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Abstract. We show that limit transitions from Askey-Wilson polynomials
to q-Racah, little and big q-Jacobi polynomials can be made rigorous on the
level of their orthogonality measures in a suitable weak sense. This allows
us to derive the orthogonality relations and norm evaluations for the q-Racah
polynomials, little and big q-Jacobi polynomials by taking limits in the or-
thogonality relations and norm evaluations for the Askey-Wilson polynomials.

1. Introduction

In this paper we consider three families of basic hypergeometric orthogonal poly-
nomials as limit cases of the Askey-Wilson polynomials. The three limit cases we
consider are the q-Racah polynomials, the little q-Jacobi polynomials and the big
q-Jacobi polynomials. These limits are well known in the sense of pointwise con-
vergence. We will prove these limit transitions in a suitable weak sense on the level
of their orthogonality measures.

To be more precise, we show that the continuous part of the orthogonality mea-
sure of the Askey-Wilson polynomials disappears in each of the three limit tran-
sitions while the discrete part of the orthogonality measure tends to the discrete
orthogonality measure of the q-Racah polynomials, the little q-Jacobi polynomials
respectively the big q-Jacobi polynomials. We prove then the orthogonality re-
lations and norm evaluations for the q-Racah polynomials, the little and the big
q-Jacobi polynomials by taking limits in the orthogonality relations and norm eval-
uations for the Askey-Wilson polynomials.

The contents of this paper are as follows. In section 2 we introduce the Askey-
Wilson polynomials and state their orthogonality relations and norm evaluations.
Furthermore, we introduce the q-Racah polynomials, the little q-Jacobi polynomials
and the big q-Jacobi polynomials as limits of the Askey-Wilson polynomials. In
section 3, 4 respectively 5 we give new proofs of the orthogonality relations and norm
evaluations for the q-Racah polynomials, little q-Jacobi polynomials respectively big
q-Jacobi polynomials by proving these three limits in a suitable weak sense on the
level of their orthogonality measures. In section 6 we give some concluding remarks
on the methods presented in this paper.

2. Preliminaries

Throughout the paper we assume that q is a real number between 0 and 1. We
denote the q-shifted factorials by

(
a; q

)
k

:=
∏k−1

i=0 (1 − aqi) (k ∈ N),
(
a; q

)
0

:= 1
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and
(
a; q

)
∞ := limk→∞

(
a; q

)
k

and we use the notation(
a1, . . . , ar; q

)
k

:=
r∏

i=1

(
ai; q

)
k

for products of q-shifted factorials. The basic hypergeometric series of type s+1φs

are then given by

(2.1) s+1φs

(
a1, . . . , as+1

b1, . . . , bs
; q, z

)
=

∞∑
m=0

(a1, . . . , as+1; q)m

(b1, . . . , bs, q; q)m
zm.

Askey and Wilson [AW2] introduced a very general family of basic hypergeometric
orthogonal polynomials depending on four parameters a, b, c, d which is nowadays
known as the family of Askey-Wilson polynomials. In terms of the basic hyperge-
ometric series (2.1) they are given by

PAW
n (z; a, b, c, d) := a−n

(
ab, ac, ad; q

)
n4φ3

(
q−n, qn−1abcd, az, az−1

[0.5ex]ab, ac, ad
; q, q

)
for n ∈ Z+. Then PAW

n (z) is a polynomial in z + z−1 of degree n and the corre-
sponding monic polynomial in z + z−1 is given by

pAW
n (z; a, b, c, d) :=

(
abcdqn−1; q

)−1

n
PAW

n (z; a, b, c, d).

The orthogonality relations and norm evaluations for the monic Askey-Wilson poly-
nomials can be stated as follows.

Theorem 2.1. ([AW2, Theorem 2.3]) Assume that pairwise products of a, b, c, d as
a multiset (so both a2 and ab are considered among the products) do not belong to the
set {q−j}j∈Z+ . Then the monic Askey-Wilson polynomials satisfy the orthogonality
relations

1
2π
√
−1

∫
z∈C

(
pAW

m pAW
n

)
(z; a, b, c, d; q)∆AW

c (z; a, b, c, d)
dz

z
= δm,nNAW (n; a, b, c, d)

with weight function

∆AW
c (z; a, b, c, d) :=

(
z2, z−2; q

)
∞(

az, az−1, bz, bz−1, cz, cz−1, dz, dz−1; q
)
∞

.

Here C is a positively oriented, continuous differentiable Jordan curve contain-
ing 0 and the four sequences {eqj}j∈Z+ (e = a, b, c, d) and seperating them from
{e−1q−j}j∈Z+ (e = a, b, c, d). The quadratic norms NAW (n) of the monic Askey-
Wilson polynomials are explicitly given by

NAW (n; a, b, c, d) =
2
(
q2n−1abcd, q2nabcd; q

)
∞(

qn+1, qn−1abcd, qnab, qnac, qnad, qnbc, qnbd, qncd; q
)
∞

.

For the proof of the orthogonality relations and norm evaluations, Askey and
Wilson [AW2] used the q-Pfaff-Saalschütz sum [AW2, (1.29)], [GR, (II.12), p. 237]
and the explicit evaluation of the integral over the weight function,

(2.2)
1

2π
√
−1

∫
z∈C

∆AW
c (z; a, b, c, d)

dz

z
=

2
(
abcd; q

)
∞(

q, ab, ac, ad, bc, bd, cd; q
)
∞

(cf. [AW2, Theorem 2.1]). The integral (2.2) is a q-analogue of the classical beta
integral and its evaluation is proved in [AW2] by summing up four sequences of
residues by a summation formula of a very-well poised 6φ5 series [AW2, (2.2)],
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[GR, (II.20), p.238] and subsequently summing the four remaining terms with the
help of an elliptic function identity. More elementary proofs of (2.2) were obtained,
for instance, in [R], [IS] and [K3].

A partially discrete, partially continuous orthogonality measure can be obtained
by deforming C over some of the poles of ∆AW

c and picking up their residues. The
poles of ∆AW

c are simple for generic parameters a, b, c, d 6= 0 and are given by the
eight sequences {eqj}j∈Z+ , {e−1q−j}j∈Z+ (e = a, b, c, d). We write

(2.3) ∆AW
d (eqi; e; f, g, h) := resz=eqi

(∆AW
c (z; a, b, c, d)

z

)
for the residues, where f, g, h are such that {e, f, g, h} = {a, b, c, d} (counted with
multiplicity). When ∆AW

c has a simple pole in eqi, then

(2.4) resz=e−1q−i

(∆AW
c (z; a, b, c, d)

z

)
= −∆AW

d (eqi; e; f, g, h)

by the invariance of ∆AW
c (z) under the transformation z 7→ z−1, and we have the

explicit formula

∆AW
d (eqi; e; f, g, h) :=

(
e−2; q

)
∞(

q, ef, f/e, eg, g/e, eh, h/e; q
)
∞

×
(
e2, ef, eg, eh; q

)
i(

q, qe/f, qe/g, qe/h; q
)
i

(1− e2q2i)
(1− e2)

(
q

efgh

)i
(2.5)

(cf. [AW2, Theorem 2.4] with a slight correction in [AW2, (2.10)]).
We end this section with introducing the q-Racah polynomials, big and little

q-Jacobi polynomials as limit cases of the Askey-Wilson polynomials. The monic
q-Racah polynomials {pqR

n (.; a, b, c, N ; q)}N
n=0 for N ∈ N may be considered as limit

case of the monic Askey-Wilson polynomials by sending d to b−1q−N ,

(2.6) pqR
n (z; a, b, c;N) := pAW

n (z; a, b, c, b−1q−N ).

Note that for d = b−1q−N , the parameters do no longer satisfy the assumptions of
Theorem 2.1.

The monic little q-Jacobi polynomials {pL
n(.; a, b)}n∈Z+ can be considered as limit

cases of the monic Askey-Wilson polynomials by substituting

(2.7) tL(ε) := (εq
1
2 b, ε−1q

1
2 ,−q

1
2 ,−q

1
2 a)

for the four variables of the Askey-Wilson polynomials, rescaling of the z-variable,
and taking the limit ε ↓ 0,

pL
n(z; a, b) := lim

ε↓0

(
εq−

1
2

)n

pAW
n

(
ε−1q

1
2 z; tL(ε)

)
(2.8)

=

(
qb; q

)
n

(qb)n
(
qn+1ab; q

)
n

3φ2

(
q−n, qn+1ab, qbz

[0.5ex]qb, 0 ; q, q
)

(2.9)

=
(−1)nq(

n
2)

(
qa; q

)
n(

qn+1ab; q
)
n

2φ1

(
q−n, qn+1ab,

[0.5ex]qa ; q, qz
)

(2.10)

(cf. [K2, Proposition 6.3] and take into account that the Askey-Wilson polynomials
used in [K2] are written as functions of (z +z−1)/2 and are normalized differently).



4 J.V. STOKMAN & T.H. KOORNWINDER

In fact, an easy calculation yields

(
εq−

1
2
)n

pAW
n

(
ε−1q

1
2 z; tL(ε)) =

(
qb; q

)
n

(qb)n
(
qn+1ab; q

)
n

n∑
m=0

(
q−n, qn+1ab; q

)
m(

q, qb; q
)
m

qm

×
(
−εqm+1b,−εqm+1ab; q

)
n−m

×
m−1∏
i=0

(
(1 + ε2b2q2i+1)− qi+1bεq−

1
2 h1(ε−1q

1
2 z)

)

(2.11)

with h1(z) := z + z−1, so (2.9) follows directly from the the observation that
limε↓0

(
uε; q

)
m

= 1 and

(2.12) lim
u↓0

uh1(u−1z) = z.

A transformation formula for terminating 2φ1 series [GR, (III.7), p. 241] yields
(2.10) and shows that the little q-Jacobi polynomials are also defined for b = 0.
The little q-Jacobi polynomial pL

n(z; a, b) is a monic polynomial of degree n in the
variable z. So in the limit (2.8) we go from a polynomial in z +z−1 to a polynomial
in z. This can be made more transparent as follows. Expand pAW

n in powers of
z + z−1,

pAW
n (z; a, b, c, d) =

n∑
r=0

cAW
n,r (a, b, c, d)hr(z) (cAW

n,n = 1)

with hr(z) :=
(
h1(z)

)r = (z + z−1)r. Then (2.12) extends to the limit

(2.13) lim
u↓0

urhr(u−1z) = zr (r ∈ N)

so by (2.11) and (2.13) we conclude that

pL
n(z; a, b) =

n∑
r=0

cL
n,r(a, b)zr

with

(2.14) lim
ε↓0

(
εq−

1
2
)n−r

cAW
n,r (tL(ε)) = cL

n,r(a, b).

The monic big q-Jacobi polynomials {pB
n (.; a, b, c, d)}n∈Z+ may be considered as

limit cases of the monic Askey-Wilson polynomials by substituting

(2.15) tB(ε) := (εa(qd/c)
1
2 , ε−1(qc/d)

1
2 ,−ε−1(qd/c)

1
2 ,−εb(qc/d)

1
2 )

for the four variables of the Askey-Wilson polynomials, rescaling of the z-variable,
and taking the limit ε ↓ 0:

pB
n (z; a, b, c, d) := lim

ε↓0

(
ε(cd/q)

1
2

)n

pAW
n

(
ε−1(q/cd)

1
2 z; tB(ε)

)
=

(
qa,−qad/c; q

)
n(

qn+1ab; q
)
n
(qa/c)n 3φ2

(
q−n, qn+1ab, qza/c
[0.5ex]qa, −qad/c

; q, q
)(2.16)

(cf. [K2, Proposition 6.1]). Note that pB
n (z; a, b, c, d) is a monic polynomial of

degree n in the variable z. Similarly as in the little q-Jacobi case, we have

pB
n (z; a, b, c, d) =

n∑
r=0

cB
n,r(a, b, c, d)zr
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with

(2.17) cB
n,r(a, b, c, d) = lim

ε↓0

(
ε(cd/q)

1
2
)n−r

cB
n,r(tB(ε)).

3. Limit to q-Racah polynomials.

The orthogonality relations and norm evaluations for the monic q-Racah poly-
nomials can be stated as follows.

Theorem 3.1. ([AW1, section 2]) Let N ∈ N. For generic parameters a, b, c we
have the orthogonality relations

N∑
i=0

(
pqR

m pqR
n

)
(bqi; a, b, c;N)∆qR(bqi; b; a, c, b−1q−N ) = δm,nN qR(n; b; a, c, b−1q−N )

for m,n ∈ {0, . . . , N}, with

∆qR(bqi; b; a, c, d) :=
(1− b2q2i)

(
ab, b2, bc, bd; q

)
i(

abcdq−1
)i(1− b2)

(
q, qa−1b, qc−1b, qd−1b; q

)
i

.

The quadratic norms of the monic q-Racah polynomials are explicitly given by

N qR(n; b; a, c, d) :=

(
q, ab, ac, ad, bc, bd, cd; q

)
n(

qn−1abcd; q
)
n

(
abcd; q

)
2n

(
a/b, c/b, d/b, abcd; q

)
∞(

ac, ad, cd, b−2; q
)
∞

.

Proof. In view of continuity we may take as generic conditions on the parameters
a, b, c that a, b, c ∈ C \ {0} and that the 6 arguments arg(e), arg(e−1) ∈ [0, 2π)
(e = a, b, c) are mutually different. Let d ∈ C \ {0} be such that the 8 argu-
ments arg(e), arg(e−1) (e = a, b, c, d) are mutually different. Then the poles of
∆AW

c (z; a, b, c, d) are simple and the conditions of Theorem 2.1 are satisfied. The
residue ∆AW

d (2.3) at z = bqi can then be written as

∆AW
d (bqi; b; a, c, d) = K(b; a, c, d)∆qR(bqi; b; a, c, d)

with K(b; a, c, d) given by

(3.1) K(b; a, c, d) =

(
b−2; q

)
∞(

q, ab, a/b, bc, c/b, bd, d/b; q
)
∞

in view of (2.5). The factor K(b; a, c, d) is non zero and independent of i. By
Cauchy’s Theorem and (2.4) we obtain

N∑
i=0

(
pAW

m pAW
n

)
(bqi; a, b, c, d)∆qR(bqi; b; a, c, d) =

NAW (n; a, b, c, d)
2K(b; a, c, d)

δn,m

−
(
K(b; a, c, d)

)−1 1
4π
√
−1

∫
z∈C

(
pAW

m pAW
n

)
(z; a, b, c, d)∆AW

c (z; a, b, c, d)
dz

z

(3.2)

where C is a positively oriented, continuous differentiable Jordan curve containing
0 together with the sequences {bqN+1+j}j∈Z+ , {xqj}j∈Z+ (x = a, c, d), {b−1q−j}N

j=0

and seperating them from the sequences {b−1q−N−1−j}j∈Z+ , {x−1q−j}j∈Z+ (x =
a, c, d) and {bqj}N

j=0. Consider a sequence {dk}k∈Z+ converging to b−1q−N such
that the 8 arguments arg(e), arg(e−1) (e = a, b, c, dk) are mutually different for all
k. Then the limit

lim
k→∞

∫
z∈C

(
pAW

m pAW
n

)
(z; a, b, c, dk)∆AW

c (z; a, b, c, dk)
dz

z
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exists, since it equals∫
z∈C

(
pqR

m pqR
n

)
(z; a, b, c;N)∆AW

c (z; a, b, c, b−1q−N )
dz

z

by the Bounded Convergence Theorem, compactness of C and by (2.6). For the
constant K(b; a, c, d), we have

lim
k→∞

(
K(b; a, c, dk)

)−1 = 0

because of the factor
(
bd; q

)
∞ in the denominator of K(b; a, c, d). Since

NAW (n; a, b, c, d)
2K(b; a, c, d)

= N qR(n; b; a, c, d),

the theorem follows by taking the limit d → b−1q−N at both sides of (3.2) along
the sequence {dk}k∈Z+ . �

In other words, the continuous part of the orthogonality measure vanishes in the
limit from Askey-Wilson polynomials to q-Racah polynomials because the residues
∆AW

d at z = bqi (i = 0, . . . , N) contain a common factor which blows up in the
limit d → b−1q−N .

Askey and Wilson [AW1] obtained the orthogonality relations and norm evalu-
ations for the q-Racah polynomials from a summation formula for very well poised
terminating 6φ5 series [AW1, (2.3)], [GR, (II.21),p.238] and the q-Pfaff-Saalschütz
sum [AW1, (2.5)], [GR, (II.12), p.237]. In particular, they obtained the summation
formula

(3.3)
N∑

i=0

∆qR(bqi; b; a, c, b−1q−N ) =

(
qb2, q/ac; q

)
N(

qb/a, qb/c; q
)
N

using a summation formula for very well poised terminating 6φ5 series [AW1, (2.3)],
[GR, (II.21),p.238].

4. Limit to little q-Jacobi polynomials.

Let VAW be the set of parameters (a, b, c, d) which are real or appear in conju-
gate pairs, and which satisfy the additional conditions that the pairwise products
ab, ac, ad, bc, bd, cd /∈ R≥1 := {x ∈ R |x ≥ 1}. If (a, b, c, d) ∈ VAW , then there are
at most two parameters with modulus > 1. Parameters with moduli > 1 are then
necessarily real, and if two parameters have moduli > 1 then they have opposite
sign. For parameters (a, b, c, d) ∈ VAW , the polynomials pAW

n are orthogonal with
respect to a (partly continuous, partly discrete) positive measure,

(4.1) 〈pAW
n (.; a, b, c, d), pAW

m (.; a, b, c, d)〉a,b,c,d
AW = δm,nNAW (n; a, b, c, d),

where

〈f, g〉a,b,c,d
AW :=

1
2π
√
−1

∫
z∈T

f(z)g(z)∆AW
c (z; a, b, c, d)

dz

z

+ 2
∑

i=0,...,Ne
e=a,b,c,d

f(eqi)g(eqi)∆AW
d (eqi; e; f, g, h).

(4.2)

Here T is the unit circle in the complex plane traversed in the counterclockwise
direction, {e, f, g, h} = {a, b, c, d} (counted with multiplicity) and Ne = −1 if |e| ≤
1, respectively Ne is the largest positive integer such that |eqNe | > 1 if |e| > 1.



ON SOME LIMIT CASES OF ASKEY-WILSON POLYNOMIALS 7

We use here the convention that sums over empty sets are zero, so the sum in
the right hand side of (4.2) is over parameters e with modulus > 1 only. The
orthogonality relations and norm evaluations (4.1) follow from Theorem 2.1, (2.3),
(2.4), Cauchy’s Theorem and by a continuity argument in the parameters (see
[AW2, Theorem 2.4]). In fact, the orthogonality relations and norm evaluations
(4.1) hold for generic parameter values a, b, c, d, with 〈., .〉a,b,c,d

AW given by (4.2).
We will obtain the orthogonality relations and norm evaluations for the little q-

Jacobi polynomials by taking suitable limits in the orthogonality relations and norm
evaluations (4.1). We will need some elementary limits and estimates involving q-
shifted factorials, which we collect in the following lemma.

Lemma 4.1. For given ε0 ∈ R, we set εk := ε0q
k.

(a) Let c ∈ C. For ε0 > 0 with |c|ε0 6∈ {q−l}l∈Z+ there exist positive constants
M± > 0 which only depend on ε0 and |c|, such that M− ≤ |

(
cεk; q

)
∞| ≤ M+ for

all k ∈ Z+. Furthermore, we have limk→∞
(
cεk; q

)
∞ = 1.

(b) Let a, b ∈ C \ {0}, and set

f{l,m}(ε; a, b) :=

(
ε−1aq1−m; q

)
m(

ε−1bq1−l−m; q
)
m

, l,m ∈ Z+.

Let ε0 > 0 such that ε−1
0 |b| 6∈ {qk}k∈Z+ . Then there exists a positive constant M > 0

which depends only on ε0, |a| and |b|, such that |f{l,m}(εk; a, b)| ≤ M |qla/b|m for
all k, l,m ∈ Z+. Furthermore, we have limk→∞ f{l,m}(εk; a, b) = (qla/b)m.
(c) Let ui, vj ∈ C \ {0} for i ∈ {1, . . . , r}, j ∈ {1, . . . , s} and assume that r < s, or
that r = s and |u1 . . . ur| < |v1 . . . vr|. Set

g(ε) :=

(
ε−1u1, . . . , ε

−1ur; q
)
∞(

ε−1v1, . . . , ε−1vs; q
)
∞

.

Let ε0 > 0 such that ε−1
0 |vj | /∈ {ql}l∈Z for j ∈ {1, . . . , s}. Then there exists a positive

constant M > 0 which depends only on ε0, |ui| and |vj |, such that supk∈Z+
|g(εk)| ≤

M . Furthermore, we have limk→∞ g(εk) = 0.

Proof. The proof of (a) is straightforward. For (b) and (c) use the formula

(4.3)
(
xq1−m; q

)
m

= q−(m
2 )(−x)m

(
x−1; q

)
m

for q-shifted factorials to rewrite f{l,m} as

f{l,m}(ε; a, b) =
(
qla/b

)m

(
a−1ε; q

)
m(

b−1qlε; q
)
m

,

and to rewrite g(εk) as

(4.4) g(εk) =
(

u1 . . . ur

v1 . . . vs

(
−q(k+1)/2ε0

)s−r
)k

(
qε0u

−1
1 , . . . , qε0u

−1
r ; q

)
k(

qε0v
−1
1 , . . . , qε0v

−1
s ; q

)
k

g(ε0).

The limits for f{l,m} and g given in (b) respectively (c) are now immediately clear.
Furthermore we have the estimate |f{l,m}(εk; a, b)| ≤ M |qla/b|m with

M =

(
−|a|−1ε0; q

)
∞(

|b|−1ε0qk0 ; q
)
∞

∏
{i∈Z+ | 1<|b|−1ε0qi<2}

(
|b|−1ε0q

i − 1
)−1

> 0,
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where k0 is the smallest positive integer such that |b|−1ε0q
k0 < 1. Here we use the

convention that an empty product is equal to 1. The estimate for |g(εk)| in (c) is
easily derived from (4.4), the assumptions on r, s and on the parameters ui, vj , and
from estimates similar to the estimate for M in the proof of (b). �

For the formulation of the orthogonality relations and norm evaluations of the
little q-Jacobi polynomials we use the definition of the Jackson q-integral and the
q-gamma function. The Jackson q-integral of a (continuous) function f over an
interval [u, v] is defined by∫ v

u

f(x)dqx :=
∫ v

0

f(x)dqx−
∫ u

0

f(x)dqx,∫ v

0

f(x)dqx := (1− q)
∞∑

i=0

f(vqi)vqi.

When q ↑ 1, the q-integral of f becomes the usual Lebesgue integral of f over the
interval [u, v]. The q-gamma function Γq(z) is defined by

(4.5) Γq(z) :=

(
q; q

)
∞(

qz; q
)
∞

(1− q)1−z, z /∈ −Z+.

The q-gamma function Γq(z) tends to the gamma function Γ(z) when q ↑ 1.
The orthogonality relations and norm evaluations for the monic little q-Jacobi

polynomials can now be stated as follows.

Theorem 4.2. ([AA1, Theorem 9]) Let 0 < a < 1/q and b < 1/q. Then∫ 1

0

(
pL

mpL
n

)
(z; a, b)∆L(z; a, b)dqz = δm,nNL(n; a, b),

with

∆L(z; a, b) :=

(
qz; q

)
∞(

qbz; q
)
∞

zα (a = qα).

The quadratic norms NL(n) of the monic little q-Jacobi polynomials are explicitly
given by

NL(n; a, b) =
Γq(n + 1)Γq(n + 1 + α)Γq(n + 1 + β)Γq(n + 1 + α + β)

Γq(2n + 1 + α + β)Γq(2n + 2 + α + β)
q(n+α)n,

where b = qβ.

Proof. We assume throughout the proof that b 6= 0. At the end of the proof we
can remove this assumption by continuity. For given ε0 ∈ R, we set εk := ε0q

k. We
claim that there exists an ε0 > 0 such that

lim
k→∞

(
−ε−1

k q,−ε−1
k qa; q

)
∞

(
εkq−

1
2
)m+n〈hm, hn〉

tL(εk)
AW

= 2
(
q; q

)−2

∞ (1− q)−1

∫ 1

0

zm+n∆L(z; a, b)dqz
(4.6)
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for all m,n ∈ Z+, where hr(z) := (z + z−1)r and tL(ε) is given by (2.7). Then we
obtain from (2.13), (2.14) and (4.6),

lim
k→∞

(
−ε−1

k q,−ε−1
k qa; q

)
∞

(
εkq−

1
2
)m+n〈pAW

m , pAW
n 〉tL(εk)

AW

=
∑
r,s

lim
k→∞

{(
εkq−

1
2
)m−r+n−s(

cAW
m,r cAW

n,s

)
(tL(εk))

×
(
−ε−1

k q,−ε−1
k qa; q

)
∞

(
εkq−

1
2
)r+s〈hr, hs〉

tL(εk)
AW

}
= 2

(
q; q

)−2

∞ (1− q)−1
∑
r,s

(
cL
m,rc

L
n,s

)
(a, b)

∫ 1

0

zr+s∆L(z; a, b)dqz

= 2
(
q; q

)−2

∞ (1− q)−1

∫ 1

0

(
pL

mpL
n

)
(z; a, b)∆L(z; a, b)dqz

where the sum is over r ∈ {0, . . . ,m} and s ∈ {0, . . . , n}. On the other hand, a
straightforward calculation gives

lim
k→∞

(
−ε−1

k q,−ε−1
k qa; q

)
∞

(
εkq−

1
2
)2nNAW (n; tL(εk))

= 2
(
q; q

)−2

∞ (1− q)−1NL(n; a, b),

hence the theorem follows from (4.6) and from the orthogonality relations and norm
evaluations (4.1) for the Askey-Wilson polynomials. So it remains to prove that
there exists an ε0 > 0 such that (4.6) is valid for all m,n ∈ Z+. Note that the
modulus of the parameter ε−1q

1
2 in tL(ε) blows up for ε ↓ 0, so it contributes to the

discrete part of the symmetric form 〈., .〉tL(ε)
AW . The parameter −aq

1
2 in tL(ε) gives

rise to a discrete term in 〈., .〉tL(ε)
AW if q−

1
2 < a < q−1. So for ε > 0 sufficiently small,

we obtain from (2.4), (2.5) and (4.2),

(
−ε−1q,− ε−1qa; q

)
∞

(
εq−

1
2
)m+n〈hm, hn〉

tL(ε)
AW

=
1

2π
√
−1

∫
T

(
εq−

1
2
)m+n

hm(z)hn(z)∆̃AW
c (z; ε)

dz

z

+ 2
∞∑

i=0

(
εq−

1
2
)m+n(

hmhn

)
(ε−1q

1
2 qi)∆̃AW

d,1 (i; ε)

+ 2χ
(
a > q−

1
2
)(

εq−
1
2
)m+n(

hmhn

)
(−aq

1
2 )∆̃AW

d,2 (ε)

(4.7)

where χ(A) is 1 if A is true and 0 if A is false. Here ∆̃AW
c is given by

∆̃AW
c (z; ε) =

(
−ε−1q,−ε−1qa; q

)
∞∆AW

c

(
z; tL(ε)

)
=

(
−ε−1q,−ε−1qa; q

)
∞(

ε−1q
1
2 z, ε−1q

1
2 z−1; q

)
∞

×
(
z2, z−2; q

)
∞(

εq
1
2 bz, εq

1
2 bz−1,−q

1
2 z,−q

1
2 z−1,−q

1
2 az,−q

1
2 az−1; q

)
∞

,
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and the discrete weights are given by

∆̃AW
d,1 (i; ε) =

(
−ε−1q,−ε−1qa; q

)
∞∆AW

d

(
ε−1q

1
2+i; ε−1q

1
2 ; εq

1
2 b,−q

1
2 ,−q

1
2 a

)
=

(
ε2q−1; q

)
∞(

q, qb, ε2b,−ε,−aε; q
)
∞

(
ε−2q,−ε−1qa, qb; q

)
i(

ε−2qb−1,−ε−1qa−1, q; q
)
i

(
ε−2q2i+1; q

)
1(

ε−2q; q
)
1

(
qab

)−i

if ε < q
1
2+i and zero otherwise, and

∆̃AW
d,2 (ε) =

(
−ε−1q,−ε−1qa; q

)
∞∆AW

d

(
−q

1
2 a;−q

1
2 a; ε−1q

1
2 , εq

1
2 b,−q

1
2
)

=

(
−ε−1q, q−1a−2; q

)
∞(

−ε−1a−1, q,−εqab,−εba−1, qa, a−1; q
)
∞

.

Since a ∈ (0, 1/q), we have by Lemma 4.1 (a) and (c) that

lim
k→∞

∆̃AW
c (z; εk) = 0 (z ∈ T )

and
sup

k∈Z+,z∈T
|∆̃AW

c (z; εk)| < ∞,

for generic ε0 > 0. So by the Bounded Convergence Theorem,

(4.8) lim
k→∞

1
2π
√
−1

∫
z∈T

(
εkq−

1
2
)m+n

hm(z)hn(z)∆̃AW
c (z; εk)

dz

z
= 0

for generic ε0 > 0. Since a−1 > q, we obtain by Lemma 4.1 (a) and (c) the limit

(4.9) lim
k→∞

∆̃AW
d,2 (εk) = 0

for generic ε0 > 0. For the sum of the infinite discrete sequence in (4.7) we have
for ε0 > 0 generic,

(4.10) lim
k→∞

∆̃AW
d,1 (i; εk) =

(
q; q

)−2

∞ ∆L(qi; a, b)qi

for all i ∈ Z+. The limit (4.10) can for instance be checked using Lemma 4.1
(a) and (b). As an example, let us calculate the limit k → ∞ of the factor(
ε−2
k q; q

)
i
/
(
ε−2
k qb−1; q

)
i

in ∆̃AW
d,1 (i; εk),

lim
k→∞

(
ε−2
k q; q

)
i
/
(
ε−2
k qb−1; q

)
i
= lim

k→∞

(
ε−2
k+iq; q

)
i
/
(
ε−2
k+iqb

−1; q
)
i

= lim
k→∞

f{0,i}
(
εi+2k; ε−1

0 , ε−1
0 b−1

)
= bi

(4.11)

where the last equality follows from Lemma 4.1(b). The limits of the other ε-
depending factors in ∆̃AW

d,1 (i; ε) can be calculated in a similar way.
Combining (2.13), (4.7), (4.8), (4.9) and (4.10) we obtain for arbitrary m,n ∈ Z+,

lim
k→∞

(
−ε−1

k q,− ε−1
k qa; q

)
∞

(
εkq−

1
2
)r+s〈hm, hn〉

tL(εk)
AW

= 2 lim
k→∞

∑
i∈Z+

(
εkq−

1
2
)m+n(

hmhn

)
(ε−1

k q
1
2 qi

)
∆̃AW

d,1 (i; εk)

= 2
(
q; q

)−2

∞ (1− q)−1

∫ 1

0

zm+n∆L(z; a, b)dqz

(4.12)

provided that we may interchange limit and summation in (4.12). We show that for
generic ε0 > q

1
2 it is allowed to interchange limit and summation in (4.12), which

will complete the proof of the theorem. Since the weight ∆L(qi; a, b) are positive
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and the infinite sum
∑∞

i=0 ∆L(qi; a, b)qi is absolutely convergent, it suffices to prove
that for generic ε0 > q

1
2 and for r ∈ Z+,

(4.13) sup
k∈Z+

|
(
εkq−

1
2
)r

hr(ε−1
k q

1
2 qi)∆̃AW

d,1 (i; εk)| ≤ M∆L(qi; a, b)qi

for some M > 0 independent of i ∈ Z+. Since ∆̃AW
d,1 (i; ε) = 0 for ε ≥ q

1
2+i, we have

for ε0 > q
1
2

sup
k∈Z+

|
(
εkq−

1
2
)r

hr(ε−1
k q

1
2 qi)∆̃AW

d,1 (i; εk)|

= sup
k∈Z+

|
(
εkqiq−

1
2
)r

hr(ε−1
k q

1
2 )∆̃AW

d,1 (i; qiεk)|

≤ M ′ sup
k∈Z+

|∆̃AW
d,1 (i; εkqi)|

(4.14)

with M ′ independent of i, and the required estimate (4.13) follows from the es-
timates of Lemma 4.1 (a) and (b). For instance, we have seen that the factor(
ε−2
k q; q

)
i
/
(
ε−2
k qb−1; q

)
i

in ∆̃AW
d,1 (i; εk) tends to bi for k → ∞ (cf. (4.11)). The

corresponding estimate, needed for (4.13), is then provided by

sup
k∈Z+

∣∣((εkqi)−2q; q
)
i
/
(
(εkqi)−2qb−1; q

)
i

∣∣ = sup
k∈Z+

|f{0,i}
(
εi+2k; ε−1

0 , ε−1
0 b−1

)
| ≤ M1|b|i

with M1 > 0 independent of i ∈ Z+, in view of Lemma 4.1(b). Estimates for the
other ε-depending factors in ∆̃AW

d,1 (i; ε) can be obtained in a similar way. �

Note that tL(ε) ∈ VAW for ε > 0 sufficiently small if the parameters a and b
satisfy the assumptions of Theorem 4.2 (tL(ε) given by (2.7)). So in the proof of
Theorem 4.2 we obtain the positive orthogonality measure for the little q-Jacobi
polynomials as limit case of the positive (partly discrete, partly continuous) orthog-
onality measure (4.2) for the Askey-Wilson polynomials. In particular, the proof
of Theorem 4.2 shows that the only part of the (rescaled) orthogonality measure
(4.2) which survives in the limit from Askey-Wilson polynomials to little q-Jacobi
polynomials (2.8) is a sum of an infinite sequence of discrete weights coming from
residues of ∆AW

c (z)/z at z = ε−1q
1
2 qi, where ε−1q

1
2 is the parameter in tL(ε) which

tends to infinity in the limit ε ↓ 0. This infinite sequence of weights is, up to a pos-
itive constant, exactly the set of weights which occur in the orthogonality measure
for the little q-Jacobi polynomials.

The little q-Jacobi polynomials were first observed by Hahn [H]. A detailed
discussion of the orthogonality relations and norm evaluations was given by An-
drews and Askey [AA1]. The orthogonality relations and norm evaluations were
derived from the q-binomial formula [AA1, (3.6)], [GR, (II.3),p.236] and the q-
Pfaff-Saalschütz formula [AA1, (3.7)], [GR, (II.12),p.237]. The evaluation of the
q-Jackson integral over the weight function

(4.15)
∫ 1

0

∆L(z; a, b)dqz =
Γq(α + 1)Γq(β + 1)

Γq(2 + α + β)
(a = qα, b = qβ)

is a well known q-analogue of the beta integral, and is equivalent with the q-binomial
formula [GR, (II.3),p.236].
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5. Limit to big q-Jacobi polynomials.

In this section, we prove the orthogonality relations and norm evaluations for the
big q-Jacobi polynomials by extending the limit (2.16) to the level of the orthogo-
nality measure (4.2). The methods are analogous to the little q-Jacobi polynomials
case which we have treated in the previous section.

The orthogonality relations and norm evaluations for the monic big q-Jacobi
polynomials can be stated as follows.

Theorem 5.1. ([AA3, section 3]) Let c, d > 0 and −c/dq < a < 1/q, −d/cq < b <
1/q or a = cu, b = −du with u ∈ C \ R. Then

(5.1)
∫ c

−d

(
pB

mpB
n

)
(z; a, b, c, d)∆B(z; a, b, c, d)dqz = δm,nNB(n; a, b, c, d),

with

∆B(z; a, b, c, d) :=

(
qz/c,−qz/d; q

)
∞(

qaz/c,−qbz/d; q
)
∞

.

The quadratic norms NB(n) of the monic big q-Jacobi polynomials are explicitly
given by

NB(n; a, b, c, d) :=
Γq(n + 1)Γq(n + 1 + α)Γq(n + 1 + β)Γq(n + 1 + α + β)

Γq(2n + 1 + α + β)Γq(2n + 2 + α + β)

×
(cd)n+1q(

n
2)

(
−c/d,−d/c; q

)
∞

(c + d)
(
−qn+1bc/d,−qn+1ad/c; q

)
∞

where a = qα and b = qβ.

Proof. We assume throughout the proof that a, b 6= 0. This assumption can be
removed at the end of the proof by continuity. For given ε0, we set εk := ε0q

k. We
claim that there exists an ε0 > 0 such that

lim
k→∞

(
−ε−2

k q; q
)
∞

(
εk(cd/q)

1
2
)m+n〈hm, hn〉

tB(εk)
AW

=
2(c + d)

(1− q)cd
(
q, q,−c/d,−d/c; q

)
∞

∫ c

−d

zm+n∆B(z; a, b, c, d)dqz
(5.2)

for all m,n ∈ Z+. Since

lim
k→∞

(
−ε−2

k q; q
)
∞

(
εk(cd/q)

1
2
)2nNAW (n; tB(εk)) =

NB(n; a, b, c, d)
2(c + d)

(1− q)cd
(
q, q,−c/d,−d/c; q

)
∞

the theorem follows from (2.13), (2.17) and (5.2) by similar arguments as in the
little q-Jacobi case (see the proof of Theorem 4.2).

For the proof of (5.2), note that the parameters ε−1(qc/d)
1
2 and −ε−1(qd/c)

1
2

of tB(ε) cause a contribution to the discrete part of 〈., .〉tB(ε)
AW for ε > 0 sufficiently
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small. In fact, we have for ε > 0 sufficiently small,(
−ε−2q; q

)
∞

(
ε(cd/q)

1
2
)m+n〈hm, hn〉

tB(ε)
AW

=
1

2π
√
−1

∫
T

(
ε(cd/q)

1
2
)m+n

hm(z)hn(z)∆̂AW
c (z; ε)

dz

z

+ 2
∞∑

i=0

(
ε(cd/q)

1
2
)m+n(

hmhn

)(
ε−1(q/cd)

1
2 cqi

)
∆̂AW

d,1 (i; ε)

+ 2
∞∑

i=0

(
ε(cd/q)

1
2
)m+n(

hmhn

)(
−ε−1(q/cd)

1
2 dqi

)
∆̂AW

d,2 (i; ε)

(5.3)

with ∆̂AW
c (z; ε) :=

(
−ε−2q; q

)
∞∆AW

c (z; tB(ε)) and with discrete weights

∆̂AW
d,1 (i; ε) =

(
ε2d/qc; q

)
∞(

q, qa, ε2ad/c,−d/c,−qbc/d,−ε2b; q
)
∞

×
(
ε−2qc/d,−ε−2q, qa,−qbc/d; q

)
i(

ε−2qc/ad,−ε−2q/b, q,−qc/d; q
)
i

(
ε−2q2i+1c/d; q

)
1(

ε−2qc/d; q
)
1

(qab)−i

if ε < (qc/d)
1
2 qi and zero otherwise,

∆̂AW
d,2 (i; ε) =

(
ε2c/qd; q

)
∞(

q,−qad/c,−ε2a,−c/d, qb, ε2bc/d; q
)
∞

×
(
ε−2qd/c,−ε−2q,−qad/c, qb; q

)
i(

−ε−2q/a, ε−2qd/bc, q,−qd/c; q
)
i

(
ε−2q2i+1d/c; q

)
1(

ε−2qd/c; q
)
1

(qab)−i

if ε < (qd/c)
1
2 qi and zero otherwise. Now note that(

−ε−2q; q
)
∞ =

(
ε−1q

1
2
√
−1,−ε−1q

1
2
√
−1, ε−1q

√
−1,−ε−1q

√
−1; q

)
∞,

so it follows from Lemma 4.1 (a), (c) and the Bounded Convergence Theorem that

(5.4) lim
k→∞

1
2π
√
−1

∫
T

(
εk(cd/q)

1
2
)m+n

hm(z)hn(z)∆̂AW
c (z; εk)

dz

z
= 0

for generic ε0 > 0 (compare with the little q-Jacobi case (proof of Theorem 4.2)). By
a straightforward calculation, using Lemma 4.1(a) and (b), we obtain for generic
ε0 > 0,

lim
k→∞

∆̂AW
d,1 (i; εk) =

(c + d)
cd

(
q, q − c/d,−d/c; q

)
∞

∆B(cqi; a, b, c, d)cqi(5.5)

lim
k→∞

∆̂AW
d,2 (i; εk) =

(c + d)
cd

(
q, q − c/d,−d/c; q

)
∞

∆B(−dqi; a, b, c, d)dqi(5.6)

for i ∈ Z+. For generic ε0 > K := max
(
(qc/d)

1
2 , (qd/c)

1
2
)

we furthermore have the
estimates

sup
k∈Z+

|∆̂AW
d,1 (i; εk)| = sup

k∈Z+

|∆̂AW
d,1 (i; qiεk)| ≤ M1∆B(cqi; a, b, c, d)cqi(5.7)

sup
k∈Z+

|∆̂AW
d,2 (i; εk)| = sup

k∈Z+

|∆̂AW
d,2 (i; qiεk)| ≤ M2∆B(−dqi; a, b, c, d)dqi(5.8)

for i ∈ Z+, where M1,M2 > 0 are independent of i. The first equality in (5.7)
respectively (5.8) follows from the fact that ∆̂AW

d,1 (i; ε) = 0 for ε ≥ (qc/d)
1
2 qi,
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respectively ∆̂AW
d,2 (i; ε) = 0 for ε ≥ (qd/c)

1
2 qi. The second inequality in (5.7)

respectively (5.8) follows from Lemma 4.1 (a), (b) and the fact that the weights
∆B are positive for the parameter values a, b, c, d under consideration (compare
with the little q-Jacobi case (proof of Theorem 5.1)). Now we subsitute ε = εk in
(5.3) and take the limit k →∞. The infinite sums and limits may be interchanged
by the estimates above and the fact that the infinite sums

∞∑
i=0

∆B(cqi; a, b, c, d)cqi,

∞∑
i=0

∆B(−dqi; a, b, c, d)dqi

are absolutely convergent, so the limit (5.2) follows for generic ε0 > K by (5.4),
(5.5) and (5.6). �

Note that tB(ε) ∈ VAW for ε > 0 sufficiently small if the parameters a, b, c and
d satisfy the assumptions of Theorem 5.1 (tB(ε) given by (2.15)). So in the proof
of Theorem 5.1 we obtain the positive orthogonality measure for the big q-Jacobi
polynomials as limit case of the positive (partly discrete, partly continuous) orthog-
onality measure (4.2) for the Askey-Wilson polynomials. In particular, the proof
of Theorem 5.1 shows that the only part of the (rescaled) orthogonality measure
which survives in the limit from Askey-Wilson polynomials to big q-Jacobi polyno-
mials are sums of two infinite sequences of discrete weights coming from residues
of ∆AW

c (z)/z at z = ε−1(qc/d)
1
2 qi and z = −ε−1(qd/c)

1
2 qi, where ε−1(qc/d)

1
2 re-

specively −ε−1(qd/c)
1
2 is the parameter in tB(ε) which tends to infinity respectively

minus infinity in the limit ε ↓ 0. The two infinite sequences of weights are, up to
a positive constant, exactly the set of weights which occur in the orthogonality
measure for the big q-Jacobi polynomials.

The big q-Jacobi polynomials were first hinted at by Hahn [H]. A detailed discus-
sion of the orthogonality relations and norm evaluations was given by Andrews and
Askey [AA3]. The orthogonality relations and norm evaluations were derived using
the q-Vandermonde formula [AA3, (3.29)], [GR, (II.6),p.236] and the evaluation of
the q-Jackson integral over the weight function∫ c

−d

∆B(z; a, b, c, d)dqz =
Γq(1 + α)Γq(1 + β)

Γq(2 + α + β)

(
−c/d,−d/c; q

)
∞cd(

−qbc/d,−qad/c; q
)
∞(c + d)

= (1− q)c

(
q,−d/c,−qc/d, q2ab; q

)
∞(

qa, qb,−qbc/d,−qad/c; q
)
∞

(5.9)

where a = qα, b = qβ . The summation formula (5.9) is a q-analogue of the beta
integral which first appeared in [AA2, Theorem 1].

6. Concluding remarks.

The orthogonality relations and norm evaluations for the little q-Jacobi polyno-
mials (cf. Theorem 4.2) can also be obtained from the orthogonality relations and
norm evaluations of the big q-Jacobi polynomials (Theorem 5.1) by considering the
little q-Jacobi polynomials as limit cases of the big q-Jacobi polynomials,

(6.1) lim
d↓0

PB
n (z; b, a, 1, d) = PL

n (z; a, b) (n ∈ Z+).

See [K3] for details.
The proof of the orthogonality relations and norm evaluations for the q-Racah

polynomials, the big and the little q-Jacobi polynomials we have presented in this
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paper has the advantage that summation formulas and transformation formulas for
basic hypergeometric series, which were used in the original proofs of the orthog-
onality relations and norm evaluations, are now no longer needed. In fact, with
this method, various types of summation formulas may be seen as special cases of
integral type formulas. For instance the three summation formulas (3.3), (4.15) and
(5.9) are obtained from the evaluation of the Askey-Wilson q-beta integral (2.2) by
calculating the residues of the integrand ∆AW

c (z)/z in (2.2) and taking suitable
limits.

The first author has recently extended the methods of this paper to the multi-
variable setting. The orthogonality relations and norm evaluations for the multi-
variable q-Racah polynomials (defined in [DS]) and the multivariable big resp. little
q-Jacobi polynomials (defined in [S]) can then be obtained by taking suitable limit
transitions in the orthogonality relations and norm evaluations for the multivariable
Askey-Wilson polynomials (defined in [M] and [K1]). A paper on this subject is in
preparation.
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