triangular opera-
tor. In each case, we compare the eigenvalues which are related in the natural
BCn type partial order. In section 5 we will prove limit transitions from BCn

type Askey-Wilson polynomials to BCn type big and little q-Jacobi polynomi-
als and a limit transition from BCn type big q-Jacobi polynomials to BCn type
little q-Jacobi polynomials for parameter values which satisfy certain specific
conditions. The results of section 4 give then an explicit subset of the param-
eter domain for which these conditions are satisfied. We will prove that the
BCn type Askey-Wilson polynomials and the BCn type big and little q-Jacobi
polynomials are q-analogues of generalized Jacobi polynomials (with a possible
dilation and translation in the variables). In section 6 we will discuss possible
extensions to the whole parameter domain of the limit transitions from BCn

type Askey-Wilson polynomials to BCn type big resp. little q-Jacobi polyno-
mials and the limit transition from BCn type big q-Jacobi polynomials to BCn

type little q-Jacobi polynomials. Furthermore, we make some additional re-
marks about the limits q ↑ 1 of the big and little q-Jacobi polynomials.

Notations and conventions Throughout this paper N = {1, 2, . . .} will be the
natural numbers and N0 will denote the set of natural numbers together with
0. The convention will be used that

∏k
i=l ai = 1 if k < l, k, l ∈ N. If there

is no confusion possible, the dependence on the parameters a, b, c, d, q, t will be
omitted in the formulas. The concept of selfadjoint operator will only be used in
the formal sense: a hermitian linear operator with respect to an inner product
on a vector space.
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2 Techniques for proving full orthogonality

The next propositions summarize in essence the method introduced by Macdon-
ald in [M1] to construct his polynomials for general root systems and to prove
full orthogonality of these polynomials. For convenience, we will give proofs of
the propositions.

We start with a proposition concerning triangular operators.

Proposition 2.1 Suppose there is given a linear space V over C with a linear
basis {eλ / λ ∈ I} for V , I some index set and there is given a partial order <
on I such that I(λ) := {µ ∈ I / µ ≤ λ} is finite for all λ ∈ I. Suppose that
D : V → V is a triangular linear operator with respect to the given basis and
partial order, i.e.

Deλ =
∑
µ≤λ

cλ,µeµ ∀λ ∈ I, (2.1)

for certain cλ,µ ∈ C. Define

Qλ :=

∏
µ<λ

D − cµ,µ

cλ,λ − cµ,µ

 eλ (2.2)

for λ ∈ I satisfying cλ,λ 6= cµ,µ for all µ < λ. Then Qλ ∈ V satisfies
(a) Qλ = eλ +

∑
µ<λ kλ,µeµ for certain kλ,µ ∈ C;

(b) DQλ = cλ,λQλ.
These two properties characterize Qλ uniquely.

Proof: Fix λ ∈ I such that cλ,λ 6= cµ,µ for all µ < λ. The triangularity property
of D shows that Qλ satisfies property (a). Let Vλ ⊂ V be the finite dimensional
subspace spanned by {eµ / µ ≤ λ}. Then D maps Vλ into itself. Denote Dλ for
the restriction of D to Vλ. There exists a total order ≺ on I(λ) such that µ ≺ ν
if µ < ν (define µ ≺ ν if #I(µ) < #I(ν) for µ, ν ∈ I(λ) and extend ≺ to a total
order on I(λ)). This implies, together with (2.1), that

det (ξId−Dλ) =
∏
µ≤λ

(ξ − cµ,µ) .

Hence
∏

µ≤λ (D − cµ,µ) = 0 on Vλ by the theorem of Cayley and Hamilton. In
particular,

∏
µ≤λ (D − cµ,µ) eλ = 0, so DQλ = cλ,λQλ. The root cλ,λ of the

characteristic polynomial det (ξId−Dλ) has multiplicity one, hence Dλ has a
one dimensional eigenspace corresponding to eigenvalue cλ,λ. So (a) and (b)
characterize Qλ uniquely. 2

Adding to the property thatD is triangular the property thatD is selfadjoint
with respect to some inner product, gives
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Proposition 2.2 Keep the notations and assumptions of proposition 2.1. Sup-
pose furthermore that there is given an inner product 〈 . , . 〉 on V , such that D
is selfadjoint with respect to 〈 . , . 〉. Define a new basis {Pλ / λ ∈ I} of V by the
following two conditions:
(1) Pλ = eλ +

∑
µ<λ dλ,µeµ for some constants dλ,µ,

(2) 〈Pλ, eµ〉 = 0 for µ < λ.
Then we have
(a) DPλ = cλ,λPλ ∀λ ∈ I.
(b) Pλ = Qλ for λ ∈ I satisfying cλ,λ 6= cµ,µ for all µ < λ.
(c) 〈Pλ, Pµ〉 = 0 if λ < µ or µ < λ, or if λ 6= µ and cλ,λ 6= cµ,µ.

Proof: (a) Fix λ ∈ I. Using the triangularity of D and the explicit form of Pλ,
we have that

DPλ = cλ,λeλ +
∑
µ<λ

gµeµ

for certain gµ ∈ C. Furthermore we have for all µ < λ that

〈DPλ, eµ〉 = 〈Pλ, Deµ〉 =
∑
ν≤µ

cµ,ν〈Pλ, eν〉 = 0.

If cλ,λ 6= 0 then it follows immediately that DPλ/cλ,λ satisfies the defining
conditions of Pλ. If cλ,λ = 0, then

〈DPλ, DPλ〉 =
∑
µ<λ

gµ〈DPλ, eµ〉 = 0,

so then DPλ = 0 = cλ,λPλ.
(b) It follows from (a) that cλ,λ ∈ R. Hence we have, again by (a), that
〈Qλ, Pµ〉 = 0 for all µ < λ. Thus Qλ satisfies condition (2). Qλ satisfies also
condition (1) according to proposition 2.1, hence Qλ = Pλ.
(c) Case µ < λ resp. µ > λ is immediate from the definitions, while the case
µ 6= λ and cλ,λ 6= cµ,µ follows from

(cλ,λ − cµ,µ)〈Pλ, Pµ〉 = 0 (2.3)

which is a consequence of the selfadjointness of D and (a). 2

In the applications of these propositions, the operators and inner products
usually depend on real or complex parameters, and continuity resp. rationality
arguments in these parameters are sometimes needed. The following two propo-
sitions deal with the dependence of Pλ on an arbitrary parameter set. We will
use the same notations as in the first two propositions but we assume that the
inner product, and the selfadjoint, triangular operator depend on a parameter
s ∈ J , with J an arbitrary topological space. Hence, for fixed s ∈ J , we denote
〈 . , . 〉s for the inner product on V , Ds for the selfadjoint (w.r.t. 〈 . , . 〉s) trian-
gular (w.r.t. {eµ / µ ∈ I}) operator, cλ,µ(s) (µ ≤ λ) for the coefficients in the
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expansion of Dseλ w.r.t. the basis {eµ / µ ∈ I}, Pλ(s) (λ ∈ I) for the new basis
defined with respect to 〈 . , . 〉s, and dλ,µ(s) (µ < λ) for the coefficients in the
expansion of Pλ(s) with respect to the basis {eµ / µ ∈ I}.

Proposition 2.3 Suppose that for all λ, µ ∈ I, the functions s 7→ 〈eλ, eµ〉s :
J → C are continuous. Then:
(a) The functions s 7→ dλ,µ(s) : J → C are continuous for all λ, µ ∈ I.
(b) Suppose that the set {s ∈ J / cλ,λ(s) 6= cµ,µ(s)} is dense in J for all λ 6= µ.
Then

〈Pλ(s), Pµ(s)〉s = 0 ∀s ∈ J if µ 6= λ. (2.4)

Proof: Let ν < λ. We have

0 = 〈Pλ(s), eν〉s = 〈eλ, eν〉s +
∑
µ<λ

dλ,µ(s)〈eµ, eν〉s.

For fixed λ ∈ I this gives for every s ∈ J an inhomogeneous system of linear
equations in dλ,µ(s) (µ < λ). Since the eµ’s are linearly independent, we have
that det(〈eµ, eν〉s)µ,ν<λ 6= 0 for all s ∈ J . Hence the system has a unique solu-
tion for every s ∈ J , and Cramer’s rule together with the continuity assumption
on 〈eρ, eσ〉s implies that the solution dλ,µ(s) (µ < λ) depends continuously on
s.
(b) Part (a) implies that 〈Pλ(s), Pµ(s)〉s depends continuously on s, so (b)
follows directly from proposition 2.2 (c). 2

Let us fix some notations and conventions about rational functions. Let
t1, . . . , tm be independent (complex) variables. Let C[t] be the C-algebra of
polynomials in t1, . . . , tm and C (t) the field of rational functions in t1, . . . , tm
over C. For each h ∈ C (t), define the domain of h by

dom(h) := {t0 ∈ Cm /∃ p, q ∈ C[t] such that h = p/q and q(t0) 6= 0.}

dom(h) ⊂ Cm is open and dense, and h defines a continuous function from
dom(h) to C by specialization.

Definition 2.4 Let J ⊂ Cm open, or J ⊂ Rm open. Consider Rm as subset
of Cm in the usual manner. A function f : J → C is said to have a rational
extension if there exists a rational function f̃ ∈ C(t) such that f and f̃ coincide
as functions on J ∩ dom(f̃). Clearly, if f̃ exists, then it is unique, and it will be
called the rational extension of f .

Proposition 2.5 Let J be an open subset of Rm or an open subset of Cm.
Assume that the functions s 7→ cλ,µ(s) : J → C have rational extensions c̃λ,µ

for all µ ≤ λ. Suppose that c̃λ,λ 6= c̃µ,µ as rational functions if µ < λ. Define a
dense open set domλ ⊂ Cm by

domλ := {s ∈Wλ / c̃λ,λ(s) 6= c̃µ,µ(s) ∀µ < λ},
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with
Wλ :=

⋂
µ≤ν≤λ

dom (c̃ν,µ) .

Then
(a) The functions s 7→ dλ,µ(s) : J → C have rational extensions d̃λ,µ for all
µ < λ. The domain of d̃λ,µ contains the set domλ.
(b) The functions Pλ(s) and the equation DsPλ(s) = cλ,λ(s)Pλ(s) remain mean-
ingful and valid, by continuation of rational functions, for s ∈ domλ.
(c) Suppose that c̃λ,λ 6= c̃µ,µ as rational functions for λ, µ ∈ I, µ 6= λ, and that
s 7→ 〈eλ, eµ〉s : J → C is continuous for all λ, µ ∈ I. Then 〈Pλ(s), Pµ(s)〉s = 0
for all s ∈ J if λ 6= µ.

Proof: (a) Let xν,ρ (ρ ≤ ν ≤ λ) be independent variables. Proposition 2.2(b)
gives that there are polynomials pλ,µ ∈ C[{xν,ρ}ρ≤ν≤λ] such that

Pλ(s) = eλ +
∑
µ<λ

(
pλ,µ ({cν,ρ(s)}ρ≤ν≤λ)∏
ν<λ (cλ,λ(s)− cν,ν(s))

)
eµ (2.5)

for s ∈ J such that cλ,λ(s) 6= cν,ν(s) for all ν < λ. Hence for all µ < λ, the
rational function d̃λ,µ given by

d̃λ,µ =
pλ,µ ({c̃ν,ρ}ρ≤ν≤λ)∏

ν<λ (c̃λ,λ − c̃ν,ν)
(2.6)

is a rational extension of dλ,µ : J → C, and the domain of d̃λ,µ contains domλ.
(b) is clear.
(c) follows from proposition 2.3 (b).

2

Remark 2.6 Note that the polynomials pλ,µ in (2.5) and (2.6) are completely
determined by the partially ordered set (I,<). They do not depend on the choice
of the inner product 〈 . , . 〉s or on the choice of the basis vectors eλ. Furthermore,
the polynomial pλ,µ can be chosen homogeneous of total degree #{ν ∈ I / ν < λ}.

Remark 2.7 For the limit transitions from BCn type Askey-Wilson polynomi-
als to BCn type big resp. little q-Jacobi polynomials we will apply these propo-
sitions for J being an open subset of R. In this case, note that if a continuous
function f : J → C has a rational extension f̃ , then J ⊂ dom(f̃). This implies
that if we have all the assumptions of proposition 2.5 with m = 1, then the
rational expression d̃λ,µ(s) (see (2.6)) coincides with the function dλ,µ(s) for all
s ∈ J and all µ < λ.
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3 Families of BCn type orthogonal polynomials

In this section, we fix a q ∈ (0, 1). Let P+ be the partitions of length ≤ n, so

P+ := {λ = (λ1, . . . , λn) / λ1 ≥ . . . ≥ λn ≥ 0}. (3.1)

Define a partial order on P+ in the following way: µ, λ ∈ P+ then

µ ≤ λ⇔
i∑

j=1

µj ≤
i∑

j=1

λj i = 1, . . . , n. (3.2)

Remark 3.1 Choose for the root system R = R+ ∪ (−R+) of type BCn, the
positive roots R+ by

R+ = {ei}n
i=1 ∪ {ei ± ej}1≤i<j≤n ∪ {2ei}n

i=1, (3.3)

with {ei}n
i=1 the standard orthonormal basis for Rn, then P+ coincides with the

set of dominant weights, and λ > µ for λ, µ ∈ P+ iff λ− µ is a sum of positive
roots (cf. [K1]).

Let A = C[x1, . . . , xn] be the C-algebra of polynomials in the independent
indeterminates x1, . . . , xn and let A = C[x±1

1 , . . . , x±1
n ] be the algebra of Laurent

polynomials in x1, . . . , xn. The Weyl group S corresponding to the root system
of type An−1 is isomorphic to the permutation group of {1, . . . , n}, so it acts
in an obvious way on Nn

0 . This induces an action of S on A. The algebra
of symmetric polynomials, denoted AS , is the subalgebra of A consisting of
S-invariant polynomials in the variables x1, . . . , xn.

The Weyl group W corresponding to the root system of type BCn is iso-
morphic to the semidirect product of (Z/2Z)n and S. It acts in an obvious way
on Zn. This induces an action of W on A. Denote AW for the subalgebra of A
consisting of W -invariant Laurent polynomials in the variables x1, . . . , xn.

Since Card (Sn ∩ P+) = 1 for all n ∈ Nn
0 , we have that the symmetric

monomial functions {mλ / λ ∈ P+} defined by

mλ(x) :=
∑

µ∈Sλ

xµ,

with xµ := xµ1
1 . . . xµn

n , form a C-basis for AS . Similarly, the monomials
{m̃λ / λ ∈ P+} defined by

m̃λ(x) :=
∑

µ∈Wλ

xµ

form a C-basis for AW , since Card (Wz ∩ P+) = 1 for all z ∈ Zn.
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Let u, v ∈ R, u < v. Define the Jackson (q-)integral of f over [u, v] by∫ v

u

f(x) dqx :=
∫ v

0

f(x) dqx−
∫ u

0

f(x) dqx,∫ v

0

f(x) dqx := (1− q)
∞∑

k=0

f(vqk)vqk,

provided that the infinite sums converge absolutely. If f is continuous on [u, v],
then

lim
q↑1

∫ v

u

f(x) dqx =
∫ v

u

f(x)dx, (3.4)

with dx the Lebesgue measure. The q-shifted factorial is defined by

(u; q)v :=
(u; q)∞

(qvu; q)∞
,

(u; q)∞ :=
∞∏

k=0

(1− uqk),

for u, v ∈ C such that qvu 6= q−k for all k ∈ N0. If v ∈ N0, then this yields

(u; q)v =
v−1∏
k=0

(
1− uqk

)
,

which we will use as a definition of (u; q)v for arbitrary v ∈ N0, u ∈ C. Denote

(u1, . . . , ur; q)v :=
r∏

j=1

(uj ; q)v ,

and denote

r+1φr

[
u1, . . . , ur+1

v1, . . . , vr
; q, z

]
:=

∞∑
k=0

(u1, . . . , ur+1; q)k z
k

(v1, . . . , vr, q; q)k

for the q-hypergeometric series.
We now first define the BCn-type Askey-Wilson polynomials (cf. [K1]).

Define the weight function δ(x; a, b, c, d; q, t) by

δ(x1, . . . , xn) := δ+(x1, . . . , xn)δ+(x−1
1 , . . . , x−1

n ), (3.5)

δ+(x) :=
n∏

i=1

(
x2

i ; q
)
∞

(axi, bxi, cxi, dxi; q)∞

∏
1≤k<l≤n

(
xkx

−1
l , xkxl; q

)
∞(

txkx
−1
l , txkxl; q

)
∞
. (3.6)

Assume that |a|, |b|, |c|, |d| ≤ 1, and that if a, b, c, d are complex, then they
appear in conjugate pairs. Assume also that the pairwise products of a, b, c, d
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are not equal to 1. Denote VAW for the set of parameters (a, b, c, d) which satisfy
these conditions. Denote du := du1 . . . dun and eiu := (eiu1 , . . . , eiun). Suppose
t ∈ (0, 1), then

〈f, g〉AW,t :=
∫
..

∫
[−π,π]n

f(eiu)g(eiu)δ(eiu; t)du f, g ∈ AW (3.7)

is a hermitian inner product on AW .

Definition 3.2 Let (a, b, c, d) ∈ VAW and t ∈ (0, 1). The Askey-Wilson poly-
nomials {PAW

λ (x; a, b, c, d; q, t) / λ ∈ P+} are defined by the following two con-
ditions:
(1) PAW

λ (t) = m̃λ +
∑

µ<λ;µ∈P+ dAW
λ,µ (t)m̃µ, certain dAW

λ,µ (t) ∈ C
(2) If µ < λ and µ ∈ P+, then 〈PAW

λ (t), m̃µ〉AW,t = 0.

For the one variable case, there is no t-dependence, and explicit expressions of
the Askey-Wilson polynomials {PAW

m (x; a, b, c, d; q) /m ∈ N0} are given by

PAW
m (x; a, b, c, d; q) =

(ab, ac, ad; q)m

am (qm−1abcd; q)m
4φ3

[
q−m, qm−1abcd, ax, ax−1

ab, ac, ad
; q, q

]
.

(3.8)
Usually the Askey-Wilson polynomials are written as function of x+x−1

2 and
normalized differently (cf. [AW]).

For the BCn-type big q-Jacobi polynomials, we define an inner product on
AS as follows (cf. [S1]). Let c, d > 0, and

a ∈ (
−c
dq
,
1
q
), b ∈ (

−d
cq
,
1
q
),

or a = cz, b = −dz̄ with z ∈ C\R. Denote V q
B for the set of parameters (a, b, c, d)

which satisfy these conditions. Fix some (a, b, c, d) ∈ V q
B . Define 〈 . , . 〉a,b,c,d

B,n,q,t

for t ∈ (0, 1) on AS by:

〈f, g〉B,t :=
n∑

j=0

〈f, g〉j,B,t f, g ∈ AS , (3.9)

with 〈f, g〉j,B,t given by the following multidimensional Jackson integral:∫ c

x1=0

∫ tx1

x2=0

· · ·
∫ txj−1

xj=0

∫ 0

xj+1=−dtn−j−1

∫ qt−1xj+1

xj+2=−dtn−j−2
· · ·

· · ·
∫ qt−1xn−1

xn=−d

f(x)g(x)wj(x; t)dqx,

with dqx := dqxn . . . dqx1 and weight function wj(x; a, b, c, d; q, t) given by

wj(x; t) := dτ
j

(
n∏

i=1

(qxi/c,−qxi/d; q)∞
(qaxi/c,−qbxi/d; q)∞

)
∆j

τ (x), (3.10)
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with t = qτ and

∆j
τ (x) := ∆(x)

 ∏
1≤k<m≤n

k≤j

|xk|2τ−1

(
q1−τ xm

xk
; q
)

2τ−1

×

∏
j<k<m≤n

|xm|2τ−1

(
q1−τ xk

xm
; q
)

2τ−1

, (3.11)

∆(x) :=
∏

i<j(xi − xj) the Vandermonde determinant, and with dτ
j = dτ

j (c, d)
a positive constant given by

dτ
j :=

∏
1≤k<m≤n

k≤j

|ymk|2τ−1

(
q1−τy−1

mk; q
)
2τ−1

(q1−τymk; q)2τ−1

, ymk :=
−d
c
q(n−m−k+1)τ . (3.12)

Definition 3.3 Let (a, b, c, d) ∈ V q
B and t ∈ (0, 1).

The big q-Jacobi polynomials {PB
λ ( . ; a, b, c, d; q, t) / λ ∈ P+} are defined by the

following two conditions: λ ∈ P+, then:
(1) PB

λ (t) = mλ +
∑

µ<λ;µ∈P+ dB
λ,µ(t)mµ for some dB

λ,µ(t) ∈ C,
(2) 〈PB

λ (t) , mµ〉B,t = 0 if µ < λ, µ ∈ P+.

For the one variable case, there is no t-dependence, and explicit expressions
for the big q-Jacobi polynomials {PB

m (x; a, b, c, d; q) /m ∈ N0} are given by (cf.
[AA2])

PB
m (x; a, b, c, d; q) =

(qa; q)m (−qad/c; q)m

(qm+1ab; q)m (qa/c)m 3φ2

[
q−m, qm+1ab, qxa/c

qa,−qad/c
; q, q

]
.

(3.13)
Usually the big q-Jacobi polynomials are normalized such that the explicit ex-
pression is given by only the 3φ2 part of (3.13).

The little q-Jacobi polynomials are defined as follows (cf. [S1]): Let 0 < a <
1
q and b < 1

q , and denote V q
L for the set of parameters (a, b) which satisfy these

conditions. Fix some (a, b) ∈ V q
L . Define for t ∈ (0, 1) a hermitian inner product

〈 . , . 〉a,b
L,n,q,t on AS by

〈f, g〉L,t :=
∫ 1

x1=0

∫ tx1

x2=0

· · ·
∫ txn−1

xn=0

f(x)g(x)v(x; t)dqx f, g ∈ AS (3.14)

with weight function v(x; a, b; q, t) given by

v(x; t) :=

(
n∏

i=1

(qxi; q)∞
(qbxi; q)∞

xα
i

)
∆τ (x), (a = qα, t = qτ ) (3.15)

∆τ (x) := ∆(x)
∏

1≤i<j≤n

|xi|2τ−1

(
q1−τ xj

xi
; q
)

2τ−1

. (3.16)
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Definition 3.4 Let (a, b) ∈ V q
L and t ∈ (0, 1). The little q-Jacobi polynomials

{PL
λ ( . ; a, b; q, t) / λ ∈ P+} are defined by the following two conditions: λ ∈ P+,

then:
(1) PL

λ (t) = mλ +
∑

µ<λ;µ∈P+ dL
λ,µ(t)mµ for some dL

λ,µ(t) ∈ C,
(2) 〈PL

λ (t),mµ 〉L,t = 0 if µ < λ, µ ∈ P+.

For the one variable case, there is no t-dependence, and explicit expressions for
the little q-Jacobi polynomials {PL

m(x; a, b, c, d; q) /m ∈ N0} are given by (cf.
[AA1]):

PL
m(x; a, b; q) :=

(−1)mq(
m
2 ) (qa; q)m

(qm+1ab; q)m
2φ1

[
q−m, qm+1ab

qa
; q, qx

]
. (3.17)

Usually the little q-Jacobi polynomials are normalized such that the explicit
expression is given by only the 2φ1 part of (3.17).

Finally, we define two families of ’classical’ BCn type orthogonal polynomi-
als. Let α, β > −1 and τ > 0. Denote VJ for the set of parameters (α, β, τ)
which satisfies these conditions. Define an hermitian inner product 〈 . , . 〉α,β

J,τ on
AS by

〈f, g〉α,β
J,τ :=

1
n!

∫ 1

x1=0

· · ·
∫ 1

xn=0

f(x)g(x)vJ(x;α, β; τ)dx f, g ∈ AS

with vJ(x;α, β; τ) :=
(∏n

i=1(1− xi)βxα
i

)
|∆(x)|2τ .

Definition 3.5 Let (α, β, τ) ∈ VJ . The generalized Jacobi polynomials
{P J

λ (x;α, β; τ) / λ ∈ P+} are defined by the following two conditions:
(1) P J

λ (α, β; τ) = mλ +
∑

µ<λ;µ∈P+ dJ
λ,µ(α, β; τ)mµ for some dJ

λ,µ(α, β; τ) ∈ C.
(2) 〈P J

λ (α, β; τ),mµ〉α,β
J,τ = 0 if µ < λ.

In the one variable case, the Jacobi polynomials {P J
m(x;α, β) /m ∈ N0} are

independent of τ , and are explicitly given by

P J
m(x;α, β) :=

(−1)m (α+ 1)m

(m+ α+ β + 1)m
2F1

[
−m,m+ α+ β + 1

α+ 1
;x
]

(3.18)

with

2F1

[
a, b

c
; z
]

:=
∞∑

n=0

(a)n (b)n

(c)n n!
zn

the hypergeometric function and

(a)n := a(a+ 1) . . . (a+ n− 1) (n ∈ N)

the Pochhammer symbol, (a)0 := 1. Usually the Jacobi polynomials are written
as functions of 1− 2x and normalized differently (cf. [EM], §10.8).
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The generalized Jacobi polynomials are closely related to the Heckman-
Opdam polynomials of type BCn. The BCn type Heckman-Opdam polyno-
mials are defined as follows (cf. [HO],[H1]). We will use the notation intro-
duced in remark 3.1. Denote 〈 . , . 〉 for the standard hermitian inner product
on Cn, so 〈ei, ej〉 = δi,j . A multiplicity function k is a function k : R → C
such that kα = kwα for all α ∈ R,w ∈ W . k = (kα)α∈R is completely de-
termined by k1 := ke1 , k2 := ke1+e2 and k3 := k2e1 , so we will sometimes
denote k = (k1, k2, k3). Let VHO be the set of parameters (k1, k2, k3) such that
k1 + k3 > − 1

2 , k3 > − 1
2 and k2 > 0. Define a hermitian inner product on AW

for k ∈ VHO by

〈f, g〉k :=
∫ 2π

θ1=0

· · ·
∫ 2π

θn=0

f(eiθ)g(eiθ)δJ(θ; k)dθ f, g ∈ AW ,

with eiθ = (eiθ1 , . . . , eiθn) and weight function

δJ(θ; k) :=
∏
α∈R

(
e

1
2 i〈α,θ〉 − e−

1
2 i〈α,θ〉

)kα

= c(k)
n∏

j=1

(sin2(θj/2))k1+k3(cos2(θj/2))k3
∏
l<m

| sin2(θl/2)− sin2(θm/2)|2k2

with c(k) = 4n(k1+2k3)+n(n−1)k2 .

Definition 3.6 Let k ∈ VHO. The BCn type Heckman-Opdam polynomials
{PHO

λ (x; k) / λ ∈ P+} are defined by the following two conditions:
(1) PHO

λ (k) = m̃λ +
∑

µ<λ;µ∈P+ dHO
λ,µ (k)m̃µ for some dHO

λ,µ (k) ∈ C,
(2) 〈PHO

λ (k), m̃µ〉k = 0 if µ < λ.

Note that

mλ

(
sin2(θ/2)

)
= (−4)−|λ| m̃λ

(
eiθ
)

+
∑
µ<λ

bλ,µm̃µ

(
eiθ
)

for certain constants bλ,µ. A calculation shows then that the defining conditions
for P J

λ (definition 3.5) with α = k1 + k3− 1
2 , β = k3− 1

2 and τ = k2 become the
defining conditions for PHO

λ (k) (definition 3.6) under the change of variables
xi := sin2(θi/2) (i = 1, . . . , n), up to the constant (−4)|λ|. So the relation
between Heckman-Opdam polynomials of type BCn and the generalized Jacobi
polynomials is given by

PHO
λ (eiθ; k) = (−4)|λ|P J

λ

(
sin2(θ/2); k1 + k3 −

1
2
, k3 −

1
2
, k2

)
(3.19)

for λ ∈ P+, with sin2(θ/2) := (sin2(θ1/2), . . . , sin2(θn/2)).
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In the one variable case, we have the following limit transitions: m ∈ N0,
then

lim
ε→0

(
ε(cd)

1
2

q
1
2

)m

PAW
m

(
q

1
2x

ε(cd)
1
2
; εq

1
2 a (d/c)

1
2 , ε−1q

1
2 (c/d)

1
2 ,−ε−1q

1
2 (d/c)

1
2 ,

−εq 1
2 b(c/d)

1
2 ; q
)

= PB
m (x; a, b, c, d; q) (3.20)

for (a, b, c, d) ∈ V q
B ,

lim
ε→0

(
ε

q
1
2

)m

PAW
m

(
q

1
2x

ε
; εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q

)
= PL

m(x; a, b; q) (3.21)

for (a, b) ∈ V q
L and

lim
d↓0

PB
m (x; b, a, 1, d; q) = PL

m(x; a, b; q) (3.22)

for (a, b) ∈ V q
L (cf. [K2],[K3] and [S1]). These three limit transitions induce

the hierarchy structure between these three families of orthogonal polynomi-
als within the Askey-Wilson scheme. For the limit q tends to 1, we have the
following limits in the one variable case:

lim
q↑1

PAW
m

(
x; c,

qα+1

c
,
qβ+1d

c
,
c

d
; q
)

= kc,d
m P J

m

(
1 + c2 − c(x+ x−1)
(1− d)(1− c2/d)

;α, β
)

(3.23)

for α, β > −1 and c, d 6= 0, d 6= 1, c2 6= d with kc,d
m :=

(
(d−1)(1−c2/d)

c

)m

,

lim
q↑1

PB
m (x; qα, qβ , c, d; q) = (−(c+ d))m

P J
m

(
c− x

c+ d
;α, β

)
m ∈ N0 (3.24)

for α, β > −1 and c, d > 0, and

lim
q↑1

PL
m(x; qα, qβ ; q) = P J

m(x;α, β) m ∈ N0 (3.25)

for α, β > −1. These limit transitions follow immediately from the explicit
expressions for the one variable orthogonal polynomials ((3.8), (3.13), (3.17)
and (3.18)). We will generalize these limit transitions to the BCn case.

4 Selfadjoint, triangular operators and their
eigenvalues

In this section, fix q ∈ (0, 1). For each family of BCn type polynomials defined
in section 3, we will introduce a selfadjoint, triangular operator. By application
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of the propositions of section 2, we can conclude that the polynomials are joint
eigenfunctions of the operator. Proposition 2.3(b) gives an alternative descrip-
tion of the polynomials for a subset of the parameter domain. This turns out to
be crucial for the proofs of the limit transitions. In each case, we will investigate
this subset of the parameter domain more carefully at the end of the section by
comparing eigenvalues of the operators which are related by the partial order.

We start with defining the selfadjoint, triangular operators in each case.
Define a second order q-difference operator Da,b,c,d

AW,q,t by

(DAW f) (x) :=
n∑

i=1

(
ψAW

i (x) (Tq,if − f) (x) + φAW
i (x)

(
Tq−1,if − f

)
(x)
)
(4.1)

for f ∈ AW , with

(Tq,if)(x) := f(x1, . . . , xi−1, qxi, xi+1, . . . , xn), (4.2)

the q-shift in the ith component, and functions ψAW
i (x; a, b, c, d; q, t) and

φAW
i (x; a, b, c, d; q, t) given by

ψAW
i (x) :=

(1− axi)(1− bxi)(1− cxi)(1− dxi)
(1− x2

i )(1− qx2
i )

∏
l 6=i

(1− txixl)(1− txix
−1
l )

(1− xixl)(1− xix
−1
l )

,

(4.3)
φAW

i (x) := ψAW
i (x−1

1 , . . . , x−1
n ). (4.4)

We have (cf. [K1], lemma 5.2):

Proposition 4.1 Let λ ∈ P+. For arbitrary a, b, c, d, t ∈ C, there exist con-
stants cAW

λ,µ (a, b, c, d; q, t) ∈ C (µ ≤ λ) depending polynomially on a, b, c, d, t and
rationally on q, such that

DAW,tm̃λ =
∑
µ≤λ

cAW
λ,µ (t)m̃µ.

The leading term cAW
λ,λ (a, b, c, d; q, t) will be denoted by aAW

λ (a, b, c, d; q, t) and is
given by

aAW
λ :=

n∑
j=1

(
q−1abcdt2n−j−1(qλj − 1) + tj−1(q−λj − 1)

)
. (4.5)

The nature of the dependance of cAW
λ,µ on a, b, c, d, t, q follows by inspection of

the proof of lemma 5.2 in [K1]. In [K1] it is also proved that Da,b,c,d
AW,q,t is self-

adjoint with respect to 〈 . , . 〉a,b,c,d
AW,q,t if (a, b, c, d) ∈ VAW and t ∈ (0, 1), and that

〈m̃λ, m̃µ〉AW,t is continuous in t for t ∈ (0, 1), for all λ, µ ∈ P+. If (a, b, c, d) ∈ C4

with abcd /∈ {1, q−1, q−2, . . .} then we have aAW
λ (t) = aAW

µ (t) as polynomials in
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t if and only if λ = µ. So application of the propositions in section 2 shows that
PAW

λ (t) is an eigenfunction of DAW,t with eigenvalue aAW
λ (t) for all t ∈ (0, 1),

and it gives full orthogonality of the polynomials.
For the big q-Jacobi case, we define a second order q-difference operator

Da,b,c,d
B,q,t by replacing in the expression of DAW (formula (4.1)), ψAW

i by ψB
i and

φAW
i by φB

i with ψB
i (x; a, b, c, d; q, t) given by

ψB
i (x) := qtn−1

(
a− c

qxi

)(
b+

d

qxi

)∏
l 6=i

xl − txi

xl − xi

and φB
i (x; a, b, c, d; q, t) given by

φB
i (x) :=

(
1− c

xi

)(
1 +

d

xi

)∏
l 6=i

xi − txl

xi − xl
.

For the little q-Jacobi case, define Da,b
L,q,t := Db,a,1,0

B,q,t , so denote

ψL
i (x; a, b; q, t) := ψB

i (x; b, a, 1, 0; q, t),

φL
i (x; a, b; q, t) := φB

i (x; b, a, 1, 0; q, t).

We have (cf. [S1]):

Proposition 4.2 Let λ ∈ P+.
(1) For arbitrary a, b, c, d, t ∈ C, there exist constants cBλ,µ(a, b, c, d; q, t) ∈ C
(µ ≤ λ) depending polynomially on a, b, c, d, t and Laurent polynomially on q,
such that

DB,tmλ =
∑
µ≤λ

cBλ,µ(t)mµ.

The leading term cBλ,λ(a, b, c, d; q, t) is independent of c and d and will be denoted
by aB,L

λ (a, b; q, t). aB,L
λ is given by

aB,L
λ :=

n∑
j=1

(
qabt2n−j−1(qλj − 1) + tj−1(q−λj − 1)

)
. (4.6)

(2) For arbitrary a, b, t ∈ C, there exist constants cLλ,µ(a, b; q, t) ∈ C (µ ≤ λ)
depending polynomially on a, b, t and Laurent polynomially on q, such that

DL,tmλ =
∑
µ≤λ

cLλ,µ(t)mµ.

We have cLλ,λ(a, b; q, t) = aB,L
λ (a, b; q, t).
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Clearly part (2) of the proposition is a direct consequence of part (1), since it
is clear that

cLλ,µ(a, b; q, t) = cBλ,µ(b, a, 1, 0; q, t), µ ≤ λ. (4.7)

The Laurent polynomial dependance of cBλ,µ and cLλ,µ on q was not explicitly
stated in [S1] but follows by inspection of the proof of proposition 4.2 in [S1].

In [S1] it is also proved that Da,b,c,d
B,q,t is selfadjoint with respect to 〈 . , . 〉a,b,c,d

B,q,t

if (a, b, c, d) ∈ V q
B and t ∈ (0, 1), and it is proved that Da,b

L,q,t is selfadjoint with
respect to 〈 . , . 〉a,b

L,q,t if (a, b) ∈ V q
L and t ∈ (0, 1). Furthermore, 〈mλ,mµ〉B,t

and 〈mλ,mµ〉L,t depend continuously on t for t ∈ (0, 1) for all λ, µ ∈ P+. If
(a, b) ∈ C2 such that ab /∈ {q−2, q−3, . . .} then we have that aB,L

λ (t) = aB,L
µ (t)

as polynomials in t if and only if µ = λ. So we can apply the propositions of
section 2. This gives that PB

λ (t) resp. PL
λ (t) is an eigenfunction of DB,t resp.

DL,t with eigenvalue aB,L
λ (t) for all t ∈ (0, 1), and it proves full orthogonality

in the big resp. little q-Jacobi case.
For the generalized Jacobi polynomials, denote ∂j := ∂

∂xj
. Define a second

order differential operator Dα,β
J,τ by

Dα,β
J,τ :=

n∑
j=1

(
(xj − 1)xj∂

2
j + ((2 + α+ β)xj − (α+ 1))∂j

+2τ(xj − 1)xj∆(x)−1 (∂j∆) (x)∂j

)
. (4.8)

We will use the notations and definitions of remark 3.1, and we denote 〈 . , . 〉
for the standard inner prduct on Cn, so 〈ei, ej〉 = δi,j . Define ρ(α, β, τ) ∈ Cn

by

ρ(α, β, τ) :=
1
2

n∑
i=1

(α+ β + 1 + 2(n− i)τ) ei. (4.9)

We have the following proposition

Proposition 4.3 Fix λ ∈ P+. For arbitrary α, β, τ ∈ C there exist constants
cJλ,µ(α, β; τ) ∈ C (µ ≤ λ) depending polynomially on α, β and τ , such that

DJmλ =
∑
µ≤λ

cJλ,µmµ.

The leading term cJλ,λ(α, β; τ) will be denoted by aJ
λ(α, β; τ). aJ

λ is given by

aJ
λ(α, β; τ) := 〈λ, λ+ 2ρ(α, β, τ)〉. (4.10)

Proof: This can be proved by a straightforward calculation (compare with [V],
p. 817). 2
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Furthermore, we have that Dα,β
J,τ is selfadjoint with respect to 〈 . , . 〉α,β

J,τ for all
(α, β, τ) ∈ VJ (compare with [V], p. 816, theorem 4.3. Be aware of the fact that
the change of variables xi = cos(θi) in the proof of theorem 4.3 in [V] should be
replaced by xi = cos(2θi)). The first part of proposition 2.2 gives that

Dα,β
J,τ P

J
λ (α, β; τ) = aJ

λ(α, β; τ)P J
λ (α, β; τ) (4.11)

for all λ ∈ P+ and (α, β, τ) ∈ VJ . Full orthogonality of the generalized Jacobi
polynomials can not be proved with the help of the single selfadjoint, triangular
operator DJ . Full orthogonality can be established by proving the existence of
a commutative algebra consisting of selfadjoint, triangular differential operators
generated by n independent differential operators. Then for fixed (α, β, τ) ∈ VJ

and fixed λ, µ ∈ P+ with λ 6= µ, one can always find a differential operator
in this commutative algebra such that its eigenvalue for P J

λ (α, β; τ) is different
from its eigenvalue for P J

µ (α, β; τ). With the help of this operator, it follows
that 〈P J

λ (α, β; τ), P J
µ (α, β; τ)〉α,β

J,τ = 0 (see [H1], [HO] and [H], in these papers it
is done for Jacobi polynomials associated with arbitrary root systems).

We finish this section with comparing the eigenvalues related by the partial
order < on P+. We use the notation introduced in remark 3.1. Denote Q+ :=
N0- span{R+} for the positive cone of the root lattice. The set S of simple
roots for R+ is given by

S := {ei − ei+1}n−1
i=1 ∪ {en}. (4.12)

For r ∈ Q+, there exist unique ks(r) ∈ N0(s ∈ S) such that r =
∑

s∈S ks(r)s.
Define the height of r ∈ Q+ by ht(r) :=

∑
s∈S ks(r). Denote R̃+ for the set of

positive roots of the form ei and ei − ej (i < j).

Proposition 4.4 Let µ, λ ∈ P+, with µ ≤ λ. Then we can walk from µ to λ
while staying within P+ by successively adding an element of R̃+.

Proof: It is sufficient to prove that for arbitrary µ < λ, there exists α ∈ R̃+

such that µ+α ∈ P+ and µ+α ≤ λ, because induction with respect to ht(λ−µ)
will then give the desired result. So fix µ, λ ∈ P+, such that µ < λ. Write

λ− µ =
n−1∑
i=1

ci(ei − ei+1) + cnen,

with cj ∈ N0. So we have that λk − µk = ck − ck−1 for k = 2, . . . , n and
λ1 − µ1 = c1. Furthermore we have that

i∑
j=1

(λj − µj) = ci i = 1, . . . , n.

Let {cp, . . . , cq−1} (p < q) be a string such that cj > 0 for j = p, . . . , q − 1 and
such that cp−1 = 0 (or p = 1) and cq = 0 (or q = n+ 1). Then µp−1 ≥ λp−1 ≥
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λp > µp (or p = 1 and λp > µp) and µq > λq ≥ λq+1 ≥ µq+1 (or q = n + 1,
or q = n and µq > λq). So α = ep − eq ∈ R̃+ does the job for q < n + 1, and
α = ep ∈ R̃+ for q = n+ 1. 2

Remark 4.5 It is not always possible, if λ ≥ µ, to go within P+ from µ to λ
by successively adding a simple root. For example, take µ = (0, 0) (n = 2) or
µ = (µ1, . . . , µn) with µ1 = . . . = µn (n ≥ 3).

The following proposition extends the result in ([vD], lemma 5.1) to a larger
parameter set.

Proposition 4.6 Fix λ, µ ∈ P+ with µ < λ. Then

aAW
µ (a, b, c, d; q, t) < aAW

λ (a, b, c, d; q, t).

for all a, b, c, d, t ∈ C satisfying abcd ∈ [−q, 1) and t ∈ (0, 1).

Proof: According to proposition 4.4, there exists a sequence
λ = λ(0), λ(1), . . . , λ(j) = µ in P+ such that λ(i−1) − λ(i) ∈ R̃+ for i = 1, . . . , j.
Since

aAW
λ − aAW

µ =
j∑

i=1

(
aAW

λ(i−1) − aAW
λ(i)

)
,

it will be sufficient to prove the proposition for µ < λ with λ− µ ∈ R̃+.
Case (1) Suppose λ− µ = ei for some i ∈ {1, . . . , n}, so λj = µj for j 6= i and
λi = µi + 1 ≥ 1. Then

aAW
λ (a, b, c, d; q, t)−aAW

µ (a, b, c, d; q, t) =
(
−q−2abcdt2(n−i)qλi + q−λi

)
(1−q)ti−1,

so in this case we have that aAW
λ (a, b, c, d; q, t) > aAW

µ (a, b, c, d; q, t) for all t ∈
(0, 1) if abcd < 1.
Case (2): Suppose λ − µ = ei − ej for certain 1 ≤ i < j ≤ n, so λi = µi + 1,
λj = µj − 1 and λk = µk for k 6= i, j. A calculation gives that

aAW
λ (a, b, c, d; q, t)− aAW

µ (a, b, c, d; q, t) = (1− q)ti−1q−µi−1
(
1− tj−iqµi−µj+1

)
×(

1 + abcdt2n−i−jqµi+µj−1
)
.

Since i < j and µi ≥ µj , we have that aAW
λ (a, b, c, d; q, t)−aAW

µ (a, b, c, d; q, t) > 0
for all t ∈ (0, 1) if abcd ≥ −q. 2

As an immediate consequence, we have

Proposition 4.7 Fix λ, µ ∈ P+ with µ < λ.
Then

aB,L
µ (a, b; q, t) < aB,L

λ (a, b; q, t)

for all a, b, t ∈ C satisfying ab ∈
[
−q−1, q−2

)
and t ∈ (0, 1).
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Comparing the eigenvalues related by the partial order in the case of generalized
Jacobi polynomials, gives:

Proposition 4.8 Fix λ, µ ∈ P+ with µ < λ.
Then

aJ
µ(α, β; τ) < aJ

λ(α, β; τ)

for all (α, β, τ) ∈ VJ .

Proof: There exists a sequence λ = λ(0), λ(1), . . . , λ(j) = µ in P+ such that
λ(i−1) − λ(i) ∈ R̃+ for all i = 1, . . . , j (proposition 4.4). Since

〈λ, λ+ 2ρ〉 − 〈µ, µ+ 2ρ〉 =
j∑

i=1

(
〈λ(i−1), λ(i−1) + 2ρ〉 − 〈λ(i), λ(i) + 2ρ〉

)
,

it is sufficient to prove the proposition for µ, λ ∈ P+ with λ− µ ∈ R̃+.
Case (1) λ− µ = ei, so λi = µi + 1 ≥ 1 and λk = µk for k 6= i. Then

〈λ− µ, λ+ µ〉 = 2λi − 1 ≥ 1,

and (4.9), together with the definition of VJ , implies

〈λ− µ, 2ρ(α, β, τ)〉 = α+ β + 1 + 2(n− i)τ > −1.

So 〈λ, λ+ 2ρ(α, β, τ)〉 − 〈µ, µ+ 2ρ(α, β, τ)〉 = 〈λ− µ, λ+ µ+ 2ρ(α, β, τ)〉 > 0.
Case (2) λ−µ = ei−ej for certain 1 ≤ i < j ≤ n. Then λi = µi +1 ≥ µj +1 =
λj + 2 and λk = µk for k 6= i, j. Then we have that

〈λ− µ, λ+ µ〉 = 2(λi − λj)− 2 ≥ 2,

and (4.9) implies
〈λ− µ, 2ρ(α, β, τ)〉 = 2(j − i)τ > 0,

since τ > 0. So 〈λ, λ+ 2ρ(α, β, τ)〉 − 〈µ, µ+ 2ρ(α, β, τ)〉 > 2. 2

5 The limit transitions

For (a, b) ∈ C2 and λ ∈ P+, define

Jλ(a, b) := {t ∈ (0, 1) / aB,L
λ (a, b; q, t) 6= aB,L

µ (a, b; q, t) for all µ < λ}. (5.1)

In this section, we will generalize the limit transitions from Askey-Wilson poly-
nomials to big and little q-Jacobi polynomials and a limit transition from
big q-Jacobi polynomials to little q-Jacobi polynomials ((3.20), (3.21) and
(3.22)) to the multivariable case (BCn) for parameter values a, b, c, d, t with
(a, b, c, d) ∈ V q

B resp. (a, b) ∈ V q
L and t ∈ Jλ(a, b). Furthermore, we will gen-

eralize the limit transition from the Askey-Wilson polynomials to the Jacobi
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polynomials (3.23) and the limit transition from big resp. little q-Jacobi poly-
nomials to the Jacobi polynomials ((3.24) resp. (3.25)) to the multivariable case
for the full parameter domain.

Denote |λ| :=
∑n

i=1 λi for λ ∈ P+ and c1 + c2x := (c1 + c2x1, . . . , c1 + c2xn)
resp. x−1 := (x−1

1 . . . , x−1
n ) for c1, c2 ∈ C and x = (x1, . . . , xn). The limit

transitions are given by

Theorem 5.1 Fix λ ∈ P+.
(1) Fix q ∈ (0, 1). Suppose that (a, b, c, d) ∈ V q

B and t ∈ Jλ(a, b), then

lim
ε→0

(
ε(cd)

1
2

q
1
2

)|λ|
PAW

λ

(
q

1
2x

ε(cd)
1
2
; εq

1
2 a(d/c)

1
2 , ε−1q

1
2 (c/d)

1
2 ,−ε−1q

1
2 (d/c)

1
2 ,

−εq 1
2 b(c/d)

1
2 ; q, t

)
= PB

λ (x; a, b, c, d; q, t). (5.2)

(2) Fix q ∈ (0, 1). Suppose that (a, b) ∈ V q
L and t ∈ Jλ(a, b), then

lim
ε→0

(
ε

q
1
2

)|λ|
PAW

λ

(
q

1
2x

ε
; εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q, t

)
= PL

λ (x; a, b; q, t).

(5.3)
(3) Fix q ∈ (0, 1). Suppose that (a, b) ∈ V q

L and t ∈ Jλ(a, b), then

lim
d↓0

PB
λ (x; b, a, 1, d; q, t) = PL

λ (x; a, b; q, t). (5.4)

(4) Let (α, β, τ) ∈ VJ and c, d ∈ C such that c, d 6= 0, c2 6= d, d 6= 1. Then

lim
q↑1

PAW
λ

(
x; c,

qα+1

c
,
qβ+1d

c
,
c

d
; q, qτ

)
= kc,d

|λ|P
J
λ

(
1 + c2 − c(x+ x−1)
(1− d)(1− c2/d)

;α, β; τ
)

(5.5)

with kc,d
m :=

(
(d−1)(1−c2/d)

c

)m

.
(5) Let (α, β, τ) ∈ VJ and c, d > 0, then

lim
q↑1

PB
λ (x; qα, qβ , c, d; q, qτ ) = (−1)|λ|(c+ d)|λ|P J

λ

(
c− x

c+ d
;α, β; τ

)
. (5.6)

(6) Suppose that (α, β, τ) ∈ VJ , then

lim
q↑1

PL
λ

(
x; qα, qβ ; q, qτ

)
= P J

λ (x;α, β; τ). (5.7)

The limits are pointwise limits in the following sense:
Denote P̃ := {λ = (λ1, . . . , λn) ∈ Zn / λ1 ≥ . . . ≥ λn}. We will see
later that the rescaled Askey-Wilson polynomials on the left hand side of
(5.2) and (5.3) can be written as symmetric Laurent polynomials of the form
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∑
µ∈P̃ dµmµ(x). All the other functions occuring in theorem 5.1 are symmet-

ric polynomials of the form
∑

µ∈P+ dµmµ(x). We will say that a symmetric
(Laurent) polynomial p(s, x) =

∑
µ∈P̃ dµ(s)mµ(x) tends to the symmetric (Lau-

rent) polynomial p(x) =
∑

µ∈P̃ dµmµ(x) for s tending to zero, if for every fixed
(x1, . . . , xn) ∈ (C\{0})n,

lim
s→0

p(s, x) = p(x).

If P̃ (s) := {µ ∈ P̃ / dµ(s) 6= 0} is contained in a finite subset J ⊂ P̃ for all
s in an open neighbourhood of 0, then lims→0 p(s, x) = p(x) if and only if
lims→0 dµ(s) = dµ for all µ ∈ P̃ .

Note that for the limit transitions (5.2), (5.3) and (5.5), a definition of BCn

type Askey-Wilson polynomials for more general parameter values is needed.
We will introduce this definition later on.

Remark 5.2 The first three limit transitions are especially valid for the param-
eter values a, b, c, d and t satisfying −1

q ≤ ab < 1
q2 , c, d > 0 and t ∈ (0, 1), in

view of proposition 4.7. Note that these conditions are independent of λ ∈ P+.

In view of limit transition (5.6) resp. (5.5), we will first look what happens
with the second order differential operator Dα,β

J,τ under the change of variables

xi = c−yi

c+d (i = 1, . . . , n) resp. xi = 1+c2−c(yi+y−1
i

)

(1−d)(1−c2/d) (i = 1, . . . , n).
Under the change of variables xi = c−yi

c+d (i = 1, . . . , n) for c + d 6= 0, the
second order differential operator Dα,β

J,τ becomes

Dα,β,c,d
B,J,τ :=

n∑
j=1

(
(yj − c)(yj + d)∂2

j + ((2 + α+ β)yj + d(α+ 1)− c(β + 1)) ∂j

+2τ(yj − c)(yj + d)∆(y)−1 (∂j∆) (y)∂j

)
. (5.8)

We have

mλ(c1 + c2y1, . . . , c1 + c2yn) = c
|λ|
2 mλ(y) +

∑
µ<λ

bλ,µ(c1, c2)mµ(y) (5.9)

with bλ,µ(c1, c2) a polynomial expression in c1 and c2, of degree |λ| − |µ| in c1
and of degree |µ| in c2 for c1, c2 ∈ C. Hence(

Dα,β
J,τ mλ

)(c− y

c+ d

)
= (−(c+ d))−|λ|

(
Dα,β,c,d

B,J,τ mλ

)
(y) +∑

µ<λ

bλ,µ

(
c

(c+ d)
,

−1
(c+ d)

)(
Dα,β,c,d

B,J,τ mµ

)
(y). (5.10)

By proposition 4.3 and by application of (5.9), the left hand side of (5.10) can
be rewritten as

aJ
λ(α, β; τ) (−(c+ d))−|λ|mλ(y) +

∑
µ<λ

dλ,µ(α, β, c, d; τ)mµ(y) (5.11)
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for certain dλ,µ(α, β, c, d; τ) ∈ C with (c+ d)|µ|dλ,µ(α, β, c, d; τ) ∈ C depending
polynomially on α, β, c, d and τ . By complete induction with respect to λ it
follows from (5.10) and (5.11) that

Dα,β,c,d
B,J,τ mλ =

∑
µ≤λ

cB,J
λ,µ (α, β, c, d; τ)mµ (5.12)

with cB,J
λ,µ (α, β, c, d; τ) depending polynomially on α, β, τ, c, d, and with leading

term cB,J
λ,λ (α, β, c, d; τ) = aJ

λ(α, β; τ) independent of c and d (aJ
λ given by (4.10)).

Note that
∆(y)−1 (∂j∆) (y) =

∑
k 6=j

1
yj − yk

.

Define

∆̃(y) :=
n∏

i=1

y1−n
i

∏
1≤k<l≤n

(yk − yl)(ykyl − 1), (5.13)

then we have that

∆̃(y)−1
(
∂j∆̃

)
(y) =

(y2
j − 1)
y2

j

∑
k 6=j

1
yj + y−1

j − yk − y−1
k

.

With the help of this formula, one deduces that under the change of variables
xi = 1+c2−c(yi+y−1

i
)

(1−d)(1−c2/d) , the second order differential operator Dα,β
J,τ becomes

Dα,β,c,d
AW,J,τ =

n∑
j=1

(
y2

j (1− cyj)(1− yj/c)(1− yjc/d)(1− yjd/c)
(1− y2

j )2
∂2

j

+2
yj(1− cyj)(1− yj/c)(1− yjc/d)(1− yjd/c)

(1− y2
j )3

∂j

−yj
((α+ 1)(1− yjc/d)(1− yjd/c) + (β + 1)(1− cyj)(1− yj/c))

(1− y2
j )

∂j

+2τ
y2

j (1− cyj)(1− yj/c)(1− yjc/d)(1− yjd/c)
(1− y2

j )2
∆̃(y)−1

(
∂j∆̃

)
(y)∂j

)
.

Note that
mλ(y + y−1) = m̃λ(y) +

∑
µ<λ

cλ,µm̃µ(y), (5.14)

for certain cλ,µ ∈ C, hence we have by (5.9) that

mλ

(
1 + c2 − c(y + y−1)
(1− d)(1− c2/d)

)
=
(

−c
(1− d)(1− c2/d)

)|λ|
m̃λ(y) +

+
∑
µ<λ

b̃λ,µ(c, d)m̃µ(y) (5.15)
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for certain b̃λ,µ(c, d) ∈ C with
(
(1− d)(1− c2/d)

)|λ|
b̃λ,µ(c, d) depending poly-

nomially on c and d. It follows now from (4.3), with similar arguments as for
the proof of (5.12), that

Dα,β,c,d
AW,J,τm̃λ =

∑
µ≤λ

cAW,J
λ,µ (α, β, c, d; τ)m̃µ

for c, d 6= 0, c2 6= d, d 6= 1 with constants cAW,J
λ,µ depending polynomially on

α, β and τ . The leading term cAW,J
λ,λ (α, β, c, d; τ) = aJ

λ(α, β; τ) is independent
of c and d (aJ

λ given by (4.10)). The behaviour of the second order q-difference
operators under the limit transitions is given by

Proposition 5.3 Fix λ ∈ P+.
(1) Fix (a, b, c, d) ∈ C4 and q ∈ (0, 1), then for all µ ≤ λ we have that

c̃AW,B
λ,µ (t, ε) :=

(
ε (cd)

1
2

q
1
2

)|λ|−|µ|
cAW
λ,µ

(
εq

1
2 a (d/c)

1
2 , ε−1q

1
2 (c/d)

1
2 ,

−ε−1q
1
2 (d/c)

1
2 ,−εq 1

2 b (c/d)
1
2 ; q, t

)
(5.16)

depends polynomially on t and ε, and the zero order term with respect to the
variable ε is cBλ,µ(a, b, c, d; q, t).
(2) Fix (a, b) ∈ C2 and q ∈ (0, 1), then for all µ ≤ λ we have that

c̃AW,L
λ,µ (t, ε) :=

(
ε

q
1
2

)|λ|−|µ|
cAW
λ,µ

(
εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q, t

)
(5.17)

depends polynomially on t and ε, and the zero order term with respect to the
variable ε is cLλ,µ(a, b; q, t).
(3) Fix (a, b) ∈ C2 and q ∈ (0, 1), then for all µ ≤ λ we have that
cBλ,µ(b, a, 1, d; q, t) depends polynomially on t and d, and the zero order term
with respect to the variable d is cLλ,µ(a, b; q, t).
(4) Fix (α, β, τ) ∈ VJ and c, d ∈ C such that c, d 6= 0, c2 6= d and d 6= 1, then
for all µ ≤ λ we have that

lim
q↑1

cAW
λ,µ (c, qα+1/c, qβ+1d/c, c/d; q; qτ )

(1− q)2
= cAW,J

λ,µ (α, β, c, d; τ).

(5) Fix (α, β, τ) ∈ VJ and c, d > 0, then for all µ ≤ λ we have that

lim
q↑1

cBλ,µ(qα, qβ , c, d; q, qτ )
(1− q)2

= cB,J
λ,µ (α, β, c, d; τ).

(6) Fix (α, β, τ) ∈ VJ , then for all µ ≤ λ we have that

lim
q↑1

cLλ,µ(qα, qβ ; q, qτ )
(1− q)2

= cJλ,µ(α, β; τ).
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Proof: We first prove (2). Fix (a, b) ∈ C2. Proposition 4.1 implies that
c̃AW,L
λ,µ (t, ε) depends polynomially on t, and Laurent polynomially on ε. So it

is sufficient to prove that for arbitrary fixed t ∈ C,

lim
ε→0

c̃AW,L
λ,µ (t, ε) = cLλ,µ(t).

So fix t ∈ C. Proposition 4.1 gives for fixed a, b, t ∈ C and 0 6= ε ∈ R that(
ε

q
1
2

)|λ| (
D

(εq1/2b,ε−1q1/2,−q1/2,−q1/2a)
AW,q,t m̃λ

)(q 1
2x

ε

)
(5.18)

is equal to ∑
µ≤λ

c̃AW,L
λ,µ (t, ε)

(
ε

q
1
2

)|µ|
m̃µ

(
q

1
2x

ε

)
. (5.19)

Let for ν ∈ P̃ , c̃ν(ε) be the coefficient of mν(x) :=
∑

ρ∈Sν x
ρ in (5.19). This

makes sense, since m̃µ

(
q

1
2x/ε

)
is a symmetric Laurent polynomial for all µ ∈

P+. In fact, we have for µ ∈ P+ that(
ε

q
1
2

)|µ|
m̃µ

(
q

1
2x

ε

)
= mµ(x) + r(x; ε) (5.20)

with r(x; ε) a sum of monomials mν(x) with ν ∈ P̃ , νn < 0 and |ν| < |µ|,
with coefficient given by a polynomial expression in ε, homogeneous of degree
|µ| − |ν|. Combining this with the following two limits (cf. [S1])

lim
ε→0

ψAW
i

(
q

1
2x

ε
; εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q, t

)
= ψL

i (x; a, b; q, t), (5.21)

lim
ε→0

φAW
i

(
q

1
2x

ε
; εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q, t

)
= φL

i (x; a, b; q, t), (5.22)

and with proposition 4.2, resp. formula (5.19) gives for ν ∈ P̃ with νn < 0 that

lim
ε→0

c̃ν(ε) = 0,

and for µ ∈ P+ that

lim
ε→0

c̃µ(ε) = lim
ε→0

c̃AW,L
λ,µ (t, ε) = cLλ,µ(t).

This proves (2).
(1) We have the following limits (cf. [S1]):

lim
ε→0

ψAW
i

(
q

1
2x

ε(cd)
1
2
; εq

1
2 a(d/c)

1
2 , ε−1q

1
2 (c/d)

1
2 ,−ε−1q

1
2 (d/c)

1
2 ,

−εq 1
2 b(c/d)

1
2 ; q, t

)
= ψB

i (x; a, b, c, d; q, t) (5.23)
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lim
ε→0

φAW
i

(
q

1
2x

ε(cd)
1
2
; εq

1
2 a(d/c)

1
2 , ε−1q

1
2 (c/d)

1
2 ,−ε−1q

1
2 (d/c)

1
2 ,

−εq 1
2 b(c/d)

1
2 ; q, t

)
= φB

i (x; a, b, c, d; q, t). (5.24)

The proof is now completely analogous to the proof of (1).
(3) Follows directly from proposition 4.2 and formula (4.7).
(4) An arbitrary second order q-difference operator

D :=
n∑

i=1

(
π−i (x)(Tq,i − Id) + π+

i (x)(Tq−1,i − Id)
)

can be rewritten in the following way

(Df) (x) =
n∑

i=1

(
Ai(x)

(
Tq−1,i

((
Di,−

q

)2
f
))

(x) +Bi(x)
(
Tq−1,i

(
Di,−

q f
))

(x)
)
,

(5.25)
with Di,−

q the backward partial q-derivative in direction i given by

(
Di,−

q f
)
(x) :=

(f − Tq,if) (x)
(1− q)xi

and
Ai(x) = q−1(1− q)2x2

iπ
−
i (x),

Bi(x) = q−1(1− q)xi

(
π+

i (x)− qπ−i (x)
)
.

Fix (α, β, τ) ∈ VJ and c, d ∈ C such that c, d 6= 0, c2 6= d and d 6= 1. Rewrite
DAW in the form (5.25), so let

π−i (x) = ψAW
i (x) =

(1− axi)(1− bxi)(1− cxi)(1− dxi)
(1− x2

i )(1− qx2
i )

tn−1∆̃(x)−1
(
Tt,i∆̃

)
(x),

π+
i (x) = φAW

i (x) =
(a− xi)(b− xi)(c− xi)(d− xi)

(1− x2
i )(q − x2

i )
tn−1∆̃(x)−1

(
Tt−1,i∆̃

)
(x),

with ∆̃(x) given by (5.13). It is immediate that

lim
q↑1

Ai(x; c, qα+1/c, qβ+1d/c, c/d; q, qτ )
(1− q)2

=
x2

i (1− cxi)(1− xi/c)(1− xid/c)(1− xic/d)
(1− x2

i )2
.

To evaluate the limit for Bi, we need the following remark. Let z be a complex
variable and fix q ∈ (0, 1), then define for u, v ∈ R, Dq

u,v by

(
Dq

u,vf
)
(z) :=

(
(Tq−u − Tqv )f

)
(z)

(1− q)z
,
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with (Tsf) (z) := f(sz). Then Du,v maps C[z] into C[z], resp. C[z, z−1] into
C[z, z−1], and

lim
q↑1

(
Dq

u,vf
)
(z) = (u+ v)

df

dz
(z) ∀f ∈ C[z, z−1].

Note that Dq
0,1 is the backward partial q-derivative in the variable z. In partic-

ular, we have that

lim
q↑1

(
Tq−τ ,j∆̃− Tqτ ,j∆̃

)
(x)

(1− q)xj
= 2τ

(
∂j∆̃

)
(x).

A straightforward calculation gives then that

lim
q↑1

Bi(x; c, qα+1/c, qβ+1d/c, c/d; q, qτ )
(1− q)2

= 2
xi(1− cxi)(1− xi/c)(1− xic/d)(1− xid/c)

(1− x2
i )3

−xi
((α+ 1)(1− xic/d)(1− xid/c) + (β + 1)(1− cxi)(1− xi/c))

(1− x2
i )

+2τ
x2

i (1− cxi)(1− xi/c)(1− xic/d)(1− xid/c)
(1− x2

i )2
∆̃(x)−1

(
∂i∆̃

)
(x).

Hence we have

lim
q↑1

(
D

c,qα+1/c,qβ+1d/c,c/d
AW,q,qτ f

)
(x)

(1− q)2
=
(
Dα,β,c,d

AW,J,τf
)

(x) ∀f ∈ AW .

Consequently, the coefficients satisfy

lim
q↑1

cAW
λ,µ (c, qα+1/c, qβ+1d/c, c/d; q, qτ )

(1− q)2
= cAW,J

λ,µ (α, β, c, d; τ)

for all µ ≤ λ.
(5) Fix (α, β, τ) ∈ VJ and c, d > 0. Rewrite the second order q-difference
operator DB in the form (5.25). The Ai’s and Bi’s are then given by the
following expressions:

Ai(x) = (1− q)2q−2 (qaxi − c) (qbxi + d) tn−1∆(x)−1 (Tt,i∆) (x),

Bi(x) =
(1− q)
q

tn−1

((
xi + (d− c)− cd

xi

)
∆(x)−1

(
Tt−1,i∆

)
(x)

−
(
q2abxi + (qad− qbc)− cd

xi

)
∆(x)−1 (Tt,i∆) (x)

)
. (5.26)
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Similar calculations as for (4) gives then that

lim
q↑1

(
Dqα,qβ ,c,d

B,q,qτ f
)

(x)

(1− q)2
=
(
Dα,β,c,d

B,J,τ f
)

(x) ∀f ∈ AS ,

hence the coefficients cBλ,µ(qα, qβ , c, d; q, qτ ) (µ ≤ λ) satisfy

lim
q↑1

cBλ,µ(qα, qβ , c, d; q, qτ )
(1− q)2

= cB,J
λ,µ (α, β, c, d; τ).

(6) This is a special case of (5). 2

Next we will define the BCn type orthogonal polynomials for more general
parameter values. Fix q ∈ (0, 1). Let X denote AW ,B or L. Denote mX

λ := m̃λ

for X = AW resp. mX
λ := mλ for X = B and L.

Lemma 5.4 Fix (a, b, c, d) ∈ VX (if X = AW ) resp. (a, b, c, d) ∈ V q
X (if X =

B) resp. (a, b) ∈ V q
X (if X = L). Let µ < λ, then there exists a polynomial

pλ,µ ({xν,ρ}ρ≤ν≤λ) (independent of X) and homogeneous of total degree #{ν ∈
P+ / ν < λ} such that the rational function in t given by

d̃X
λ,µ(t) :=

pλ,µ

(
{cXν,ρ(t)}ρ≤ν≤λ

)
∏

ν<λ

(
cXλ,λ(t)− cXν,ν(t)

) (5.27)

is a rational extension of the function t 7→ dX
λ,µ(t) : (0, 1) → C, where dX

λ,µ(t)
is the coefficient of mX

µ in the expansion of PX
λ (t) with respect to the basis

{mX
ν / ν ∈ P+} (cf. definition 3.2, 3.3 resp. 3.4).

Proof: For the given values of a, b, c, d we have that cXµ,µ(t) = aX
µ (t) 6= aX

λ (t) =
cXλ,λ(t) as polynomials in t if λ 6= µ, so d̃X

λ,µ(t) is a well defined rational function
in t. In view of proposition 2.5(a) and (2.6), there exists a polynomial pλ,µ such
that (5.27) is the rational extension of dX

λ,µ(t). The polynomial pλ,µ does not
depend onX and can be chosen homogeneous of total degree #{ν ∈ P+ / ν < λ}
in view of remark 2.6. 2

Fix (a, b, c, d) ∈ C4 (if X = AW or B) or (a, b) ∈ C2 (if X = L) such that
abcd /∈ {1, q−1, q−2, . . .} (if X = AW ) or ab /∈ {q−2, q−3, . . .} (if X = B or
L). Then, as observed in paragraph 4, cXλ,λ(t) = aX

λ (t) 6= aX
µ (t) = cXµ,µ(t) as

polynomials in t if λ 6= µ. Define d̃X
λ,µ for these values of a, b, c, d by (5.27), and

define
P̃X

λ (x; t) := mX
λ (x) +

∑
µ<λ

d̃X
λ,µ(t)mX

µ (x) (5.28)

for t ∈ ∩µ<λdom
(
d̃X

λ,µ

)
. As a consequence of lemma 5.4, proposition 2.5 and

remark 2.7 we have:
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Corollary 5.5 Keep the same assumptions on a, b, c, d as in lemma 5.4. Then
(0, 1) ⊂ dom

(
d̃X

λ,µ

)
for all µ < λ and P̃X

λ ( . ; t) = PX
λ ( . ; t) for all t ∈ (0, 1).

Hence for each λ ∈ P+, the polynomial P̃X
λ is a well defined extension of the

polynomial PX
λ to a larger set of parameters (a, b, c, d, t). We will write PX

λ ( . ; t)
instead of P̃X

λ ( . ; t). For the limit transitions (theorem 5.1), we only need the
extended definition of Askey-Wilson polynomials.

Remark 5.6 According to proposition 2.1 and 2.5, the BCn type Askey-Wilson
polynomials for general parameter values have the following properties:

Fix λ ∈ P+, and let a, b, c, d ∈ C and t ∈ C such that aAW
λ (a, b, c, d; q, t) 6=

aAW
µ (a, b, c, d; q, t) for all µ < λ, then PAW

λ is an eigenfunction of DAW with
eigenvalue aAW

λ (a, b, c, d; q, t). Furthermore, if one can extend the inner product
〈 . , . 〉AW,t for more general values of (a, b, c, d) (abcd /∈ {1, q−1, q−2, . . .}), such
that 〈f, g〉AW,t is continuous in t for t ∈ (0, 1) for all f, g ∈ AW , and such that
DAW is selfadjoint with respect to 〈 . , . 〉AW , then the corresponding orthogonal
polynomials (Definition 3.2) are exactly the polynomials PAW

λ (a, b, c, d; q, t) as
defined by (5.28), for all t ∈ (0, 1) (cf. remark 2.7).

Proof of theorem 5.1
We first prove (2).
(2) Let (a, b) ∈ V q

L and t ∈ Jλ(a, b). Note that

aAW
λ (εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q, t) = aB,L

λ (a, b; q, t). (5.29)

Hence we have, in view of (5.19), that(
ε

q
1
2

)|λ|
PAW

λ

(
q

1
2x

ε
; εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q, t

)
=
(
ε

q
1
2

)|λ|
m̃λ

(
q

1
2x

ε

)

+
∑
µ<λ

d̃AW,L
λ,µ (t, ε)

(
ε

q
1
2

)|µ|
m̃µ

(
q

1
2x

ε

)
, (5.30)

where

d̃AW,L
λ,µ (t, ε) =

pλ,µ

(
{c̃AW,L

ν,ρ (t, ε)}ρ≤ν≤λ

)
∏

ν<λ

(
aB,L

λ (a, b; q, t)− aB,L
ν (a, b; q, t)

) . (5.31)

The denominator on the right hand side is non-zero since t ∈ Jλ(a, b). Now
apply proposition 5.3(2) and (5.20).
(1) Note that

aAW
λ

(
εq

1
2 a(d/c)

1
2 , ε−1q

1
2 (c/d)

1
2 ,−ε−1q

1
2 (d/c)

1
2 ,

−εq 1
2 b(c/d)

1
2 ; q, t

)
= aB,L

λ (a, b; q, t). (5.32)
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Similar arguments as for (2) give then the desired result.
(3) Same arguments as for (1) can be applied with d playing the role of ε, since
aB,L

λ (a, b; q, t) is independent of d and symmetric in a and b.
(4) Fix (α, β, τ) ∈ VJ and c, d ∈ C such that c, d 6= 0, c2 6= d and d 6= 1. Denote
the right hand side of formula (5.5) by P̂AW,J

λ (x;α, β, c, d; τ), then

P̂AW,J
λ (x;α, β, c, d; τ) = m̃λ(x) +

∑
µ<λ

d̂AW,J
λ,µ (α, β, c, d; τ)m̃µ(x)

for certain constants d̂AW,J
λ,µ (α, β, c, d; τ) ∈ C in view of (5.15).

P̂AW,J
λ (x;α, β, c, d; τ) is an eigenfunction of Dα,β,c,d

AW,J,τ with eigenvalue aJ
λ(α, β; τ),

because P J
λ (x;α, β; τ) is an eigenfunction of Dα,β

J,τ with eigenvalue aJ
λ(α, β; τ).

Hence

P̂AW,J
λ ( . ;α, β, c, d; τ) =

∏
µ<λ

Dα,β,c,d
AW,J,τ − aJ

µ(α, β; τ)

aJ
λ(α, β; τ)− aJ

µ(α, β; τ)

 m̃λ

in view of proposition 2.1 and proposition 4.8. So we have for µ < λ that

d̂AW,J
λ,µ (α, β, c, d) =

pλ,µ

(
{cAW,J

ν,ρ (α, β, c, d; τ)}ρ≤ν≤λ

)∏
ν<λ

(
aJ

λ(α, β; τ)− aJ
ν (α, β; τ)

)
by proposition 2.5(a) and (2.6), where pλ,µ is the same polynomial as in (5.27).
Note that

aAW
λ (c, qα+1/c, qβ+1d/c, c/d; q, qτ ) = aB,L

λ (qα, qβ ; q, qτ ),

and aB,L
λ (qα, qβ ; q, qτ ) > aB,L

µ (qα, qβ ; q, qτ ) for all λ > µ and all q ∈ (0, 1)
(proposition 4.7). Since pλ,µ is homogeneous of total degree #{ν ∈ P+ / ν < λ},
we thus have by lemma 5.4 that

dAW
λ,µ (c,

qα+1

c
,
qβ+1d

c
,
c

d
; q, qτ ) =

pλ,µ

(
{c̃AW

ν,ρ (c, qα+1/c, qβ+1d/c, c/d; q, qτ )}ρ≤ν≤λ

)
∏

ν<λ

(
ãB,L

λ (qα, qβ ; q, qτ )− ãB,L
ν (qα, qβ ; q, qτ )

)
with

c̃AW
ν,ρ (c, qα+1/c, qβ+1d/c, c/d; q, qτ ) =

cAW
ν,ρ (c, qα+1/c, qβ+1d/c, c/d; q, qτ )

(1− q)2
,

ãB,L
ν (qα, qβ ; q, qτ ) =

aB,L
ν (qα, qβ ; q, qτ )

(1− q)2
.

We have that
lim
q↑1

ãB,L
ν (qα, qβ ; q, qτ ) = aJ

ν (α, β; τ)
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for all ν ∈ P+, so it follows from proposition 5.3(4) that

lim
q↑1

dAW
λ,µ (c, qα+1/c, qβ+1d/c, c/d; q, qτ ) = d̂AW,J

λ,µ (α, β, c, d; τ)

for all µ < λ.
The proof of (5) and (6) can be given in a similar way. 2

Remark 5.7 For limit transition (5.6), the condition c, d > 0 can be weakened
to c+ d 6= 0 if one uses the extended definition of the big q-Jacobi polynomials.
For subsets of the set of parameter values a, b, c, d, t for which we proved limit
(5.5), a proof of (5.5) was already known by looking at the behaviour of the
orthogonality measure when q tends to 1. See [M1] for a three parameter subset,
and [vD], prop. 4.3 for a five parameter subset. For the limit transitions from
big resp. little q-Jacobi polynomials to Jacobi polynomials ((5.6) resp. (5.7)),
this technique can also be applied. See the end of section 6 (prop. 6.5) for more
details.

6 Some remarks about the limit transitions

We first discuss the possibilities to extend the limit transitions (5.2), (5.3) and
(5.4) to the whole parameter domain. Fix (a, b, c, d) ∈ V q

X (if X = B) or
(a, b) ∈ V q

X (if X = L) and fix q ∈ (0, 1). Then

d̃AW,X
λ,µ (t, ε) :=

pλ,µ

(
{c̃AW,X

ν,ρ (t, ε)}ρ≤ν≤λ

)
∏

ν<λ

(
aB,L

λ (a, b; q, t)− aB,L
ν (a, b; q, t)

) (6.1)

for X = B resp. L and µ < λ depend polynomially on ε and rationally on t.
Since aB,L

λ (a, b; q, t) is independent of c and d, we have for µ < λ that

d̃B,L
λ,µ (a, b; q; t, d) :=

pλ,µ

(
{cBν,ρ(b, a, 1, d; q, t)}ρ≤ν≤λ

)
∏

ν<λ

(
aB,L

λ (a, b; q, t)− aB,L
ν (a, b; q, t)

) (6.2)

depends polynomially on d and rationally on t. Fix λ ∈ P+. We have that limit
transition (5.3) holds for t ∈ (0, 1) if and only if for all µ < λ the following two
conditions are satisfied:
(1) t ∈ dom

(
d̃AW,L

λ,µ ( . , ε)
)

for ε sufficiently small,

(2) limε→0 d̃
AW,L
λ,µ (t, ε) = dL

λ,µ(t).
This follows from (5.20) and (5.30). Similar remarks hold for the limit transi-
tions (5.2) and (5.4). We have the following lemma.
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Lemma 6.1 Fix m ∈ N0. Let J be a topological space, J0 a dense subset of J
and f0, . . . , fm : J0 → C continuous functions. Define the function f : J0×C →
C by

f(t, ε) :=
m∑

k=0

εkfk(t) t ∈ J0, ε ∈ C. (6.3)

Suppose there exist m+ 1 different points {ε0, . . . , εm} such that the functions

t 7→ f(t, εi) : J0 → C (i = 0, . . . ,m)

can be extended to continuous functions from J to C. Then the functions
f0, . . . , fm can be extended to continuous functions from J to C.

In particular we have that there is a unique extension of f to a continuous
function from J ×C to C such that f(t, 0) = f0(t) for all t ∈ J (cf. (6.3)).

Proof: We have for all t ∈ J0 the matrix identity

~f(t) = A~g(t), (6.4)

with ~f(t) resp. ~g(t) the column vector with ith entry f(t, εi) resp. fi(t) (i =
0, . . . ,m) and A the matrix with (i, j)’th entry (εi)

j (i, j = 0, . . . ,m) (i the row
index, j the column index). The lemma follows, since every entry of the column
vector ~f(t) can be extended to a continuous function from J to C and A is
invertible. 2

For fixed λ ∈ P+ and fixed a and b, take J = (0, 1), and Jλ(a, b) for the dense
subset of J (Jλ(a, b) given by (5.1)), then in the next proposition we will apply
lemma 6.1 on the functions (6.1) and (6.2), with m the highest degree of the
functions as polynomials in ε resp. d. Note that in these situations, an algebraic
proof can be given of lemma 6.1.

Proposition 6.2 Fix λ ∈ P+.
(1) Fix (a, b, c, d) ∈ V q

B. Suppose that d̃AW,B
λ,µ (t, ε) satisfies the conditions of

lemma 6.1 for all µ < λ. Then (0, 1) ⊂ dom
(
d̃AW,B

λ,µ ( . ; ε)
)

for all ε and all
µ < λ, and limit transition (5.2) is valid for all t ∈ (0, 1).

(2) Fix (a, b) ∈ V q
L . Suppose that d̃AW,L

λ,µ (t, ε) satisfies the conditions of lemma

6.1 for all µ < λ. Then (0, 1) ⊂ dom
(
d̃AW,L

λ,µ ( . ; ε)
)

for all ε and all µ < λ, and
limit transition (5.3) is valid for all t ∈ (0, 1).

(3) Fix (a, b) ∈ V q
L . Suppose that d̃B,L

λ,µ (t, d) satisfies the conditions of lemma

6.1 for all µ < λ. Then (0, 1) ⊂ dom
(
d̃B,L

λ,µ ( . ; d)
)

for all d and all µ < λ, and
limit transition (5.4) is valid for all t ∈ (0, 1).
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Proof: In view of lemma 6.1 and remark 2.7, it is sufficient to check that (5.2),
(5.3) resp. (5.4) holds for t ∈ Jλ(a, b), so theorem 5.1 gives the desired result.

2

As a corollary, we have

Theorem 6.3 Let t ∈ (0, 1), (a, b) ∈ V q
L and λ ∈ P+, then

lim
d↓0

PB
λ (x; b, a, 1, d; q, t) = PL

λ (x; a, b; q, t). (6.5)

Proof: Fix (a, b) ∈ V q
L . Fix d > 0 such that b > −1/dq, then (b, a, 1, d) ∈ V q

B .
Hence d̃B,L

λ,µ (t, d) = dB
λ,µ(b, a, 1, d; q, t) for all t ∈ (0, 1) and for all µ < λ (corollary

5.5). The big q-Jacobi polynomials

PB
λ (x; b, a, 1, d; q, t) = mλ(x) +

∑
µ<λ

dB
λ,µ(b, a, 1, d; q, t)mµ(x) (λ ∈ P+)

are orthogonal with respect to the inner product 〈 . , . 〉b,a,1,d
B,q,t . Proposition 2.3,

applied to this inner product, implies that dB
λ,µ(b, a, 1, d; q, t) depends continu-

ously on t for t ∈ (0, 1). Hence proposition 6.2(3) can be applied. 2

Remark 6.4 The proof of theorem 6.3 for arbitrary t ∈ (0, 1) makes essential
use of the interpretation of the polynomials as orthogonal polynomials.

In order to prove the limit transitions (5.2) and (5.3) for all (a, b, c, d) ∈ V q
B

resp. (a, b) ∈ V q
L and all t ∈ (0, 1), an interpretation of BCn type Askey-

Wilson polynomials as orthogonal polynomials for more general parameter values
is needed (cf. remark 5.6), so that the same argument as in theorem 6.3 can be
applied.

In the one variable case, Askey-Wilson polynomials for more general values
of (a, b, c, d) have an interpretation as orthogonal polynomials. The orthogonal-
ity domain consists then of a continuous part and a discrete part, the discrete
part coming from residues. In the one variable case, Koornwinder showed that in
the limits from Askey-Wilson polynomials to big resp. little q-Jacobi polynomi-
als, the disrete part of the orthogonality domain of the Askey-Wilson polynomials
blows up to the orthogonality domain of the big resp. little q-Jacobi polynomials,
while the discrete part shrinks to {0} (cf. [K2] p. 812).

Recently, the first author has written down the orthogonality measure for the
multivariable Askey-Wilson polynomials with partly continuous, partly discrete
measure and described in detail the limit transitions to big resp. little q-Jacobi
polynomials for the case t = qk with k ∈ N (cf. [S2]).

Define an inner product [ . , . ]α,β,c,d
J,τ on AS for c, d > 0, (α, β, τ) ∈ VJ by

[f, g]J,τ :=
1
n!

∫ c

x1=−d

. . .

∫ c

xn=−d

f(x)g(x)wJ(x; τ)dx, f, g ∈ AS , (6.6)

32



with weight function wJ(x;α, β, c, d; τ) given by

wJ(x; τ) :=

(
n∏

i=1

(1− xi/c)α(1 + xi/d)β

)
|∆(x)|2τ .

The polynomials {P J
λ

(
c−x
c+d ;α, β; τ) / λ ∈ P+} are orthogonal with respect to

[ . , . ]α,β,c,d
J,τ .

Proposition 6.5 Fix λ, µ ∈ P+.
(1) Let α ∈ (0,∞), β ∈ (0,∞) and τ ∈ [1/2,∞), then

lim
q↑1

〈mλ,mµ〉q
α,qβ

L,q,qτ = 〈mλ,mµ〉α,β
J,τ .

(2) Let α, β, τ ∈ N and c, d > 0, then

lim
q↑1

〈mλ,mµ〉q
α,qβ ,c,d

B,q,qτ = [mλ,mµ]α,β,c,d
J,τ .

Proof: (1) Fix m1,m2 ∈ R such that m2 ≥ m1 and m1 +m2 ≥ 1. Then

lim
q↑1

(qm1z; q)∞
(qm2z; q)∞

= (1− z)m2−m1

uniform for z on {z ∈ C / |z| ≤ 1} (cf. [K4]). This implies for the function

gλ,µ(x;α, β; τ ; q) := q(
n
2)τmλ(x′(τ))mµ(x′(τ))v(x′(τ); qα, qβ ; q, qτ )

with x′(τ) = (x1, q
τx2, . . . , q

(n−1)τxn), and fixed α, β ∈ (0,∞), τ ∈ [ 12 ,∞), that

lim
q↑1

gλ,µ(x;α, β; τ ; q) = mλ(x)mµ(x)vJ(x;α, β; τ) (6.7)

uniformly on V := {(x1, . . . , xn) / 1 ≥ x1 ≥ . . . ≥ xn ≥ 0}. So we have:

lim
q↑1

〈mλ,mµ〉q
α,qβ

L,q,qτ = lim
q↑1

∫ 1

x1=0

∫ x1

x2=0

. . .

∫ xn−1

xn=0

gλ,µ(x;α, β; τ ; q)dqx

=
1
n!

lim
q↑1

∫ 1

x1=0

. . .

∫ 1

xn=0

mλ(x)mµ(x)vJ(x;α, β; τ)dqx

=
1
n!

∫ 1

x1=0

. . .

∫ 1

xn=0

mλ(x)mµ(x)vJ(x;α, β; τ)dx

= 〈mλ,mµ〉α,β
J,τ .

For the first equality we used that∫ γ

0

h(u)dqu := γ

∫ 1

0

h(γu)dqu (γ 6= 0),
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for the second equality we used the uniform convergence of the integrand (for-
mula (6.7)) and that vJ is symmetric, and for the third equality we used that vJ

is continuous on [0, 1]n and the fact that (3.4) is also valid for multidimensional
Jackson integrals with continuous integrands.
(2) For τ = k ∈ N, the inner product 〈 . , . 〉a,b,c,d

B,q,qk simplifies to

〈f, g〉B =
1
n!

∫ c

x1=−d

. . .

∫ c

xn=−d

f(x)g(x)w(x)dqx,

with weight function

w(x; a, b, c, d; q, qk) =
n∏

i=1

(qxi/c,−qxi/d; q)∞
(qaxi/c,−qbxi/d; q)∞

∆k(x),

and

∆k(x) := (−1)k(n
2) q−(k

2)(n
2)

k−1∏
l=0

∏
i 6=j

(
xi − qlxj

)
(cf. [S1]). We have that

lim
q↑1

w(x; qα, qβ , c, d; q, qτ ) = wJ(x;α, β, c, d; τ)

uniformly for x ∈ [−d, c]n, if c, d > 0 and α, β, τ ∈ N. Similar arguments as in
(1) gives the desired result. 2

With the help of this proposition, it is also possible to prove that the BCn

type big and little q-Jacobi polynomials are q-analogues of the generalized Jacobi
polynomials, with techniques very similar to the techniques used by Macdonald
to investigate the limit q tends to 1 for his orthogonal polynomials associated
with general root systems (cf. [M1]). See also [vD], prop. 4.3, where these
techniques were used for the limit transition from Askey-Wilson polynomials to
Jacobi polynomials (formula (5.5)).
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