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Abstract. Explicit product formulas are obtained for families of multivariate
polynomials which are orthogonal on simplices and on a parabolic biangle in R2.
These product formulas are shown to give rise to measure algebras which are hy-
pergroups. The article also includes an elementary proof that the Michael topology
for the space of compact subsets of a topological space (which is used in the def-
inition of a hypergroup) is equivalent to the Hausdorff metric topology when the
underlying space has a metric.

1. Introduction

1.1. Orthogonal polynomials, product formulas, and hypergroups. Let k be
a positive integer, let H be a compact subset of Rk, and let

e = e(k) = (

k︷ ︸︸ ︷
1, . . . , 1 ) ∈ H.

We use the following notations: C(H) denotes the complex-valued continuous func-
tions on H, M(H) is the Banach space of complex-valued Borel measures supported
in H with total variation norm, M1(H) is the class of probability measures in M(H),
supp(ν) is the support of ν ∈ M(H), and δx is the unit point mass concentrated at
x. A family P of k-variable polynomials is said to be a set of orthogonal polynomials
with respect to µ ∈M1(H) if ∫

PQdµ = 0

whenever P, Q ∈ P with P 6= Q, and for d = 0, 1, . . . the set {P ∈ P : degreeP ≤ d}
spans the space of all k-variable polynomials with degree ≤ d.

We assume further that

P (e) = 1 (P ∈ P).

1991 Mathematics Subject Classification. Primary 33C50, 43A62.
Key words and phrases. Product formulas, orthogonal polynomials on the parabolic biangle,

orthogonal polynomials on the simplex, hypergroups, Michael topology.
The first author did this research partially at CWI, Amsterdam.
The second author was supported by the National Science Foundation grant DMS-9404316.
The present version of February 25, 1997 will appear in the journal Constructive Approximation.

1



2 TOM H. KOORNWINDER AND ALAN L. SCHWARTZ

P has a product formula if for each pair x, y ∈ H there is µx,y ∈M(H) such that

(1.1)

∫
P dµx,y = P (x) · P (y) (P ∈ P).

(Thus (x, y) 7→
∫
f dµx,y is continuous on H ×H for each f ∈ C(H).)

Under the additional assumption that each µx,y ∈ M1(H) it is possible to define
a product (called a convolution) on M(H) as follows: if ν and λ belong to M(H)
define ν ∗ λ by its action on f ∈ C(H) by∫

f d(ν ∗ λ) =

∫∫ (∫
f dµx,y

)
dν(x) dλ(y).

whence

δx ∗ δy = µx,y.

It follows that (M(H), ∗) is a commutative Banach algebra with identity δe, and
that for each P ∈ P the mapping

ν 7→
∫
P dν

is a complex homomorphism of (M(H), ∗). Moreover, (M(H), ∗) satisfies the follow-
ing properties:

(H1) A convolution of probability measures is a probability measure.
(H2) The mapping (µ, ν) 7→ µ ∗ ν is continuous from M(H) ×M(H) into M(H)

with the weak-* topology.
(H3) δe ∗ ν = ν for every ν ∈M(H).

If (M(H), ∗) also has the following properties:

(H4) e ∈ supp(δx ∗ δy) if and only if x = y.
(H5) The mapping (x,y) 7→ supp(δx ∗ δy) is continuous from H ×H into the space

of compact subsets of H topologized by the Hausdorff metric.

then (M(H), ∗) is a hypergroup measure algebra (often called simply a hypergroup or
DJS-hypergroup) and is referred to as the the hypergroup associated with P , and (1.1)
is said to be a hypergroup type product formula. A hypergroup which arises in this
way is referred to as a k-variable continuous polynomial hypergroup. The founding
articles on the subject of hypergroups are by Dunkl [Dun73], Jewett [Jew75] and
Spector [Spe78]. The axioms for a DJS-hypergroup are somewhat more general than
(H1)–(H5) and are given in full detail in [Jew75] where H is only required to be
a locally compact Hausdorff space (although Jewett uses the term “convo” instead
of “hypergroup”). See [BH95] and many of the articles in [CGS95] for additional
discussion.

The existence of a product formula for polynomials is an unusual situation, and
only a few examples are known. That the product formula gives rise to a hypergroup
is rarer yet.
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The purpose of this article is to establish new product formulas and associated
hypergroups for polynomials orthogonal on the parabolic biangle

B = {(x1, x2) : 0 ≤ x2
2 ≤ x1 ≤ 1}

and the k-simplex for k ≥ 2:

∆(k) = {(x1, . . . , xk) : 0 ≤ xk ≤ · · · ≤ x1 ≤ 1}.

We have chosen to obtain the product formulas in an explicit form; this is required
in the proofs of (H4) and (H5). A proof of product formulas in the form (1.1) with
probability measures µx,y can be had with somewhat less effort.

The balance of the paper is organized as follows: the next section contains a dis-
cussion of Axiom (H5), and the rest of the section is used to describe the classical
example of the Jacobi polynomials and define several classes of multivariate orthogo-
nal polynomials: the parabolic biangle polynomials, the triangle polynomials, and the
simplex polynomials. Section 2 is devoted to the statement of the main results. The
product formulas are proved in Section 3, and in Section 4, these product formulas
are shown to be of hypergroup type.

1.2. Axiom (H5) and topologies for the space of compact subsets. In the
definition of a general hypergroup, Jewett requires that the space of compact sub-
sets which appears in Axiom (H5) have the Michael topology (see [Jew75, §2.5] and
[Mic51]). Two of the objections that (H5) has aroused are: first, the Michael topology
is very hard to grasp, and second, it is often very difficult to check that the axiom
holds.

Regarding the first objection, it is often asked why the simpler Hausdorff metric
topology for the compact subsets is not used whenever H is a metric space. (Both
topologies are described in Subection 4.1 below.) In fact, in Lemma 4.1 we give an
elementary proof that the two topologies are equivalent when both are defined.

An additional reason for the inclusion of this lemma is the curious history of this
fact. In 1951, Michael actually proved [Mic51, (4.9.13)] that H is metrizable if and
only if C(H) is; the proof is quite technical. Michael’s result is, strictly speaking,
weaker than the lemma; but the lemma is probably a corollary of Michael’s proof. In
1987, Gallardo and Gebuhrer [GG87, Prop. 1.1] show that every Michael-open subset
of C(H) is also a Hausdorff-open set; their method might also yield the converse. In
1972, Dellacherie [Del72, pp. 41–42] proved the lemma when H is compact. In
1989, Zeuner states [Zeu89, §2.1.1] that the two topologies are the same. Finally, in
1995, Bloom and Heyer [BH95, §1.1.1] say that the Michael topology is stronger than
the Hausdorff topology. (Neither proofs nor references are provided in the last two
works.)

Regarding the difficulty of checking (H5), we note that even with the Hausdorff
topology rather than the Michael topology, our arguments will not assuage the second
objection.
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There are some alternate hypergroup definitions which avoid the difficulties raised
by Axiom (H5) (e.g., [Geb95]), but our use of (H1)–(H5) guarantees that the measure
algebras obtained here will be hypergroups in the strictest sense of that term.

1.3. Example. Jacobi polynomials. One of the best-known examples of a prod-
uct formula of hypergroup type for orthogonal polynomials is the one which arises
in connection with the Jacobi polynomials. To define these polynomials recall the
Gaussian hypergeometric function

F (a, b; c; z) = 2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)kz
k

(c)kk!
,

where a, b, c, z ∈ C; c 6= 0,−1,−2, . . .; |z| < 1. Considered as a function of z there is
a unique analytic continuation to {z ∈ C : z 6∈ [1,∞)}.

The Jacobi polynomials are defined by

P (α,β)
n (x) =

(
n+ α

n

)
F

(
−n, n+ α+ β + 1;α+ 1;

1− x

2

)
,

where α, β > −1; n = 0, 1, 2, . . .. For fixed α, β the polynomials P
(α,β)
n are orthogonal

on the interval [−1, 1] with respect to the weight function (1− x)α(1 + x)β. We use
the normalized Jacobi polynomials

(1.2) R(α,β)
n (x) =

P
(α,β)
n (x)

P
(α,β)
n (1)

= F

(
−n, n+ α+ β + 1;α+ 1;

1− x

2

)
so that

R(α,β)
n (1) = 1.

The product formula for these polynomials can be given in the form

R(α,β)
n (2x2 − 1) ·R(α,β)

n (2y2 − 1) =
2Γ(α+ 1)

Γ(α− β)Γ(β + 1
2
)Γ(1

2
)

·
∫ π

0

∫ 1

0

R(α,β)
n

(
2x2y2 + 4xyr cosψ(1− x2)1/2(1− y2)1/2 + 2(1− x2)(1− y2)r2 − 1

)
· (1− r2)α−β−1r2β+1(sinψ)2β dr dψ

see([Koo72]). This is valid for 0 ≤ x, y ≤ 1 when α > β > −1
2

.
This formula gives rise to a product ∗ on M(K), where K = [−1, 1], with an

interesting harmonic analysis. To see this we first make a change of variables replacing
2x2 − 1 by x and 2y2 − 1 by y. This has the effect of transforming the argument

of R
(α,β)
n in the integrand into another function which we denote Z(x, y; r, ψ). Now

define a measure on [0, 1]× [0, π] by

dmα,β(r, ψ) =
2Γ(α+ 1)

Γ(α− β)Γ(β + 1
2
)Γ(1

2
)
(1− r2)α−β−1r2β+1(sinψ)2βdr dψ.
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With these changes the product formula becomes

R(α,β)
n (x) ·R(α,β)

n (y) =

∫ π

0

∫ 1

0

R(α,β)
n

(
Z(x, y; r, ψ)

)
dmα,β(r, ψ) (x, y ∈ K).

Now for any x, y ∈ K the Riesz representation theorem guarantees the existence of
a probability measure µx,y ∈M1(K) such that for every f which is continuous on K∫

K

f dµx,y =

∫ π

0

∫ 1

0

f
(
Z(x, y; r, ψ)

)
dmα,β(r, ψ).

so that

(1.3) R(α,β)
n (x) ·R(α,β)

n (y) =

∫
R(α,β)
n dµx,y(r, ψ).

(M(K), ∗) is a hypergroup. Indeed every 1-variable continuous polynomial hyper-
group is associated with the Jacobi polynomials [CS90, CMS91, CS95b].

1.4. Multivariate polynomial families. The story becomes much more compli-
cated for multivariate polynomials. In that case, there is a more diverse collection
of examples of 2-variable continuous polynomial hypergroups (see [CS95a] for three
types). The issue seems to depend in a strong way on the geometry of the set which
supports the orthogonality measure. We introduce the following classes of polynomi-
als:

1.4.1. Parabolic biangle polynomials. Let

Rα,β
n,k (x1, x2) = R

(α,β+k+ 1
2
)

n−k (2x1 − 1) · x
1
2
k

1 R
(β,β)
k (x

− 1
2

1 x2),

where α, β > −1 and n, k are integers such that n ≥ k ≥ 0. These functions are
polynomials in x1 and x2 of degree n and for fixed α, β they are orthogonal on the
region B with respect to the measure (1− x1)

α(x1 − x2
2)
β dx1 dx2.

For certain values of the parameters α, β the parabolic biangle polynomials have
an interpretation as spherical functions for a Gelfand pair (K,M), where K is a
compact group and M is a closed subgroup. These values are: (α, β) = (2n−3, 1/2),
K = Sp(n)×Sp(1), M = Sp(n−1)×diag(Sp(1)×Sp(1)), K/M = S4n−1, n = 2, 3, . . .,
and (α, β) = (3, 5/2), K = Spin(9), M = Spin(7), K/M = S15. See [FK79] and the
references given there. For these values of the parameters, the general theory of
spherical functions on Gelfand pairs yields the existence of suitable product formulas
and related hypergroup structures. See also [Koo75].

1.4.2. Triangle polynomials. Let

Rα,β,γ
n,k (x1, x2) = R

(α,β+γ+2k+1)
n−k (2x1 − 1) · xk1R

(β,γ)
k (2x−1

1 x2 − 1),

where α, β, γ > −1 and n, k are integers such that n ≥ k ≥ 0.
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These functions are polynomials in x1 and x2 of degree n, and for fixed α, β, γ they
are orthogonal on the triangular region ∆(2) with respect to the measure
(1− x1)

α(x1 − x2)
βxγ2 dx1 dx2. See [Koo75] for further details.

1.4.3. Simplex polynomials. These are the k-variable analogues of the triangle poly-
nomials and they are defined by recursion. Let k = 2, 3, . . .; α1, . . . , αk+1 > −1;
n1, . . . , nk integers such that n1 ≥ n2 ≥ · · · ≥ nk ≥ 0. For k = 2, let Rα1,α2,α3

n1,n2
(x1, x2)

be the triangle polynomial as in Subsection 1.4.2, and for k ≥ 3 define

(1.4) Rα1,...,αk+1
n1,...,nk

(x1, . . . , xk)

= R
(α1,α2+α3+···+αk+1+2n2+k−1)
n1−n2

(2x1 − 1) · xn2
1 R

α2,...,αk+1
n2,...,nk

(
x2

x1

, . . . ,
xk
x1

).

For fixed α1, . . . , αk+1 the functions on the left-hand side of (1.4) are polynomials of
degree n1 in x1, . . . , xk which are orthogonal on the simplex ∆(k) with respect to the
measure

(1− x1)
α1(x1 − x2)

α2 · · · (xk−1 − xk)
αk(xk)

αk+1 dx1 dx2 . . . dxk.

These polynomials were studied before by Kalnins, Miller, and Tratnik [KMT91,
(2.8)].

No interpretations of triangle or simplex polynomials as spherical functions are
known. For integer or half-integer values of the parameter a weaker group-theoretic
interpretation of triangle polynomials can be given as certain O(p) × O(q) × O(r)
invariant spherical harmonics on the unit sphere in Rp+q+r, see [Koo86]. This can
be easily iterated to an interpretation of simplex polynomials as special spherical
harmonics.

2. Hypergroup type product formula for multivariate orthogonal
polynomials

2.1. Parabolic biangle polynomials and triangle polynomials. Let

I = [0, 1] and J = [0, π].

We introduce the following functions and measures (in all cases |x|, |y|, r ∈ I and ψ
and ψj(j = 1, 2, 3) ∈ J :

D(x, y; r, ψ) = xy + (1− x2)1/2(1− y2)1/2r cosψ,

E(x, y; r, ψ) =
(
x2y2 + (1− x2)(1− y2)r2 + 2xy(1− x2)1/2(1− y2)1/2r cosψ

)1/2
.

One of our goals in this article is to give the product fomulas in an explicit form. This
requires that some technical definitions be formulated so that the product formulas
may be stated precisely. The definitions will become motivated when the proofs are
read. The parameters in the following measures are restricted to those values for
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which the measures have finite total variation; the constants are chosen so that all
the measures have unit total variation.

dmβ(ψ) =
Γ(β + 3

2
)

Γ(1
2
)Γ(β + 1)

(sinψ)2β+1dψ,

dm−1(ψ) = d
[

1
2
δ0(ψ) + 1

2
δπ(ψ)

]
,

dmα,β(r, ψ) =
2Γ(α+ 1)

Γ(α− β)Γ(β + 1)
(1− r2)α−β−1r2β+1dr dmβ− 1

2 (ψ),

dmα,α(r, ψ) =
Γ(α+ 1)

Γ(α+ 1
2
)Γ(1

2
)
(sinψ)2α d(δ1)(r) dψ,

dνα,β(r) =
Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)
(1− r)αrβ dr,

dνα,−1(r) = d(δ0)(r),

dµα,β(r, ψ1, ψ2, ψ3) = dmβ− 1
2 (ψ3) · dmβ− 1

2 (ψ2) · dmα,β+ 1
2 (r, ψ1),

dµα,β,γ(r1, r2, r3, r4, ψ1, ψ2, ψ3)

= dmβ,γ(r4, ψ3) · dmβ,γ(r3, ψ2) · dνβ,γ−
1
2 (r2) · dmα,β+γ+1(r1, ψ1),

dλα,β,γ(r1, r2, ψ) = dνβ,γ−
1
2 (r2) dm

α,β+γ+1(r1, ψ).

Some of these measures are limiting cases; for instance, the formula for dmα,β does
not make sense if α = β, but dmα,α is defined so that for every f which is continuous
on I × J we have

lim
β→α−

∫
I×J

f dmα,β =

∫
I×J

f dmα,α.

Similar relations hold for the pairs dmβ, dm−1 and dνα,β, dνα,−1. We use the conven-
tion that a single integral sign indicates integration over the full range of the variables
indicated in the measure. Thus, the product formula for Jacobi polynomials can be
given as

R(α,β)
n (2x2 − 1) ·R(α,β)

n (2y2 − 1)(2.1)

=

∫
I×J

R(α,β)
n

(
2E2(x, y; r, ψ)− 1

)
dmα,β(r, ψ).

A product formula for ultraspherical polynomials,

(2.2) R(β,β)
n (x) ·R(β,β)

n (y) =

∫
J

R(β,β)
n

(
D(x, y; 1, φ)

)
dmβ− 1

2 (φ) (β ≥ −1
2
),

can be obtained for β > −1/2 by first letting α→ β in (2.1) with the help of

(2.3) lim
γ→0

1

Γ(γ)

∫ 1

0

f(s)sγ−1 ds = f(0), f ∈ C([0, 1]),
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and some algebraic manipulation. The case β = −1/2 follows by another application
of (2.3) by letting β → −1/2.

We introduce some notation that will be used in connection with the parabolic
biangle polynomials and the triangle polynomials. When used without explicit argu-
ments, D and E are interpreted as:

(2.4) D = D(x1, y1; r1, ψ1) and E = E(x1, y1; r1, ψ1).

We also introduce the following functions with the same convention on their use
without explicitly indicated arguments:

C = C(x1, y1; r1, ψ1) =
D(x1, y1; r1, ψ1)

E(x1, y1; r1, ψ1)
,

(2.5)

G = G(x1, x2, y1, y2; r1, ψ1, ψ2, ψ3)
(2.6)

= D

(
C,D(

x2

x1

,
y2

y1

; 1, ψ2); 1, ψ3

)
, (x1y1 6= 0),

H = H(x1, x2, y1, y2; r1, r2, r3, r4, ψ1, ψ2, ψ3)
(2.7)

= E

(
[(1− r2)C

2 + r2]
1/2, E(

x2

x1

,
y2

y1

; r3, ψ2); r4, ψ3

)
, (x1y1 6= 0).

Theorem 2.1 (Parabolic biangle polynomial product formula). The parabolic biangle
polynomials satisfy the following hypergroup-type product formula: Let α ≥ β+ 1

2
≥ 0.

Assume 0 ≤ |x2| ≤ x1 ≤ 1 and 0 ≤ |y2| ≤ y1 ≤ 1, then if (x1, y1), (x2, y2) ∈
B − {(0, 0)}

Rα,β
n,k (x

2
1, x2) ·Rα,β

n,k (y
2
1, y2) =

∫
I×J3

Rα,β
n,k (E

2, EG) dµα,β(r1, ψ1, ψ2, ψ3),

while if 0 ≤ |x2| ≤ x1 ≤ 1 and (y1, y2) = (0, 0)

Rα,β
n,k (x

2
1, x2) ·Rα,β

n,k (0, 0) =

∫
I×J

Rα,β
n,k (E

2, D) dmα,β+ 1
2 (r1, ψ1);

note that if y1 = 0, D = r1(1− x2
1)

1/2 cosψ1 and E = r1(1− x2
1)

1/2.

2.2. Triangle polynomials.

Theorem 2.2 (Triangle polynomial product formula). The triangle polynomials sat-
isfy the following hypergroup-type product formula: Let α ≥ β+γ+1 and β ≥ γ ≥ −1

2
.
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If (x1, x2), (y1, y2) ∈ ∆(2) − {(0, 0)}, then

Rα,β,γ
n,k (x2

1, x
2
2) ·R

α,β,γ
n,k (y2

1, y
2
2)

=

∫
I4×J3

Rα,β,γ
n,k

(
E2, E2H2) dµα,β,γ(r1, r2, r3, r4, ψ1, ψ2, ψ3),

while if (x1, x2) ∈ ∆(2) and (y1, y2) = (0, 0)

Rα,β,γ
n,k (x2

1, x
2
2) ·R

α,β,γ
n,k (0, 0)

=

∫
I2×J

Rα,β,γ
n,k

(
E2, E2[(1− r2)C

2 + r2]
)
dλα,β,γ(r1, r2, ψ1);

note that if y1 = 0, then E = r1(1− x1)
1/2 and C = cosψ1.

2.3. Simplex polynomials. We introduce a suite of definitions and conventions so
that the product formula for simplex polynomials can be stated conveniently. We
suggest that the reader postpone digestion of these until he is reading the proof of
the simplex polynomial product formula (Theorem 2.3) at which point the definitions
become fully motivated. We begin by defining for u, x ∈ I

V(2)(x;u) =
(
1− u(1− x), x

)
.

For k > 2, u ∈ I, and x = (x1, . . . , xk−1) ∈ ∆(k−1), let

V(k)(x;u) =
(
x1, . . . , xk−2, (1− u)xk−2 + uxk−1, xk−1

)
.

For x = (x1, . . . , xk) ∈ ∆(k) − {0}, let

Lx = (
x2

x1

, · · · , xk
x1

) ∈ ∆(k−1).

Now let x = (x1, x2), y = (y1, y2), and K(2) = I4 × J3, so a typical ω ∈ K(2) can be
written as ω = (r1, r2, r3, r4, ψ1, ψ2, ψ3), and in the context of simplex polynomials
we use the convention that D, E, and H without arguments specified are interpreted
as.

D = D(
√
x1,

√
y1 ; r1, ψ1),

E = E(
√
x1,

√
y1 ; r1, ψ1),

H = H(
√
x1,

√
x2,

√
y1,

√
y2 ; r1, r2, r3, r4, ψ1, ψ2, ψ3).

Define

(2.8) Z(2)(x,y; ω) = (E2, E2H2).

For k > 2, let

K(k) = K(k−1) ×K(k−1) ×K(k−1) × I.
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If ω ∈ K(k) we can write ω = (ρ,σ, τ , u) with ρ,σ, τ ∈ K(k−1) and u ∈ I. Let

n = n1, . . . , nk,

α = α1, . . . , αk+1,

Pα = α2, . . . , αk+1,

Cα = α1, . . . , αk−2, αk−1 + αk + 1, αk+1,

e = e(k) = (

k︷ ︸︸ ︷
1, . . . , 1 ),

f = e(k−1).

Assume that we have already defined Z(k−1) = (Z
(k−1)
1 , . . . , Z

(k−1)
k−1 ) = Z(k−1)(x,y; τ)

(x,y ∈ ∆(k−1), τ ∈ K(k−1)), and dµβ whenever β = β1, . . . , βk, so that, in particular,
µPα and µCα are defined. Now define

dµα(ω) = dµα(ρ,σ, τ , u)

= dµCα(ρ) · dµPα(σ) · dµPα(τ ) · dναk,αk−1(u).

Let x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ ∆(k), and

W = (W1, . . . ,Wk−1) = Z(k−1)(x1f , y1f ; ρ),

and define

Z(k)(x,y; ω) = W1 ·
(

1,Z(k−1)
(
V(k−1)(LW;u),Z(k−1)(Lx, Ly; σ); τ

))
.

For η = (r1, r2, ψ) define

U(2)(x; η) = r2
1(1− x) ·

(
1, (1− r2) cos2 ψ + r2

)
,

and if k > 2 and η = (r1, r2, . . . , rk, ψ), define

Tη = (r1, . . . , rk−1, ψ),

U(k)(x; η) = V(k)
(
U(k−1)(x;Tη); rk

)
,

dλα(η) = dναk,αk−1(rk) · dλCα(Tη).

Theorem 2.3 (Simplex polynomial product formula). The simplex polynomials sat-
isfy the following hypergroup-type product formula: Let k ≥ 2, α = α1, . . . , αk+1,
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with

α1 ≥ α2 + · · ·+ αk+1 + k − 1,

α2 ≥ α3 + · · ·+ αk+1 + k − 2,

...

αk−1 ≥ αk + αk+1 + 1,

αk ≥ αk+1,

αk+1 ≥ −1
2
.

Let n = n1, . . . , nk, with n1 ≥ · · · ≥ nk, and x,y ∈ ∆(k) − {0}, then

Rα
n (x) ·Rα

n (y) =

∫
K(k)

Rα
n

(
Z(k)(x,y; ω)

)
dµα(ω),

while if y = 0, then for any x ∈ ∆(k)

Rα
n (x) ·Rα

n (0) =

∫
Ik×J

Rα
n

(
U(k)(x1; η)

)
dλα(η).

The measures in the above product formulas have the advantage that their densi-
ties are elementary functions, but the disadvantage is that they live on fairly high-
dimensional spaces; the dimension of K(k) increases exponentially with k (as one of
the referees observed). An interesting question is whether our product formulas can
be realized by integration over lower-dimensional regions, while preserving the ele-
mentary nature of the measures. In additional, we wonder whether the measures have
some canonical explanation in some group-theoretic interpretation of the product for-
mula. To start with, one should address this problem for the case of the parabolic
biangle polynomials using their interpretation as spherical functions.

3. Proof of the product formulas

All three product formulas will be proved in this section. That they are of hyper-
group type will be demonstrated in Section 4.

3.1. Proof of the biangle polynomial product formula. We first prove the
formula under the assumption α > β + 1

2
≥ 0. The case α = β + 1

2
≥ 0 will be a

consequence of (2.3).
The proof will require the Jacobi functions which are an extension of definition

(1.2) to the case of complex α, β, n, x with α 6= −1,−2, . . . and x 6= (−∞,−1]. The
Jacobi functions are defined by

φ
(α,β)
λ (t) = R

(α,β)
1
2
(iλ−α−β−1)

(cosh 2t)(3.1)

= F

(
−iλ+ α+ β + 1

2
,
iλ+ α+ β + 1

2
;α+ 1;−(sinh t)2

)
.
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For fixed α, β, say with α > β > −1
2
, the functions φ

(α,β)
λ with λ ≥ 0 form a

continuous (generalized) orthogonal system on (0,∞) with respect to the weight
function (sinh t)2α+1(cosh t)2β+1, (see, for instance, [Fle72] or [Koo75]).

The starting point of our considerations is the integral formula

(3.2) F (a, b; c; z) =
Γ(c)

Γ(s)Γ(c− s)

∫ 1

0

xs−1(1− x)c−s−1(1− xz)r−a−b

· F (r − a, r − b; s;xz)F

(
a+ b− r, r − s; c− s;

(1− x)z

1− xz

)
dx,

where <c > <s > 0, z ∈ C− [1,∞). This formula due to Erdelyi [EMOT53, 2.4(3)] is
a generalization of Bateman’s integral (put r = a+b in (3.2) and it can be derived from
Bateman’s integral by using fractional integration by parts). Gasper [Gas75] stressed
the importance of (3.2) and he applied it in order to derive a Mehler-Dirichlet-type
integral representation for Jacobi polynomials. In this paper, we will give several
other applications of (3.2).

Let us rewrite (3.2) in the following way. First apply [EMOT53, 2.1(22)] to the
second hypergeometric function occurring in the integrand of (3.2). Next substitute

a =
1

2
(−iλ+ α+ β + γ + 2k + 2), b =

1

2
(iλ+ α+ β + γ + 2k + 2),

c = α+ 1, r = k + α+ γ + 1, s = α− β,

where α > β > −1, γ > −1, k ∈ N0, and λ ∈ C.
Finally, put z = −(sinh y)2 (y ≥ 0) and introduce a new integration variable ζ

such that x = sinh2ζ/ sinh2y. As a result we obtain

F

(
−iλ+ α+ β + γ + 2k + 2

2
,
iλ+ α+ β + γ + 2k + 2

2
;α+ 1;− sinh2y

)
=

21−βΓ(α+ 1)

Γ(α− β)Γ(β + 1)
(cosh y)−2k−2β−2γ−2(sinh y)−2α

·
∫ y

0

F

(
−k, k + β + γ + 1; β + 1; 1− cosh2ζ

cosh2y

)
· F

(
−iλ+ α− β + γ

2
,
iλ+ α− β + γ

2
;α− β;− sinh2ζ

)
· (sinh ζ)2α−2β−1(cosh ζ)2γ+1(cosh 2y − cosh 2ζ)βdζ.
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In view of (1.2) and (3.1) this becomes

(3.3) (cosh y)2kφ
(α,β+γ+2k+1)
λ (y) =

21−βΓ(α+ 1)

Γ(α− β)Γ(β + 1)

· (cosh y)−2β−2γ−2(sinh y)−2α

∫ y

0

R
(β,γ)
k

(
2
cosh2ζ

cosh2y
− 1

)
· φ(α−β−1,γ)

λ (ζ)

· (cosh 2y − cosh 2ζ)β(sinh ζ)2α−2β−1(cosh ζ)2γ+1dζ (α > β > −1).

We have chosen the Jacobi function notation, since the formulas become most elegant
in this form and since they suggest results for the functions

(3.4) (y, θ) 7→ φ
(α,β+γ+2k+1)
λ (y) · (cosh y)2kR

(β,γ)
k (cos θ),

which form a continuous orthogonal system analogous to the triangle polynomials.
Let us specialize (3.3) to the case γ = −1/2. Combination of (1.2) and [EMOT53,

2.11(2)] yields the quadratic transformation

(3.5) R
(β,− 1

2
)

k (2x2 − 1) = R
(β,β)
2k (x),

which is valid for general complex k. After substituting (3.5) in (3.3) and replacing
2k by k we obtain

(3.6) (cosh y)kφ
(α,β+k+ 1

2
)

λ (y) =
21−βΓ(α+ 1)

Γ(α− β)Γ(β + 1)

· (cosh y)−2β−1(sinh y)−2α

∫ y

0

R
(β,β)
k

(
cosh ζ

cosh y

)
φ

(α−β−1,− 1
2
)

λ (ζ)

· (cosh 2y − cosh 2ζ)β(sinh ζ)2α−2β−1dζ (α > β > −1).

Next, we need a Mehler-Dirichelet-type formula. The Legendre functions of the
first kind P µ

ν (see [EMOT53, 3.7(8)]) satisfy:

P µ
ν (coshx) = (2/π)1/2 sinhµ x

Γ(1/2− µ)

·
∫ x

0

(coshx− cosh y)−µ−1/2 cosh((ν + 1/2)y) dy (<µ < 1
2
).

Now by [EMOT53, §3.2(20)]

P µ
ν (coshx) =

2µ(cosh2 x− 1)−µ/2

Γ(1− µ)
F

(
1 + ν − µ

2
,
−ν − µ

2
; 1− µ; 1− cosh2 x

)
.

Hence

P−α
iλ− 1

2

(cosh t) =
2−α(sinh t)α

Γ(1 + α)
φ

(α,− 1
2
)

λ (t).
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Thus we obtain the Mehler-Dirichlet type formula

(3.7) φ
(α−β−1,− 1

2
)

λ (ζ) =
2α−β−

1
2 Γ(α− β)

Γ(α− β − 1
2
)Γ(1

2
)
(sinh ζ)2(β−α+1)

·
∫ ζ

0

(cosλη)(cosh ζ − cosh η)α−β−
3
2 dη (α > β + 1

2
).

Now substitute (3.7) in (3.6). This yields a representation of the left hand-side of (3.6)
by a double integral with integration variables (η, ζ). On performing the transforma-
tion of integration variables from (η, ζ) to (η, χ) given by cosχ = (cosh ζ)/(cosh y)
we obtain

(3.8) (cosh y)kφ
(α,β+k+ 1

2
)

λ (y) =
2α−β+ 1

2 Γ(α+ 1)

Γ(α− β − 1
2
)Γ(β + 1)Γ(1

2
)
· (sinh y)−2α

·
∫ y

0

∫ arccos( cosh η
cosh y

)

0

(cosλη)R
(β,β)
k (cosχ)(cosh y cosχ− cosh η)α−β−

3
2

· (sinχ)2β+1 dχ dη (α > β + 1
2
> −1

2
).

For k = 0 this formula reduces to the Mehler-Dirichlet-type formula for Jacobi func-
tions (see Koornwinder [Koo75, (2.16)and (2.18)]).

Note that (3.8) shows that

(cosh y)kφ
(α,β+k+ 1

2
)

λ (y) =

∫
(cosλη)R

(β,β)
k (cosχ) dσ(α,β)

y (η, χ),

where σ
(α,β)
y is a positive measure if α ≥ β + 1

2
≥ −1

2
.

It was pointed out in [Koo75, Remark 6] that the Laplace-type integral represen-
tation

φ
(α,β+ 1

2
)

λ (y) =

∫ (
K(cosh y; r, ψ)

)iλ−α−β− 3
2 dmα,β+ 1

2 (r, ψ) (α > β + 1
2
> −1

2
),

where

K(x; r, ψ) =
[
x2 + (x2 − 1)r2 + 2x(x2 − 1)1/2r cosψ

]1/2
,

is equivalent with the case k = 0 of (3.8), since both formulas are related to each
other by the substitution

eη+iχ = cosh y + (sinh y)reiψ

for the integration variables. Let us make the same substitution for the general
case of (3.8). This is most conveniently done in by three substitutions in sequence:
first σ + iτ = eη+iχ, then s = (σ − cosh y)/(sinh y), and t = τ/(sinh y), and finally
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reiψ = s+ it. We obtain

(cosh y)kφ
(α,β+k+ 1

2
)

λ (y)

=

∫
R

(β,β)
k

(
cosh y + (sinh y)r cosψ

K(cosh y; r, ψ)

) [
K(cosh y; r, ψ)

]iλ−α−β− 3
2 dmα,β+ 1

2 (r, ψ)

(α > β + 1
2
> −1

2
).

By substituting (3.1) this formula can be rewritten as

(3.9) xkR
(α,β+k+ 1

2
)

n−k (2x2 − 1)

=

∫
R

(β,β)
k

(
x+ (x2 − 1)1/2r cosψ

K(x; r, ψ)

)
[K(x; r, ψ)]2n−kdmα,β+ 1

2 (r, ψ)

(α > β + 1
2
> −1

2
; x ≥ 1).

For k = 0 this formula reduces to the Laplace-type integral representation for Jacobi
polynomials (see [Koo72, (1)] and [Ask74]).

Our next task is to obtain an integral for

(3.10) xk1R
(α,β+k+ 1

2
)

n−k (2x2
1 − 1) · yk1R

(α,β+k+ 1
2
)

n−k (2y2
1 − 1).

We require a formula due to Bateman (see [Koo74, (2.19)]). If the coefficients cm are
defined by

(3.11) R
(α,β+k+ 1

2
)

n−k (2x2 − 1) =
n−k∑
m=0

cmx
2m

then

(3.12)
n−k∑
m=0

cm(x2 + y2 − 1)mR
(α,β+k+ 1

2
)

m

(
2x2y2

x2 + y2 − 1
− 1

)
= R

(α,β+k+ 1
2
)

n−k (2x2 − 1) ·R(α,β+k+ 1
2
)

n−k (2y2 − 1).

In (3.9) we make the following substitution on both sides:

x =
x1y1

(x2
1 + y2

1 − 1)1/2
(x1, y1 ≥ 1), n = m+ k, r = r1, and ψ = ψ1,

then multiply by cm(x2
1 + y2

1 − 1)m+ 1
2
k and sum for m = 0, . . . , n− k. The left-hand

side is converted to (3.10). On the right-hand side, analytic continuation in x1 and
y1 and the substitution ψ1 = π − ψ1 yields∫

R
(β,β)
k (DE−1)

[
Ek

n−k∑
m=0

cmE
2m

]
dmα,β+ 1

2 (r1, ψ1).
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So finally for α > β + 1
2
> −1

2

Rα,β
n,k (x

2
1, x1) ·Rα,β

n,k (y
2
1, y1)(3.13)

= xk1R
(α,β+k+ 1

2
)

n−k (2x2
1 − 1) · yk1R

(α,β+k+ 1
2
)

n−k (2y2
1 − 1)

=

∫
R

(β,β)
k (DE−1) · EkR

(α,β+k+ 1
2
)

n−k (2E2 − 1) dmα,β+ 1
2 (r1, ψ1).

Equation (3.13) can be rewritten

(3.14) Rα,β
n,k (x

2
1, x1) ·Rα,β

n,k (y
2
1, y1) =

∫
Rα,β
n,k (E

2, D) dmα,β+ 1
2 (r1, ψ1).

Now

(3.15) Rα,β
n,k (0, 0) ·Rα,β

n,k (x
2
1, x2) = Rα,β

n,k (0, 0) ·Rα,β
n,k (x

2
1, x1),

since Rα,β
n,0 (x2

1, x2) = Rα,β
n,0 (x2

1, x1) while if k > 0, Rα,β
n,k (0, 0) = 0. Thus the special case

of the product formula in Theorem 2.1 follows.
We can now establish the full product formula using (3.13) and the product formula

(2.2) for the ultraspherical polynomials twice

Rα,β
n,k (x

2
1, x2) ·Rα,β

n,k (y
2
1, y2)

= xk1R
(α,β+k+ 1

2
)

n−k (2x2
1 − 1) · xk2R

(α,β+k+ 1
2
)

n−k (2x2
2 − 1) ·R(β,β)

k (
x2

x1

) ·R(β,β)
k (

y2

y1

)

=

∫
EkR

(α,β+k+ 1
2
)

n−k (2E2 − 1) ·R(β,β)
k (DE−1) dmα,β+ 1

2 (r1, ψ1)

·
∫
R

(β,β)
k

(
D(

x2

x1

,
y2

y1

; 1, ψ2)

)
dmβ− 1

2 (ψ2)

=

∫
EkR

(α,β+k+ 1
2
)

n−k (2E2 − 1) ·R(β,β)
k

(
D

(
DE−1, D(

x2

x1

,
y2

x2

; 1, ψ2); 1, ψ3

))
· dmβ− 1

2 (ψ3) · dmβ− 1
2 (ψ2) · dmα,β+ 1

2 (r1, ψ1)

=

∫
Rα,β
n,k (E

2, EG) dµα,β(r1, ψ1, ψ2, ψ3) (α > β + 1
2
≥ 0).

3.2. Proof of triangle polynomial product formula. We will first prove the
formula under the assumption α > β + γ + 1, β > γ > −1

2
. The remaining cases can

be obtained using (2.3).
We recall the following result of Askey and Fitch [AF69, (3.3)]:

(1− x)α+µR
(α+µ,β−µ)
k (x)

=
Γ(α+ µ+ 1)

Γ(α+ 1)Γ(µ)

∫ 1

x

(1− y)αR
(α,β)
k (y)(y − x)µ−1dy (α, β > −1, µ > 0).
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Now make the substitutions

α = β, β = γ, µ = γ +
1

2
, x = 2u2 − 1, y = 2(1− r)u2 + 2r − 1,

to obtain

(3.16) R
(β+γ+ 1

2
,− 1

2
)

k (2u2 − 1)

=

∫ 1

0

R
(β,γ)
k

(
2(1− r)u2 + 2r − 1

)
dνβ,γ−

1
2 (r), (β > −1, γ > −1

2
).

We also observe that

Rα,β,γ
n,k (x, x) = xkR

(α,β+γ+2k+1)
n−k (2x− 1) = R

α,β+γ+ 1
2
,− 1

2
n,k (x, x).

Equation (3.5) can be used to obtain

R
α,β,− 1

2
n,k (x1, x2) = Rα,β

n+k,2k(x1, x
1/2
2 )

Thus using (3.14) we have

R
α,β,− 1

2
n,k (x2

1, x
2
1) ·R

α,β,− 1
2

n,k (y2
1, y

2
1)

= Rα,β
n+k,2k(x

2
1, x1) ·Rα,β

n+k,2k(y
2
1, y1)

=

∫
Rα,β
n+k,2k(E

2, D) dmα,β+ 1
2 (r1, ψ1)

=

∫
R
α,β,− 1

2
n,k (E2, D2) dmα,β+ 1

2 (r1, ψ1) (α > β + 1
2
> −1

2
).

Thus with β replaced by β + γ + 1
2

and using (3.16)

Rα,β,γ
n,k (x2

1, x
2
1) ·R

α,β,γ
n,k (y2

1, y
2
1)

= R
α,β+γ+ 1

2
,− 1

2
n,k (x2

1, x
2
1) ·R

α,β+γ+ 1
2
,− 1

2
n,k (y2

1, y
2
1)

=

∫
R
α,β+γ+ 1

2
,− 1

2
n,k (E2, D2) dmα,β+γ+1(r1, ψ1)

=

∫
R

(α,β+γ+2k+1)
n−k (2E2 − 1) · E2kR

(β+γ+ 1
2
,− 1

2
)

k (2C2 − 1) dmα,β+γ+1(r1, ψ1)

=

∫
R

(α,β+γ+2k+1)
n−k (2E2 − 1) · E2k

·R(β,γ)
k

(
2(1− r2)C

2 + 2r2 − 1
)
dνβ,γ−

1
2 (r2) · dmα,β+γ+1(r1, ψ1)

=

∫
Rα,β,γ
n,k

(
E2, E2[(1− r2)C

2 + r2]

)
dνβ,γ−

1
2 (r2) · dmα,β+γ+1(r1, ψ1),

(α > β + γ + 1, β > −1, γ > −1
2
).
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Now by the same argument as used for (3.15)

Rα,β,γ
n,k (x2

1, x
2
2) ·R

α,β,γ
n,k (0, 0) = Rα,β,γ

n,k (x2
1, x

2
1) ·R

α,β,γ
n,k (0, 0)

and the special case of the product formula in Theorem 2.2 follows from the above.
Finally, using (2.1) twice

Rα,β,γ
n,k (x2

1, x
2
2) ·R

α,β,γ
n,k (x2

2, y
2
2)

= Rα,β,γ
n,k (x2

1, x
2
1) ·R

α,β,γ
n,k (x2

2, x
2
2) ·R

(β,γ)
k

(
2
x2

2

x2
1

− 1
)
·R(β,γ)

k

(
2
y2

2

x2
2

− 1
)

=

∫
R

(α,β+γ+2k+1)
n−k (2E2 − 1) · E2k

·R(β,γ)
k

(
2(1− r2)C

2 + 2r2 − 1
)
dνβ,γ−

1
2 (r2) dm

α,β+γ+1(r1, ψ1)

·
∫
R

(β,γ)
k

(
2E2(

x2

x1

,
y2

x2

; r3, ψ2)− 1

)
dmβ,γ(r3, ψ2)

=

∫
R

(α,β+γ+2k+1)
n−k (2E2 − 1) · E2k

·R(β,γ)
k

(
2E2

(
[(1− r2)C

2 + r2]
1/2, E(

x2

x1

,
y2

x2

; r3, ψ2); r4, ψ3

)
− 1

)
· dmβ,γ(r4, ψ3) · dmβ,γ(r3, ψ2) · dνβ,γ−

1
2 (r2) · dmα,β+γ+1(r1, ψ1)

=

∫
Rα,β,γ
n,k (E2, E2H2) dµα,β,γ(r1, r2, r3, r4, ψ1, ψ2, ψ3),

(α > β + γ + 1, β > γ > −1
2
).

3.3. Proof of the simplex polynomial product formula. The bivariate simplex
polynomials coincide with the triangle polynomials, so the product formulas for the
case k = 2 is given in Theorem 2.2. Thus we assume that the product formulas
in Theorem 2.3 are valid with k − 1 in place of k. We recall some notations from
Subsection 2.3 and introduce some further notations:

α = α1, . . . , αk+1,

n = n1, . . . , nk,

B(α,n) = (α1, α2 + · · ·+ αk+1 + 2n2 + k − 1),

Cα =

{
α1 + α2 + 1, α3 if k = 2,

α1, . . . , αk−2, αk−1 + αk + 1, αk+1, if k > 2,

e = e(k) = (

k︷ ︸︸ ︷
1, . . . , 1 ),

f = e(k−1),
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and if p and q are nonnegative integers with p < q and s = sp, . . . , sq, the two
truncation operators are defined by

P s = sp+1, . . . , sq, and Qs = sp, . . . , sq−1,

so that, for instance,

CPα = PCα = α2, . . . , αk−2, αk−1 + αk + 1, αk+1,(3.17)

B(Cα, Qn) = B(α,n),(3.18)

and (1.4) can be written

(3.19) Rα
n (x) = R

B(α,n)
n1−n2

(2x1 − 1) · xn2
1 R

Pα
Pn (Lx).

We will make use of the following:

(3.20) V(k+1)(x;u) =
(
x1, x1V

(k)(Lx;u)
)

= x1

(
1,V(k)(Lx;u)

)
,

We begin with an auxiliary result:

Lemma 3.1. If α = α1, . . . , αk+1, n = n1, . . . , nk with n1 ≥ · · · ≥ nk, and x ∈ ∆(k−1)

(3.21) RCα
Qn (x) =

∫ 1

0

Rα
n

(
V(k)(x;u)

)
dναk,αk−1(u).

Proof. The proof is by induction on the number k starting with k = 3. Formula (3.2)
with a = −n, b = n + α + β + γ + 2, c = α + β + 2, r = α − k + 1, and s = α + 1
followed by [EMOT53, 2.1.4(23)] leads to

(3.22) R(α+β+1,γ)
n (1− 2z) =

∫
Rα,β,γ
n,k (1− xz, 1− z) dνβ,α(x).

If k = 3 we have (with the help of (3.22))

Rα1,α2+α3+1,α4
n1,n2

(x1, x2) = R
(α1,α2+α3+α4+2n2+2)
n1−n2

(2x1 − 1) · xn2
1 R

(α2+α3+1,α4)
n2

(2x−1
1 x2 − 1)

= R
(α1,α2+α3+α4+2n2+2)
n1−n2

(2x1 − 1)

· xn2
1

∫ 1

0

Rα2,α3,α4
n2,n3

(1− u+ ux−1
1 x2, x

−1
1 x2) dν

α3,α2(u)

=

∫ 1

0

Rα1,α2,α3,α4
n1,n2,n3

(x1, (1− u)x1 + ux2, x2) dν
α3,α2(u)

which is (3.21) for k = 3.
Now assume that that (3.21) is true for some k ≥ 3. Then if α = α1, . . . , αk+2,

n = n1, . . . , nk+1 with n1 ≥ · · · ≥ nk+1, and x ∈ ∆(k), equations (3.17)–(3.19) yield

RCα
Qn (x) = R

B(Cα,Qn)
n1−n2

(2x1 − 1) · xn2
1 R

PCα
PQn (Lx)(3.23)

= R
B(α,n)
n1−n2

(2x1 − 1) · xn2
1 R

CPα
QPn (Lx)
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so, by the inductive assumption and (3.20)

RCα
Qn (x) = R

B(α,n)
n1−n2

(2x1 − 1) · xn2
1

∫
RPα
Pn

(
V(k)(Lx;u)

)
dναk,αk−1(u)

=

∫
Rα

n

(
x1, x1V

(k)(Lx;u)
)
dναk,αk−1(u)

=

∫
Rα

n

(
V(k+1)(x;u)

)
dναk,αk−1(u).

�

We now turn to the inductive step of the proof of Theorem 2.3. Assume k ≥ 3 and
that the product formula is true for simplex polynomials of fewer than k variables.
As in the other proofs of product formulas it will suffice to obtain the formula under
the assumption that the inequalities for α1, . . . , αk+1 are strict. Let α = α1, . . . , αk+1

and n = n1, . . . , nk satisfy the hypotheses of the theorem with strict inequalities
for α1, . . . , αk+1 in place of the weak inequalities. Let ρ, σ, τ ∈ K(k−1) and W =
(W1, . . . ,Wk−1) = Z(k−1)(xf , yf ; ρ). We then have with the help of (3.18), (3.19),
(3.23), the inductive assumption, and the observation that Cα and Qn satisfy the
hypotheses of Theorem 2.3 with k − 1 variables.

Rα
n (xe) ·Rα

n (ye) = xn2R
B(α,n)
n1−n2

(2x− 1) · yn2R
B(α,n)
n1−n2

(2y − 1)

= RCα
Qn (xf) ·RCα

Qn (yf)

=

∫
RCα
Qn (W) dµCα(ρ)

=

∫
W n2

1 R
B(α,n)
n1−n2

(
2W1 − 1

)
·RPCα

PQn (LW) dµCα(ρ).

Now, by (3.17) RPCα
PQn (LW) = RCPα

QPn (LW), so an application of Lemma 3.1 yields

Rα
n (xe) ·Rα

n (ye) =

∫
W n2

1 R
B(α,n)
n1−n2

(2W1 − 1) ·RPα
Pn

(
V(k−1)(LW;u)

)
(3.24)

· dναk,αk−1(u) · dµCα(ρ)

=

∫
Rα

n

(
W1,W1V

(k−1)(LW;u)
)
dναk,αk−1(u) · dµCα(ρ)

=

∫
Rα

n

(
V(k)(W;u)

)
dναk,αk−1(u) · dµCα(ρ)



PRODUCT FORMULAS AND HYPERGROUPS 21

by (3.20). Using (3.24) and the product formula for simplex polynomials of k − 1
variables twice we have for x,y ∈ ∆(k) − {0}

Rα
n (x) ·Rα

n (y) = Rα
n (x1e) ·Rα

n (y1e) ·RPα
Pn (Lx) ·RPα

Pn (Ly)

=

∫
W n2

1 R
B(α,n)
n1−n2

(
2W1 − 1

)
·RPα

Pn

(
V(k−1)(LW;u)

)
dναk,αk−1(u) dµCα(ρ)

·
∫
RPα
Pn

(
Z(k−1)(Lx, Ly; σ)

)
dµPα(σ)

=

∫
W n2

1 RBα
n1−n2

(
2W1 − 1

)
·RPα

Pn

(
Z(k−1)

(
V(k−1)(LW;u),Z(k−1)(Lx, Ly; σ); τ

))
· dναk,αk−1(u) · dµCα(ρ) · dµPα(σ) · dµPα(τ )

=

∫
Rα

n

(
Z(k)(x,y; ω)

)
dµα(ω).

The case where y = 0 is handled separately; for x1 ∈ I and η = (r1, . . . , rk, ψ) let

U = (U1, . . . , Uk−1) = U(k−1)(x1;Tη).

Since Rα
n (x) = Rα

n (x1e) when n2 = 0 and Rα
n (0) = 0 otherwise, we have from (3.19),

(3.23), and the inductive assumption that

Rα
n (0)Rα

n (x) = Rα
n (0)Rα

n (x1e)

= RCα
Qn (0f)RCα

Qn (x1f)

=

∫
RCα
Qn (U) dλCα(Tη)

=

∫
R
B(α,n)
n1−n2

(2U1 − 1) · Un2
1 RCPα

QPn (LU) dλCα(Tη).
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Now an application of Lemma 3.1 and (3.20) yields

Rα
n (0)Rα

n (x) =

∫
Un2

1 R
B(α,n)
n1−n2

(2U1 − 1) ·RPα
Pn

(
V(k−1)(LU; rk)

)
· dναk,αk−1(rk) · dλCα(Tη)

=

∫
Rα

n

(
U1, U1V

(k−1)(LU; rk)
)
dλα(η)

=

∫
Rα

n

(
V(k)(U; rk)

)
dλα(η)

=

∫
Rα

n

(
U(k)(x1; η)

)
dλα(η).

4. Proofs that the product formulas are of hypergroup type

We use the notation of Subsection 1.1. The existence of a product formula (1.1)
with δx ∗ δy = µx,y ∈M1(H) for each x, y ∈ H leads immediately to (H1), (H2), and
(H3). We give an overview of the proofs of (H4) and (H5) before we deal with the
specific cases. When H is either B or ∆(k) for some k ≥ 2 let H ′ = H − {0}. The
product formulas in Theorems 2.1, 2.2, and 2.3 all have the general form

P (x) · P (y) =

∫
K

P (Z(x,y; ω)) dm(ω) (x, y ∈ H ′),

P (x) · P (0) =

∫
K0

P (Z0(x; ω)) dm0(ω) (x ∈ H),

so that

supp(δx ∗ δy) = supp(µx,y) = Z(x,y;K) (x, y ∈ H ′)

supp(δx ∗ δ0) = supp(µx,0) = Z0(x;K0) (x ∈ H).

Thus (H4) will be established by showing

e ∈ Z(x,y;K) if and only if x = y (x, y ∈ H ′)(4.1)

e ∈ Z0(x;K0) if and only if x = 0 (x ∈ H).(4.2)

To prove (H5) we note that Z is a continuous function on (H ′)2 × K and Z0 is
continuous on H ×K0, thus, Lemma 4.2 (below) shows that (x,y) 7→ supp(δx ∗ δy)
is continuous on the domains (H ′)2, H ×{0}, and {0}×H. Thus (H5) follows when
we show that

(4.3) lim
(x,y)→(z,0)

x,y∈H′

Z(x,y;K) = Z0(z;K0).

We also observe for later use that δx ∗ δe = δx is equivalent to

Z(x, e; ω) = x (ω ∈ K).
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Thus each proof in this section consists of establishing equations (4.1), (4.2), and
(4.3); we do this for the formulas as stated in Theorems 2.1–2.3. That the formulas
for the polynomials are of hypergroup type follows by a simple change of variables in
each case. For example, in the case of the parabolic biangle polynomials we use the
change of variables (x1, x2) 7→ (

√
x1, x2).

There is a much simpler (but less elementary) argument than ours for the continuity
of support in the case of the parabolic biangle polynomials. For certain values of the
parameters the parabolic biangle polynomials are the spherical functions for a Gelfand
pair, and the algebra of bi-invariant measures forms a hypergroup. In that case it
follows that supp δx ∗δy is a continuous function of (x, y). But supp δx ∗δy is the same
for all values of the parameters so the continuity of support follows.

4.1. The topology of the space of compact subsets. In order to prove (4.3) we
need to understand the topology of C(H) = {A : A is a compact subset of H}. The
topology referred to in Axiom (H5), which we refer to as the Michael topology, has a
subbasis consisting of all sets of the form

CU(V) = {A ∈ C(H) : A ∩ U 6= ∅ and A ⊂ V}
where U and V are open subsets of H. (This is the definition as given in [Jew75, §2.5]
which is equivalent to Michael’s definition of the finite topology [Mic51, Def. 1.7] and
what Dellacherie [Del72] calls the Hausdorff topology.)

If H is a metric space with metric d, there is induced a metric on C(H) as follows:
first define for A ∈ C(H) and r > 0

Vr(A) = {y : d(x, y) < r for some x ∈ A},
and for A,B ∈ C(H) let

d(A,B) = inf{r : A ⊂ Vr(B) and B ⊂ Vr(A)}.
d is called the Hausdorff metric and corresponding topology with basis consisting of
the sets

Nr(A) = {B ∈ C(H) : d(A,B) < r} (A ∈ C(H), r > 0),

is called the Hausdorff topology. The Hausdorff and Michael topologies are identical
when both are defined. The proof of this fact is elementary, but we supply it as a
convenience to the reader.

Lemma 4.1. Let H be a metric space. The Hausdorff topology and the Michael
topology for C(H) coincide.

Proof. Let A ∈ C(H) and r > 0. Let V = Vr(A). Now, since A is compact, there is a
finite sequence a1, . . . , an ∈ A such that the sets Uk = Vr/2({ak}) form an open cover
of A. We will show that

⋂n
k=1 CUk

(V) ⊂ Nr(A). Suppose B ∈
⋂n
k=1 CUk

(V), then on
the one hand B ⊂ V = Vr(A). On the other hand, if x ∈ A, then x ∈ Uk for some k,
but Uk ∩B 6= ∅, so x ∈ Vr(B). So A ⊂ Vr(B). Hence every Hausdorff-open subset of
C(H) is also Michael-open.
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Now suppose that U and V are open subsets of H. Let A ∈ CU(V). It will suffice
to produce an r > 0 so that Nr(A) ⊂ CU(V). Since A ∈ CU(V), A ∩ U must contain
a point x, and since U is open, there is r > 0 such that Vr({x}) ⊂ U and Vr(A) ⊂ V.
Now suppose B ∈ C(H) with d(A,B) < r. Then, A ⊂ Vr(B) so there is y ∈ B such
that d(x, y) < r, so that y ∈ U ; thus B ∩ U 6= ∅. Moreover, B ⊂ Vr(A) ⊂ V . Thus
B ∈ CU(V), and the two topologies coincide. �

Lemma 4.2. Let H and W be metric spaces, and let K be a compact space. Let
f : H × K → W be continuous and define F : H → C(W ) by F (x) = f(x,K) =
{f(x, ξ) : ξ ∈ K}. Then F : H → C(W ) is continuous.

Proof. Let dH and dW be the metrics of H and W . Let ε > 0, then since K is
compact, there is δ > 0 such that if dH(x1, x0) < δ, then

dW
(
f(x1, ξ), f(x0, ξ)

)
< ε (ξ ∈ K),

whence

dW
(
F (x1), F (x0)

)
< ε.

�

Thus (4.3) suffices to establish (H5).
The following lemma is even more elementary, but we state it here for convenient

reference.

Lemma 4.3. Suppose X is a compact space and H is a metric space with metric d.
Let f and g be two continuous functions from X to H such that for every x ∈ X
d(f(x), g(x)) < ε, then d (f(X), g(X)) < ε.

4.2. Proof that the parabolic biangle polynomial product formula is of
hypergroup type. We first gather certain identities about the functions D and E
(first introduced in Subsection 2.1) into a lemma which we will use in the ensuing
discussion. Let

I = [0, 1], J = [0, π], and K = [−1, 1].

Lemma 4.4.

D(x, 1; r, ψ) = E(x, 1; r, ψ) = x (x ∈ K),(4.4)

D(x, I; I × J) = K (x ∈ I),
E(x, I; I × J) = I (x ∈ I),(4.5)

D(K, x; 1, J) = K (x ∈ K).(4.6)

Moreover, for x, y ∈ I, the following statements are all equivalent to each other:

(1) D(x, y; r, ψ) = 1;
(2) E(x, y; r, ψ) = 1; and
(3) x = y and either x = 1, or r = 1 and ψ = 0.
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Proof. The first equation is obvious and the rest of the lemma is easily proved by
setting x = cosφ and y = cos θ so that, for instance,

D(cosφ, cos θ; I × J) = [cos(φ+ θ), cos(φ− θ)].

�

Recall the notation of (2.4)–(2.6) then, as in Theorem 2.1,

Z = Z(x1, x2, y1, y2; r1, ψ1, ψ2, ψ3) = (E2, EG)

and

Z0 = Z0(x1, x2, ; r1, ψ1) = (r2
1(1− x2

1), r1(1− x2
1)

1/2 cosψ1).

So (4.2) is immediate. To establish (4.1), first it is a straightforward computation
that if (x1, x2) = (y1, y2) ∈ B′ then Z = (1, 1) for r = 1 and ψ1 = ψ2 = ψ3 = 0.
Conversely, suppose (x1, x2) and (y1, y2) ∈ B′ and Z = (1, 1) for some r, ψ1, ψ2, ψ3,
then E = D = 1, x1 = y1, and

1 = G(x1, x2, y1, y2; 1, 0, ψ2, ψ3) = D
(x2

x1

,
y2

y1

; 1, ψ2

)
,

whence x2 = y2.
Now turning to the proof of (4.3) define

S(x1, x2, y1, y2) =

{
Z(x1, x2, y1, y2; I × J3), if (x1, x2), (y1, y2) ∈ B′;

Z0(x1, x2; I × J), if (x1, x2) ∈ B and (y1, y2) = (0, 0),

and define

Y(v1, v2) = (v2
1, v1v2).

Now, if (z1, z2) ∈ B, then

S(z1, z2, 0, 0) = {(s2
1, s1s2) : s1 ∈ [0, (1− z2

1)
1/2], and s2 ∈ K}

= Y
(
[0, (1− z2

1)
1/2]×K

)
.

Define for x1 6= 0 and x2 6= 0

X(x1, x2, y1, y2; r1, ψ1, ψ2, ψ3) = (E,G),

so that

S(x1, x2, y1, y2) = Y ◦X(x1, x2, y1, y2; I × J3).

Thus it suffices to show

(4.7) lim
(x1,x2,y1,y2)→(z1,z2,0,0)

X(x1, y1, x2, y2; I × J3) = [0, (1− z2
1)

1/2]×K.

Now

G = D

(
C,D

(x2

x1

,
y2

y1

; 1, ψ2

)
; 1, ψ3

)
.



26 TOM H. KOORNWINDER AND ALAN L. SCHWARTZ

Let ε > 0, then for sufficiently small η > 0, if |x1 − z1| < η, y1 < η, r1 ∈ I, and
ψ1 ∈ J then ∣∣E(x1, y1; r1, ψ1)− r1(1− z2

1)
1/2

∣∣ < ε,

|C(x1, y1; r1, ψ1)− cosψ1| < ε.

Thus η may be decreased (but still remain positive) so that if |x1 − z1| < η, y1 < η,
r1 ∈ I, and ψ1, ψ2, ψ3 ∈ J , then∣∣∣∣G(x1, x2, y1, y2; r1, ψ1, ψ2, ψ3)−D

(
cosψ1, D

(x2

x1

,
y2

y1

; 1, ψ2

)
; 1, ψ3

)∣∣∣∣ < ε

thus∣∣∣∣X(x1, x2, y1, y2; r1, ψ1, ψ2, ψ3)

−
(
r1(1− z2

1)
1/2, D

(
cosψ1, D

(x2

x1

,
y2

y1

; 1, ψ2

)
; 1, ψ3)

))∣∣∣∣ < 2ε.

Thus by Lemma 4.3 (we use d for the Hausdorff metric)

d

[
X(x1, x2, y1, y2; I × J, ψ2, ψ3),(

[0, (1− z2
1)

1/2]

)
×D

(
K,D

(x2

x1

,
y2

y1

; 1, ψ2

)
; 1, ψ3

)]
< 2ε.

One more application of Lemma 4.3 and (4.6) yields

d
[
X(x1, x2, y1, y2; I × J, ψ2, J),

(
[0, (1− z2

1)
1/2]×K

)]
< 2ε.

so finally

d
[
X(x1, x2, y1, y2; I × J3),

(
[0, (1− z2

1)
1/2]×K

)]
< 2ε

whence (4.7) holds.

4.3. Proof that the triangle polynomial product formula is of hypergroup
type. The arguments for (4.1) and (4.2) are similar to the ones in the previous
section and we can turn our attention immediately to (H5). Recalling the notation
of (2.4)–(2.7) we define

Z(x1, x2, y1, y2; r1, r2, r3, r4, ψ1, ψ2, ψ3) = (E2, E2H2),

Z0(x1, x2; r1, r2, ψ) = r2
1(1− x2

1)
(
1, (1− r2) cos2 ψ + r2

)
,

S(x1, x2, y1, y2) =

{
Z(x1, x2, y1, y2; I

4 × J3) if (x1, x2), (y1, y2) ∈ ∆(2) − {(0, 0)},
Z0(x1, x2; I

2 × J) if (x1, x2) ∈ ∆(2) and (y1, y2) = (0, 0).

Let

Y(v1, v2) = (v2
1, v

2
1v

2
2).
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Then if (z1, z2) ∈ ∆(2)

S(z1, z2, 0, 0) = {(s2
1, s

2
2) : 0 ≤ s2 ≤ s1 ≤ (1− z2

1)
1/2}

= Y
(
[0, (1− z2

1)
1/2]× I

)
.

Define for x1 6= 0 and y1 6= 0

X(x1, x2, y1, y2; r1, r2, r3, r4, ψ1, ψ2, ψ3) = (E,H).

If η is sufficiently small, then |x1 − z1| < η and y1 < η implies∣∣D(x1, y1; r1, ψ1)− r1(1− z2
1)

1/2 cosψ1

∣∣ < ε,∣∣E(x1, y1; r1, ψ1)− r1(1− z2
1)

1/2
∣∣ < ε,

|C(x1, y1; r1, ψ1)− cosψ1| < ε,

thus∣∣∣∣X(x1, x2, y1, y2; r1, r2, r3, r4, ψ1, ψ2, ψ3)

−
(
r1(1− z2

1)
1/2, E

([
(1− r2) cos2 ψ1 + r2

]1/2
, E

(x2

x1

,
y2

y1

; r3, ψ2

)
; r4, ψ3

))∣∣∣∣
< 2ε

whence by Lemma 4.3 and (4.5)

d
[
X(x1, x2, y1, y2; r1, I

3 × J3),
(
(r2

1(1− z2
1)

1/2)× I
)]
< 2ε.

So finally

d
[
X(x1, x2, y1, y2; I

4 × J3),
(
[0, (1− z2

1)
1/2]× I

)]
< 2ε,

thus

lim
(x1,x2,y1,y2)→(z1,z2,0,0)

X(x1, x2, y1, y2; I
4 × J3) = [0, (1− z2

1)
1/2]× I,

and so S is continuous at (z1, z2, 0, 0).

4.4. Proof that the simplex polynomial product formula is of hypergroup
type. Recall the notations of Subsections 2.3 and 3.3. Equations (4.1) and (4.2) are
contained in the following lemma: we write

Z(k)(x,y; ω) =
(
Z

(k)
1 (x,y; ω), . . . , Z

(k)
k (x,y; ω)

)
Lemma 4.5. For k ≥ 2 if x, y ∈ I, x, y ∈ ∆(k), and z ∈ ∆(k−1), then:

(i) V(k)(z;u) = e for all u ∈ I if and only if z = f .
(ii) e ∈ U(k)(x; Ik × J) if and only if x = 0.
(iii) e ∈ Z(k)(x,y;K(k)) if and only if x = y.

(iv) If for some ρ ∈ K(k), Z
(k)
1 (xe, ye; ρ) = 1, then x = y and Z(k)(xe, ye; ρ) = e.
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Proof. (i) is immediate from the definition of V(k)(x;u). Concerning (ii)–(iv), these
are true when k = 2 by definition of the functions and the fact that the bivariate
simplex polynomials coincide with the triangle polynomials. We proceed by induction
assuming (ii)–(iv) are true, and we prove the corresponding statements with k+ 1 in
place of k and d = e(k+1) in place of e.

(ii) Now d ∈ U(k+1)(x; Ik+1×J) if and only if d ∈ V(k+1)
(
U(k)(x; Ik×J); I

)
if and

only if e ∈ U(k)(x; Ik × J) if and only if x = 0 by the inductive assumption.
(iii) If x ∈ ∆(k+1), then there are ρ and σ ∈ K(k) such that W = Z(k)(x1e, x1e; ρ) =

e and Z(k)(Lx, Lx; σ) = e by the inductive assumption. Now for any τ ∈ K(k) and
u ∈ I

Z
(k+1)
1 (x,x; ρ,σ, τ , u) = Z

(k)
1 (x1e, x1e, ; ρ) = 1

and using (iii), then (i), and then (iii) again we have

LZ(k+1)(x,x; ρ,σ, τ , u) = Z(k)(V(k)(LW;u),Z(k)(Lx, Lx; σ); τ )

= Z(k)(V(k)(f ;u), e; τ )

= Z(k)(e, e; τ ) = e,

thus d ∈ Z(k+1)(x,x;K(k+1)).
Now suppose there are x,y ∈ ∆(k+1) and ω = (ρ,σ, τ , u) ∈ K(k+1) such that

Z(k+1)(x,y; ω) = d. Then Z
(k)
1 (x1e, y1e; ρ) = 1, whence by (iv) x1 = y1 and

W = Z(k)(x1e, y1e; ρ) = e. So V(k)(LW;u) = e, and e = LZ(k+1)(x,y; ω) =
Z(k)(Lx, Ly; σ), so Lx = Ly by (iii). Thus x = y.

(iv) Suppose there are x, y ∈ I, ω = (ρ,σ, τ , u) ∈ K(k+1) such that Z1(xd, yd; ω) =

1. Now Z
(k+1)
1 (xd, yd; ω) = Z

(k)
1 (xe, ye; ρ), so it follows by (iv) that x = y and

W = Z(k)(xe, ye; ρ) = e, whence

LZ(k+1)(xd, yd; ω) = Z(k)
(
V(k)(LW;u),Z(k)(e, e; σ); τ

)
= Z(k)(e, e; τ ) = e.

Thus Z(xd, yd; ω) = d. �

The k-simplices satisfy the following identities:

∆(1) = I,

∆(2) =
⋃
x∈I

(
[x, 1]× {x}

)
,(4.8)

∆(k) =
⋃
x∈I

x(1,∆(k−1)), (k ≥ 2),(4.9)

L(t∆(k)) = ∆(k−1), (t > 0).(4.10)

Define

S(x,y) =

{
Z(k)(x,y;K(k)) if x,y ∈ ∆(k) − {0},
U(k)(x1; I

k × J) if x ∈ ∆(k) and y = 0.
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We first find S(z,0). This requires a series of computations which we organize as
lemmas.

Lemma 4.6. If η = (r1, . . . , rk, ψ) ∈ Ik × J and x ∈ I, then U
(k)
1 (x; η) = r2

1(1− x).

Proof. ¿From the definition of U(k) we see that

U
(k)
1 (x; η) = U

(k−1)
1 (x;Tη) = U

(2)
1 (x; r1, r2, ψ) = r2

1(1− x).

�

Lemma 4.7. For k ≥ 2, V(k)(∆(k−1); I) = ∆(k).

Proof. This is immediate from the definition of V(k)(x;u). �

Lemma 4.8. For k ≥ 2, LU(k)
(
x; r1, I

k−1 × J
)

= ∆(k−1).

Proof.

LU(2)(x; r1, r2, ψ) = (1− r2) cos2 ψ + r2

so

LU(2)(x; r1, I × J) = I = ∆(1).

Now assume LU(k−1)(x; r1, I
k−2 × J) = ∆(k−2). We have (see (3.20))

LU(k)(x; η) = LV(k)
(
U(k−1)(x;Tη); rk

)
= V(k−1)

(
LU(k−1)(x;Tη); rk

)
,

therefore

LU(k)(x; r1, I
k−1 × J) = V(k−1)

(
LU(k−1)(x; r1, I

(k−2) × J); I
)

= V(k−1)(∆(k−2); I) = ∆(k−1)

by Lemma 4.7. �

Lemma 4.9. U(k)(x; Ik × J) = (1− x)∆(k).

Proof.

U(k)(x; η) = V(k)
(
U(k−1)(x;Tη); rk

)
= U

(k−1)
1 (x;Tη)

(
1,V(k−1)

(
LU(k−1)(x;Tη); rk

))
= r2

1(1− x)

(
1,V(k−1)

(
LU(k−1)(x;Tη); rk

) )



30 TOM H. KOORNWINDER AND ALAN L. SCHWARTZ

by Lemma 4.6. Therefore by using first Lemma 4.8 and then Lemma 4.7

U(k)(x; r1, I
k−1 × J) = r2

1(1− x)

(
1,V(k−1)

(
LU(k−1)(x; r1, I

k−2 × J); I
))

= r2
1(1− x)

(
1,V(k−1)

(
∆(k−2); I

))
= r2

1(1− x)
(
1,∆(k−1)

)
so the lemma follows by (4.9). �

An immediate consequence of Lemma 4.9 is

S(z,0) = (1− z1)∆
(k).

We now establish the continuity of S at (z,0), but first we introduce a convenient limit
notation that will be especially useful for continuous compact set-valued functions.

Let F (x,y) and G(x,y) be functions defined for x, y ∈ ∆(k) − {0} and taking
values either in ∆(k) or in C(∆(k)) and let z be a fixed point in ∆(k); we will write

F (x,y) ∼ G(x,y)

as shorthand for

lim
(x,y)→(z,0)

F (x,y) = lim
(x,y)→(z,0)

G(x,y).

Thus the continuity of S at (z,0) is equivalent to S(x,y) ∼ S(z,0) or

(4.11) Z(k)(x,y;K(k)) ∼ (1− z1)∆
(k).

This is identical to the last relation in Lemma 4.11 which will be established by
mathematical induction. The first step in the induction is contained in Lemma 4.10
which is in large part a reformulation of the contents of Subsection 4.3.

Lemma 4.10. Let ρ = (r1, r2.r3, r4, ψ1, ψ2, ψ3), v ∈ R, x,y,v ∈ ∆(2) − {0}, and
z ∈ ∆(2), and e = (1, 1). Then

Z
(2)
1 (ve, Ie;K(2)) = I,(4.12)

Z
(2)
1 (x,y; ρ) ∼ r2

1(1− z1),(4.13)

LZ(2)(x,y; r1, I
3 × J3) ∼ I,(4.14)

Z(2)(x,y;K(2)) ∼ (1− z1)∆
(2),(4.15)

Z(2)(x1e, y1e;K(2)) ∼ (1− z1)∆
(2),(4.16)

Z(2)(v,∆(2);K(2)) = ∆(2).(4.17)

Proof. Equation (4.12) follows from (4.5), equation (4.13) from the definition of Z(2)

(eq. (2.8)), and (4.14) follows from Lemma 4.3 and (4.5). Equation (4.15) follows
from (4.13) and (4.14). Equation (4.16) is a special case of (4.15).
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To obtain (4.17), let v,w ∈ ∆(2), so we can write v = v(1, s) and w = w(1, t) with
v, w, s, t ∈ I; then Lv = s and Lw = t are independent of v and w. Hence we have

Z(2)(v,w; ρ) = E2(
√
v,
√
w ; r1, ψ1)

·
(

1, E
(
[(1− r2)C

2(
√
v,
√
w ; r1, ψ1) + r2]

1/2, E(s, t; r3, ψ2); r4;ψ3

) )
.

Letting t take all values in I we get from two applications of (4.5)

Z(2)
(
v, w(1, I); r1, r2, I

2, ψ1, J
2
)

= E2(
√
v,
√
w ; r1, ψ1)

(
1, E

(
[(1− r2)C

2(
√
v,
√
w ; r1, ψ1) + r2]

1/2, I; I × J
))

= E2(
√
v,
√
w ; r1, ψ1)(1, I)

whence letting w take all values in I, and using (4.9) and (4.5) we obtain (4.17). �

We introduce some additional notation. Let K
(2)
1 = I3 × J3, thus K(2) = I ×K

(2)
1 ,

and if ρ ∈ K(2), we can write ρ = (r1,ν) with r1 ∈ I and ν ∈ K
(2)
1 . Similarly

for k > 2, define K
(k)
1 = K

(k−1)
1 × K(k−1) × K(k−1) × I, so K(k) = I × K

(k)
1 and if

ω = (ρ,σ, τ , u) ∈ K(k) with ρ, σ, and τ ∈ K(k−1), then ρ = (r1,ν) with r1 ∈ I and

ν ∈ K(k−1)
1 .

Lemma 4.11. If k ≥ 3, x, y ∈ ∆(k) − {0}, and z ∈ ∆(k), then:

Z
(k−1)
1 (vf , If ;K(k−1)) = I,(4.18)

Z
(k−1)
1 (x,y; ρ) ∼ r2

1(1− z1),(4.19)

LZ(k−1)(x,y; r1, K
(k−1)
1 ) ∼ ∆(k−2),(4.20)

Z(k−1)(x1f , y1f ;K
(k−1)) ∼ (1− z1)∆

(k−1),(4.21)

Z(k−1)(v,∆(k−1);K(k−1)) ∼ ∆(k−1),(4.22)

Z(k)(x,y;K(k)) ∼ (1− z1)∆
(k).(4.23)

Proof. The proof of the lemma is by mathematical induction beginning with k = 3.
For k = 3, equations (4.18)–(4.22) coincide with equations (4.12)–(4.14) and (4.16)–
(4.17), so we need only to obtain (4.23). Now from the definition of Z(k) and (4.13)

Z
(3)
1 (x,y; ω) = Z

(2)
1 (x1, x1, y1, y1; ρ) ∼ r2

1(1− z1),

and so (see (2.7))

LZ(3)(x,y; ω) = Z(2)(V(2)[(1− r2)C
2(x1, y1; r1, ψ1) + r2;u],Z

(2)(Lx, Ly; σ); τ )

∼ Z(2)

(
V(2)

[
(1− r2) cos2 ψ1 + r2;u

]
,Z(2)(Lx, Ly; σ); τ

)
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so by Lemma 4.7 and (4.17)

LZ(3)(x,y; r1, K
(3)
1 ) ∼ Z(2)

(
V(2)(I; I),Z(2)(Lx, Ly;K(2));K(2)

)
= Z(2)

(
∆(2),Z(2)(Lx, Ly;K(2));K(2)

)
= ∆(2).

Thus

Z(3)(x,y; r1, K
(3)
1 ) ∼ r2

1(1− z1)(1,∆
(2))

hence (4.23) holds with k = 3.
Now assume (4.18)–(4.23) all hold. We establish these with k replaced by k + 1.

By definition of Z(k) we have

Z
(k)
1 (v,w; ω) = Z

(k−1)
1 (v1f , w1f ; ρ)

so (4.18) implies

Z
(k)
1 (ve, Ie;K(k)) = I.

and a special case of (4.19) yields

(4.24) Z
(k)
1 (x,y; ω) ∼ r2

1(1− z1).

Now using (4.20) and Lemma 4.7

LZ(k)(x,y; r1, K
(k)
1 )

= Z(k−1)

(
V(k−1)

(
LZ(k−1)(x1f , y1f ; r1, K

(k−1)
1 ); I

)
,Z(k−1)(Lx, Ly;K(k−1));K(k−1)

)
∼ Z(k−1)

(
V(k−1)(∆(k−2); I),Z(k−1)(Lx, Ly;K(k−1));K(k−1)

)
= Z(k−1)

(
∆(k−1),Z(k−1)(Lx, Ly;K(k−1));K(k−1)

)
.

Thus (4.22) implies

(4.25) LZ(k)(x,y; r1, K
(k)
1 ) ∼ ∆(k−1).

As a special case of (4.23) we have

Z(k)(x1e, y1e;K(k)) ∼ (1− z1)∆
(k).

If v,w ∈ ∆(k), we can write v = v(1, s) and w = w(1, t) with v, w ∈ I and
s, t ∈ ∆(k−1) (see (4.9)), so that Lv = s and Lw = t. Thus

Z(k) (v,w; ω) = Z(k)

(
v(1, s), w(1, t); ω

)
= Z

(k−1)
1 (vf , wf ; ρ)

(
1,Z(k−1)

(
V(k−1)(LZ(k−1)(vf , wf ; ρ);u),Z(k−1)(s, t; σ); τ

) )
,
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so by two applications of (4.22)

Z(k)
(
v(1, s), w(1,∆(k−1)); ρ, K(k−1) ×K(k−1) × I

)
= Z

(k−1)
1 (vf , wf ; ρ)

(
1,Z(k−1)

[
V(k−1)

(
LZ(k−1)(vf , wf ; ρ);u

)
,∆(k−1);K(k−1)

])
= Z

(k−1)
1 (vf , wf ; ρ)(1,∆(k−1)).

Now by (4.18) and (4.9)

(4.26) Z(k)(v,∆(k);K(k)) ∼ ∆(k).

Now from (4.24)

Z
(k+1)
1 (x,y; ω) = Z

(k)
1 (x1e, y1e; ρ) ∼ r2

1(1− z1).

We also have from a special case of (4.25) together with Lemma 4.7

V(k)
(
LZ(k)(x1e, y1e; r1, K

(k)
1 ); I

)
∼ V(k)(∆(k−1); I) = ∆(k),

so by (4.26)

LZ(k+1)(x,y; r1, K
(k+1)
1 ) ∼ Z(k)

(
∆(k),Z(k)(Lx, Ly;K(k));K(k)

)
∼ ∆(k).

Thus (4.23) holds. �
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