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Preface

This Conference Proceedings volume contains the written versions of most 

of the contributions presented during the 16th Annual 'International 

Conference on Special Functions and Applications' (ICSFA-2017), and 

symposium on 'Application of Mathematical Sciences in Engineering 

Problems' organized by the Department of Mathematics, Government 

College of Engineering and Technology, Bikaner, Rajasthan ( Presently 

upgraded to University College of Bikaner Technical University, Bikaner ) 

during November 02--04, 2017. The Conference provided a platform for 

discussing recent developments in a wide variety of topics including Special 

functions, Lie Theory, Orthogonal Polynomials, q-series, Fractional 

Calculus, Number Theory, Mathematical Physics, Combinatorics and 

Statistics.  Apart from this, there was a symposium on "Application of 

Mathematical Sciences in the Engineering Problems". The Chief Guest of 

the inaugural function was Prof. Tom Koornwinder, University of 

Amsterdam, Amsterdam, Netherlands, the Guest of Honour was Prof. D. 

Shringhi, Member Secretary and Principal, Govt. Engineering College 

Bikaner and Chairperson was Dr. S.K. Bansal, Principal, C.E.T. Bikaner. 

The felicitation ceremony of Prof. N. K. Thakare, Patron, SSFA was also the 

part of the inaugural ceremony. The Special Guest of the valedictory 

function was Prof. Tibor K. Pogany, University of Rijeka, Rijeka, Croatia and 

Prof. M.A. Pathan, Ex-Chairman, Aligarh Muslim University, Alligarh, the 

Guest of Honour was Prof. S. Ponnusamy, ISI, Chennai Centre and IIT 

Madras, Chennai.

This volume includes the lectures delivered during the 'International 

Conference on Special Functions and their Applications'  (ICSFA-2017).  

We accomplish this task by collecting research papers which are concerned 

with rather diversified areas which will give good insight into new 

researches in the new century. These peer-refereed articles showcase the 

latest developments and trends in classical special functions, highlighting 

the cross-fertilization of new techniques and ideas with the existing ones. 

The sixteenth volume of the proceedings of this conference is a very clear 

impression of the present state of the art in classical and modern aspects of 
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special functions and allied topics. These were the issues addressed by the 

papers presented at the conference. The level of interest in the subject 

matter of the conference was maintained from previous events and over 100 

suitable papers were submitted for presentation at the conference. This 

required the programme to be organised in two parallel sessions, each on a 

specific theme, to provide each paper with sufficient time for presentation 

and to accommodate all of them within the overall time allocated.

Special functions and their applications have been one of the major fields of 

research in India in the last 100 years, since they constitute  a reasonably 

big class of mathematicians including S. Ramanujan working in analysis, 

number theory, partition theory, combinatorics and related areas. There 

are very extensive applications of special functions. SSFA was established 

in 1997 as an independent association of Academics and Researchers.  Its 

mission is to act as a forum where Academics and Researchers from all over 

the world can meet in order to exchange ideas on their research, and to 

discuss future developments in their disciplines. SSFA is the global  honor 

society of mathematicians, statisticians, physicists and engineers that 

recognizes scientific achievements in the field of special functions and their 

applications.

The objects of the Society are to promote research in mathematics and 

mathematical sciences in general and special functions in particular. The 

society has been trying hard for the development of teaching and research in 

special functions and their applications. The society is dedicated to the 

advancement of science and engineering through outstanding programs 

and services delivered in a collegial and supportive environment. Each year, 

society members, experts and bright research scholars gather to interact 

with one another at the SSFA-annual conferences held at different places in 

India.

All those who are directly or even remotely concerned with special 

functions, number theory, partition theory and their applications are aware 

of the significant contributions made by Professor R.P. Agarwal. SSFA 

would not have been successful had it not been for the efforts of its members 

and leaders like Professor R.P. Agarwal, founder member and Patron of the 
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SSFA who initiated planning activities of the society all over the country. We 

lost a top researcher and one of our brightest jewels in the fields of special 

functions, number theory and partition theory with the passing away on 

February 9, 2008, of Professor R.P. Agarwal. To perpetuate the initiatives 

and efforts taken up by Professor Agarwal, several of his students, 

colleagues and admirers thought it fit to organize a lecture in his memory. In 

his honor, society is organizing R.P. Agarwal memorial lecture every year. 

During the tenth annual international conference at Jodhpur in 2011, the 

first R.P. Agarwal memorial lecture was delivered by Professor George E. 

Andrews, U.S.A. The second R.P. Agarwal memorial lecture was delivered by 

Professor H.L. Manocha from U.S.A., during the eleventh international 

conference at Surat in 2012. For the 2013, R.P. Agarwal memorial lecture 

Professor A.M. Mathai, Emeritus Professor of Mathematics and Statistics, 

McGill University, Canada and Director, Centre for Mathematical and 

Statistical Sciences, Peechi, Kerala, India was the lecturer during the 

twelfth international conference held at Malviya National Institute of 

Technology, Jaipur, Rajasthan.  The 14th annual International Conference 

on Special Functions and their Applications (ICSFA-2015) was organized by 

the Amity University,NOIDA,U.P. The fourth R.P. Agarwal memorial lecture 

was  delivered by  Prof. S. Kanemitsu from Kindai University, Japan. He  is 

a well known Japanese mathematician and  educator. His achievements 

include research in Symmetry of special functions.

The 15th annual International Conference on Special Functions and their 

Applications (ICSFA-2016) was organized by the Department of Applied 

Science and Humanities, Faculty of Engineering  and technology, Jamia 

Millia Islamia, New Delhi  from Sept 9 to 11, 2016.During this conference 

the fifth  R.P. Agarwal memorial lecture was  delivered by Prof. Michel 

Waldschmidt, University of Paris, France. Chief guest of the inaugural 

function  was also  Prof. Michel Waldschmidt and Guests of Honor were  

Prof. S. Kanemitsu from Kindai University, Japan and Prof. A.M. Mathai 

from  Mc.Gill University, Canada. Waldschmidt was educated at Lyce Henri 

Poincar and the University of Nancy until 1968. In 1972 he defended his 

thesis, titled Independance algebrique de nombres transcendants 

(Algebraic independence of transcendental numbers) and directed by Jean 
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Fresnel, the University of Bordeaux, where he was research associate of 

CNRS in 1971-2. He was then a lecturer at Paris-Sud 11 University in 1972-

3, then a lecturer at the University of Paris VI (Pierre et Marie Curie), where 

he is Professor since 1973. Waldschmidt was also a visiting professor at 

various places including the cole normale suprieure. He is a member of the 

Institut de mathmatiques de Jussieu.  Michel Waldschmidt is an expert in 

the theory of transcendental numbers and diophantine approximations. He 

was awarded the Albert Chtelet Prize in 1974, the CNRS Silver Medal in 

1978, the Marquet Prize  of Academy of Sciences in 1980 and the Special 

Award of the Hardy-Ramanujan Society in 1986. From 2001 to 2004 he was 

president of the Mathematical Society of France. He is a member of several 

mathematical societies, including the EMS, the AMS and Ramanujan 

Mathematical Society.

The 16th annual International Conference on Special Functions and their 

Applications (ICSFA-2017) was organized by the Department of 

Mathematics ,  Government  Col lege o f  Engineer ing and 

Technology,Bikaner,Rajasthan. During this conference the sixth R.P. 

Agarwal memorial lecture was delivered by  Prof. Tom Koornwinder, 

University of Amsterdam, Amsterdam, Netherlands.The title of his lecture 

was Dual addition formula for continuous q-ultraspherical polynomials. 

Tom Koornwinder (b. 1943 in Rotterdam, The Netherlands)Professor 

Emeritus in the Kortewegde Vries Institute for Mathematics at the 

University of Amsterdam, The Netherlands. During 1968-1992 he was a 

Researcher in the Centrum Wiskunde  Informatica (CWI), Amsterdam. 

Koornwinder has published numerous papers on special functions, 

harmonic analysis, Lie groups, quantum groups, computer algebra, and 

their interrelations, including an interpretation of Askey-Wilson 

polynomials on quantum SU(2), and a five-parameter extension (the 

Macdonald Koornwinder polynomials) of Macdonalds polynomials for root 

systems BC. Books for which he has been editor or coeditor include Special 

Functions: Group Theoretical Aspects and Applications (with R. A. Askey 

and W. Schempp), published by Reidel in 1984, and Wavelets: 

mathematical preliminaries, published by World Scientific in 1993. 

Koornwinder has been active as an officer in the SIAM Activity Group on 
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Special Functions and Orthogonal Polynomials. Currently he is on the 

editorial board for Constructive Approximation, and is editor for the volume 

on Multivariable Special Functions in the ongoing Askey-Bateman book 

project.

The contributors to the proceedings of the conference touch on several 

topics of special functions and their applications. Their articles covers a 

number of lectures on a variety of areas and topics ranging from Dual 

addition formula for continuous q-ultraspherical polynomials by T. 

Koorwinder, Y-Bessel sampling series of $L(2) stochastic processes by Tibor 

K. Pogany, On Generalized Kratzel Integrals by A.M. Mathai, Generalized 

Rathie-Swamee distributions and applications by Prabhata K. Swamee, 

Ronald T. Nojosa and Pushpa N. Rathie, Advanced Special Functions 

Associated With Lie And Witt Algebras by M.A. Pathan, On Bohr's inequality 

and Beyond by S. Ponnusamy and so on.

We would like to thank the contributors of the articles and referees for their 

prompt action in refereeing process. We are also thankful to all members of 

the National and International Advisory Committee and all members of the 

local organizing committee whose enthusiastic involvement contributed 

greatly to the grand success of the international conference. All participants 

were impressed by the quality of hosting institution, the great hospitality, 

and for the efforts to make this conference into a success. Also, for this 

conference, we acknowledge the financial support from TEQIP-II and 

Government College of Engineering and Technology, Bikaner, Rajasthan 

(Presently upgraded to University College of Bikaner Technical University, 

Bikaner.)

All the articles have been Latexed. In addition to this, Dr. N.U. Khan has 

taken care of all the tedious detailed drudgery that occur in process of 

preparing a proceedings manuscript. We thank him for his generous help.

October, 2018

A.K. Agarwal

 M.A. Pathan

R.K.Parmar
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Presidential Address*

A.K. Agarwal

Centre for Advanced Study in Mathematics

Punjab University, Chandigarh-160014

E-mail:aka@pu.ac.in

Dr. S. K. Bansal- Principal, Government College of Engineering & 

Technology, Bikaner and Chairperson of the International Conference 

on Special Functions and their Applications (ICSFA-2017), Prof. Tom 

Koornwinder - Chief Guest, Prof. Dinesh Shringhi - Guest of Honour, 

Prof. N. K. Thakare - Patron, Society for Special Functions and their 

Applications (SSFA), Prof.M.A. Pathan - Secretary, SSFA, Dr. R. K. 

Parmar - Convener, ICSFA - 2017, other dignitaries on the dais and 

off the dais, Ladies and Gentlemen!

On behalf of SSFA and on my personal behalf, I would first like to 

thank the organizers for hosting this 16th Annual Conference of 

SSFA. I wish all the best to the Organizing Committee, particularly its 

convener Dr.R.K.Parmar for making substantial efforts necessary to 

bring this event in to being. Rajasthan and UP are known for 

researches in special functions. In Rajasthan, Jaipur and Jodhpur 

have contributed significantly for the development to special 

functions. It is good to see that new centres are coming up. We are 

happy to be here in this old city of Bikaner, known for its Junagarh 

fort throughout the country.

Friends, during the next three days, there will be several brain-

storming academic sessions in which various aspects of special 

functions such as orthogonal polynomials, Lietheory, hypergeometric 

functions, fractional calculus, number theory, combinatorics etc. will 

*Society for Special Functions and their Applications, 16th Annual Conference, 
Government College of Engineering & Technology, Bikaner, November
02-04, 2017.
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be discussed. As a part of the academic program, a special 

symposium on “Applications of Mathematical Sciences in Engineering 

Problems” will also be held. About my own recent work on mock theta 

functions, I will talk in the technical address scheduled just after this 

inaugural function. In this general address, I take the opportunity to 

make some general remarks about mathematics.

I begin with a recently published book. The title is : “The Math Myth : 

And Other STEM Delusions" (STEM is an acronym and stands for 

Science, Technology, Engineering and Mathematics), written by 

Andrew Hacker. He is Professor Emeritus in the Department of 

Political Science at Queens College in New York. He did his 

graduation from Oxford University and Ph.D. from Princeton 

University. In this book he writes: "Abstract math is scary, damaging 

and should be optional in American education". About algebra he 

writes: “Far from being a pipe line to success, it is a barrier that ends 

up supporting opportunities, stiing creativity, and denying society a 

wealth of varied talents". People like Hacker are proposing to 

eliminate subjects like algebra from the curriculum.

It is unfortunate that mathematics is not well understood by large 

portions of the general public. There are too many people who think 

that mathematics is a dead science in the sense that everything that 

needed to be discovered has already been discovered. They doubt the 

relevance of mathematics to our daily lives in view of the advances 

made in computer science. The mathematics community has to 

eliminate these false perceptions and increase appreciation for 

mathematics and for its fundamental role in culture and society. To 

make my point clear, I would like to give an example. About four 

decades ago when I was doing my Ph.D. at IIT, Delhi, I used to run to 

the library every month to look at the latest printed volume of Math 

Reviews. Then we started using Math Sci Net. Now people of ten by 

pass Math Sci Net also when trying to get information. They 



collaborate through blogs. Students and teachers both use their 

tablets, cell phones and laptops. These are all the wonders of a 

technology called Information

Technology (IT). It is one of the most useful technologies these days. 

Enormous Amount of data can be communicated from one part of the 

world to the other in no time. Many of us know that this technology 

uses digital communication in which satellites play a key role. But 

not many people know that at the back of this technology the driving 

force is coding theory. This is an area in which finite fields which are 

essentially parts of abstract algebra are studied. If people like Prof. 

Andrew Hacker propose to eliminate algebra from the curriculum, I 

would say: it is their ignorance of the subject only. Perhaps, we have 

not done a good job presenting our field to the public. We have to 

develop a broader awareness of mathematical culture. We have to 

promote an understanding of the fundamental role of mathematics in 

the world.

With these words, I conclude by wishing the conference a grand 

success so that the organizers may feel fully contended.

Thank you very much.

|xvi|
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DUAL ADDITION FORMULA FOR CONTINOUS
q-ULTRSPHERICAL POLYNOMIALS

Tom H. Koornwinder
Korteweg-de Vries Institute

University of Amsterdam, The Netherlands.
Email: T.H.Koornwinder@uva.nl

Abstract: We settle the dual addition formula for continuous q-ultraspherical
polynomials as an expansion in terms of special q-Racah polynomials for which
the constant term is given by the linearization formula for the continuous q-
ultraspherical polynomials. In a second proof we derive the dual addition formula
from the Rahman-Verma addition formula for these polynomials by using the self-
duality of the polynomials. The paper starts with a tutorial on duality properties
of orthogonal polynomials in the (q-)Askey scheme.

Keywords and Phrases: Duality, Askey scheme, q-Askey scheme, continuous
q-ultaspherical polynomials, addition formula, dual addition formula

Mathematics subject Classification: Primary 33C45, 33.D45.

1 Introduction

This paper elaborates on the notions of addition formula and duality in connec-
tion with special orthogonal polynomials. As a natural continuation of our recent
derivation [22] of the dual addition formula for ultraspherical polynomials we now
derive the dual addition formula for continuous q-ultraspherical polynomials. We
give two different proofs. The first proof is a perfect q-analogue of the derivation
in [22]. Every step of the proof yields in the limit for q → 1 the correspond-
ing step in [22]. The second proof exploits the self-duality of the continuous
q-ultraspherical polynomials. Then the dual addition formula easily follows from
the known addition formula [29] for these polynomials.

Addition formulas are closely related to product formulas. For instance, the
addition formula for Legendre polynomials [28, (18.18.9)]

Pn(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ) = Pn(cos θ1)Pn(cos θ2)

+ 2

n∑
k=1

(n− k)! (n+ k)!

22k(n!)2
(sin θ1)

kP
(k,k)
n−k (cos θ1) (sin θ2)

kP
(k,k)
n−k (cos θ2) cos(kφ)

(1.1)
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gives the Fourier-cosine expansion of the left-hand side as a function of φ. Inte-
gration with respect to φ over [0, π] gives the constant term in this expansion,
which is the product formula for Legendre polynomials [28, (18.17.6)]

Pn(cos θ1)Pn(cos θ2) =
1

π

∫ π

0
Pn(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ) dφ. (1.2)

Two formulas involving Legendre polynomials Pn(x) (or more generally some
orthogonal polynomials pn(x)) are called dual to each other if the roles of n and
x in the second formula are interchanged in comparison with the first formula.
The formula dual to the product formula (1.2) is the linearization formula, which
expands the product P`(x)Pm(x) in terms of Legendre polynomials Pk(x). This
expansion is a sum running from k = |` − m| to k = ` + m, where only terms
with ` + m − k even will occur since Pn(−x) = (−1)nPn(x). The linearization
formula for Legendre polynomials is explicitly known (see [28, (18.18.22)] for
λ = 1

2 together with [28, (18.7.9)], and see after (1.4) for the shifted factorial
(a)n):

P`(x)Pm(x) =

min(`,m)∑
j=0

(2(`+m− 2j) + 1)(12)j(
1
2)`−j(

1
2)m−j(`+m− j)!

j! (`− j)! (m− j)! (32)`+m−j
P`+m−2j(x). (1.3)

Richard Askey, in his lectures at conferences, often raised the problem to find an
addition type formula associated with (1.3) in a similar way as the addition for-
mula (1.1) is associated with the product formula (1.2). The author finally solved
this in [22] by recognizing the coefficient of P`+m−2j(x) in (1.3) as the weight of
a special Racah polynomial [18, (9.2.1)] depending on j, and then finding the
expansion of P`+m−2j(x) in terms of these Racah polynomials. More generally,
the same idea worked out well in [22] for ultraspherical polynonmials.

While (1.1), (1.2), (1.3), and their generalizations to ultraspherical polynomials,
are formulas established long ago and staying within the realm of classical or-
thogonal polynomials, it is remarkable that the dual addition formula steps out
from this and needs Racah polynomials, which live high up in the Askey scheme
(see Figure 1 in §2.1). Parallel to the Askey scheme there is the much larger
q-Askey scheme1. Families of orthogonal polynomials in the Askey scheme are
limit cases of families in the q-Askey scheme. The continuous q-ultraspherical
polynomials form the family which is the q-analogue of the ultraspherical poly-
nomials. Moreover, the q-analogues of (1.1), (1.2) and (1.3) for these polynomials
are available in the literature. The continuous q-ultraspherical polynomials also

1See http://homepage.tudelft.nl/11r49/pictures/large/q-AskeyScheme.jpg
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have the property of self-duality, which is lost in the limit to q = 1. This no-
tion means that, for a suitable function σ, an orthogonal polynomial pn(x) has
the property that pn(σ(m)) = pm(σ(n)) (m,n = 0, 1, . . .). With all this material
available it becomes a smooth, although nontrivial job to derive the dual addition
formula for these polynomials.

This paper is based on the R. P. Agarwal Memorial Lecture, which the author de-
livered on November 2, 2017 during the conference ICSFA-2017 held in Bikaner,
Rajasthan, India. With pleasure I remember to have met Prof. Agarwal during
the workshop on Special Functions and Differential Equations held at the Insti-
tute of Mathematical Sciences in Chennai, January 1997, where he delivered the
opening address [1]. I cannot resist to quote from it the following wise words,
close to the end of the article:

“I think that I have taken enough time and I close my discourse- with a word of
caution and advice to the research workers in the area of special functions and
also those who use them in physical problems. The corner stones of classical
analysis are Oelegance, simplicity, beauty and perfection.O Let them not be lost
in your work. Any analytical generalization of a special function, only for the
sake of a generalization by adding a few terms or parameters here and there,
leads us nowhere. All research work should be meaningful and aim at developing
a quality technique or have a bearing in some allied discipline.”

The contents of the paper are as follows. Section 2, of tutorial nature, discusses
the notion of duality in special functions. Section 3 gives the necessary prelim-
inaries about special classes of orthogonal polynomials which will occur later in
the paper. Next, Section 4 summarizes the results about the addition formula
and dual addition formula for ultraspherical polynomials. The new results of the
paper appear in Section 5. It contains the two proofs of the dual addition formula
for continuous q-ultraspherical polynomials.

Note For definition and notation of (q-)shifted factorials and (q-)hypergeometric
series see [13, §1.2]. In the q = 1 case we will mostly meet terminating hyperge-
ometric series

rFs

(
−n, a2, . . . , ar
b1, . . . , bs

; z

)
:=

n∑
k=0

(−n)k
k!

(a2, . . . , ar)k
(b1, . . . , bs)k

zk. (1.4)

Here (b1, . . . , bs)k := (b1)k . . . (bs)k and (b)k := b(b + 1) . . . (b + k − 1) is the
Pochhammer symbol or shifted factorial. In (1.4) we even allow that bi = −N for
some i with N integer ≥ n. There is no problem because the sum on the right
terminates at k = n ≤ N .
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In the q-case we will always assume that 0 < q < 1. We will only meet terminating
q-hypergeometric series of the form

s+1φs

(
q−n, a2, . . . , as+1

b1, . . . , bs
; q, z

)
:=

n∑
k=0

(q−n; q)k
(q; q)k

(a2, . . . , as+1; q)k
(b1, . . . , bs; q)k

zk. (1.5)

Here (b1, . . . , bs; q)k := (b1; q)k . . . (bs; q)k and (b; q)k := (1 − b)(1 − qb) . . . (1 −
qk−1b) is the q-Pochhammer symbol or q-shifted factorial. In (1.5) we even allow
that bi = qN for some i with N integer ≥ n.

For formulas on orthogonal polynomials in the (q-)Askey scheme we will often
refer to Chapters 9 and 14 in [18]. Almost all of these formulas, with different
numbering, are available in open access2.

2 The notion of duality in special functions

With respect to a (positive) measure µ on R with support containing infinitely
many points we can define orthogonal polynomials (OP’s) pn (n = 0, 1, 2, . . .),
unique up to nonzero real constant factors, as (real-valued) polynomials pn of
degree n such that ∫

R
pm(x) pn(x) dµ(x) = 0 (m,n 6= 0).

Then the polynomials pn satisfy a three-term recurrence relation

x pn(x) = An pn+1(x) +Bn pn(x) + Cn pn−1(x) (n = 0, 1, 2, . . .), (2.1)

where the term Cn pn−1(x) is omitted if n = 0, and where An, Bn, Cn are real
and

An−1Cn > 0 (n = 1, 2, . . .). (2.2)

By Favard’s theorem [12] we can conversely say that if p0(x) is a nonzero real
constant, and the pn(x) (n = 0, 1, 2, . . .) are generated by (2.1) for certain real
An, Bn, Cn which satisfy (2.2), then the pn are OP’s with respect to a certain
measure µ on R.

With An, Bn, Cn as in (2.1) define a Jacobi operator M , acting on infinite se-
quences {g(n)}∞n=0, by

(Mg)(n) = Mn

(
g(n)

)
:= An g(n+1)+Bn g(n)+Cn g(n−1) (n = 0, 1, 2, . . .),

2See http://aw.twi.tudelft.nl/~koekoek/askey/



Dual addition formula 5

where the term Cn g(n − 1) is omitted if n = 0. Then (2.1) can be rewritten as
the eigenvalue equation

Mn

(
pn(x)

)
= x pn(x) (n = 0, 1, 2, . . .). (2.3)

One might say that the study of a system of OP’s pn turns down to the spec-
tral theory and harmonic analysis associated with the operator M . From this
perspective one can wonder if the polynomials pn satisfy some dual eigenvalue
equation

(Lpn)(x) = λn pn(x) (2.4)

for n = 0, 1, 2, . . ., where L is some linear operator acting on the space of poly-
nomials. We will consider varioua types of operators L together with the corre-
sponding OP’s, first in the Askey scheme and next in the q-Askey scheme.

2.1 The Askey scheme

Classical OP’s Bochner’s theorem [9] classifies the second order differentai
operators L together with the OP’s pn such that (2.4) holds for certain eigenvalues
λn. The resulting classical orthogonal polynomials are essentially the polynomials
listed in the table below. Here dµ(x) = w(x) dx on (a, b) and the closure of that
interval is the support of µ. Furthermore, w1(x) occurs in the formula for L to
be given after the table.

name pn(x) w(x) w1(x)
w(x)

(a, b) constraints λn

Jacobi P
(α,β)
n (x) l(1− x)α(1 + x)β 1− x2 (−1, 1) α, β > −1 −n(n+ α+ β + 1)

Laguerre L
(α)
n (x) xαe−x x (0,∞) α > −1 −n

Hermite Hn(x) e−x
2

1 (−∞,∞) −2n

Then

(Lf)(x) = w(x)−1
d

dx

(
w1(x) f ′(x)

)
.

For these classical OP’s the duality goes much further than the two dual eigen-
value equations (2.3) and (2.4). In particular for Jacobi polynomials it is true
to a large extent that every formula or property involving n and x has a dual
formula or property where the roles of n and x are interchanged. We call this the
duality principle. If the partner formula or property is not yet known then it is
usually a good open problem to find it (but one should be warned that there are
examples where the duality fails).

The Jacobi, Laguerre and Hermite families are connected by limit transitions, as
is already suggested by limit transitions for their (rescaled) weight functions:

• Jacobi → Laguerre: xα(1− β−1x)β → xαe−x as β →∞;
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• Jacobi → Hermite:
(
1− α−1x2

)α → e−x
2

as α→∞;

• Laguerre→ Hermite: (e/α)α
(
(2α)

1
2x+α

)α
e−(2α)

1
2 x−α → e−x

2
as α→∞.

Formulas and properties of the three families can be expected to be connected
under these limits. Although this is not always the case, this limit principle is
again a good source of open problems.

Discrete analogues of classical OP’s Let L be a second order difference
operator:

(Lf)(x) := a(x) f(x+ 1) + b(x) f(x) + c(x) f(x− 1). (2.5)

Here as solutions of (2.4) we will also allow OP’s {pn}Nn=0 for some finite N ≥ 0,
which will be orthogonal with respect to positive weights wk (k = 0, 1, . . . , N) on
a finite set of points xk (k = 0, 1, . . . , N):

N∑
k=0

pm(xk) pn(xk)wk = 0 (m,n = 0, 1, . . . , N ; m 6= n).

If such a finite system of OP’s satisfies (2.4) for n = 0, 1, . . . , N with L of the form
(2.5) then the highest n for which the recurrence relation (2.1) holds is n = N ,
where the zeros of pN+1 are precisely the points x0, x1, . . . , xN .

The classification of OP’s satisfying (2.4) with L of the form (2.5) (first done
by O. Lancaster, 1941, see [2]) yields the four families of Hahn, Krawtchouk,
Meixner and Charlier polynomials, of which Hahn and Krawtchouk are finite
systems, and Meixner and Charlier infinite systems with respect to weights on
countably infinite sets.

Krawtchouk polynomials [18, (9.11.1)] are given by

Kn(x; p,N) := 2F1

(
−n,−x
−N

; p−1
)

(n = 0, 1, 2, . . . , N). (2.6)

They satsify the orthogonality relation

N∑
x=0

(KmKnw)(x; p,N) =
(1− p)N

w(n; p,N)
δm,n

with weights

w(x; p,N) :=

(
N

x

)
px(1− p)N−x (0 < p < 1).
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By (2.6) they are self-dual :

Kn(x; p,N) = Kx(n; p,N) (n, x = 0, 1, . . . , N).

The three-term recurrence relation (2.3) immediately implies a dual equation
(2.4) for such OP’s.

The four just mentioned families of discrete OP’s are also connected by limit
relations. Moreover, the classical OP’s can be obtained as limit cases of them,
but not conversely. For instance, Hahn polynomials [18, (9.5.1)] are given by

Qn(x;α, β,N) := 3F2

(
−n, n+ α+ β + 1,−x

α+ 1,−N
; 1

)
(n = 0, 1, . . . , N) (2.7)

and they satisfy the orthogonality relation

N∑
x=0

(QmQnw)(x;α, β,N) = 0 (m,n = 0, 1, . . . , N ; m 6= n; α, β > −1)

with weights

w(x;α, β,N) :=
(α+ 1)x (β + 1)N−x

x! (N − x)!
.

Then by (2.7) (rescaled) Hahn polynomials tend to (shifted) Jacobi polynomials:

lim
N→∞

Qn(Nx;α, β,N) = 2F1

(
−n, n+ α+ β + 1

α+ 1
;x

)
=
P

(α,β)
n (1− 2x)

P
(α,β)
n (1)

. (2.8)

Continuous versions of Hahn and Meixner polynomials
A variant of the difference operator (2.5) is the operator

(Lf)(x) := A(x) f(x+ i) +B(x) f(x) +A(x) f(x− i) (x ∈ R), (2.9)

where B(x) is real-valued. Then further OP’s satisfying (2.4) are the continuous
Hahn polynomials and the Meixner-Pollaczek polynomials [18, Ch. 9].

Insertion of a quadratic argument
For an operator L̃ and some polynomial σ of degree 2 we can define an operator
L by

(Lf)
(
σ(x)

)
:= L̃x

(
f
(
σ(x)

))
, (2.10)

Now we look for OP’s satisfying (2.4) where L̃ is of type (2.5) or (2.9). So

L̃x

(
pn
(
σ(x)

))
= λn pn

(
σ(x)

)
. (2.11)
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Figure 1: The Askey scheme

The resulting OP’s are the Racah polynomials and dual Hahn polynomials for
(2.11) with L̃ of type (2.5), and Wilson polynomials and continuous dual Hahn
polynomials for (2.11) with L̃ of type (2.9), see again [18, Ch. 9].

The OP’s satisfying (2.4) in the cases discussed until now form together the Askey
scheme, see Figure 1. The arrows denote limit transitions.

In the Askey scheme we emphasize the self-dual families: Racah, Meixner, Kraw-
tchouk and Charlier for the OP’s with discrete orthogonality measure, and Wilson
and Meixner-Pollaczek for the OP’s with non-discrete orthogonality measure. We
already met perfect self-duality for the Krawtchouk polynomials, which is also the
case for Meixner and Charlier polynomials. For the Racah polynomials the dual
OP’s are still Racah polynomials, but with different values of the parameters:

Rn
(
x(x+ δ −N);α, β,−N − 1, δ

)
:= 4F3

(
−n, n+ α+ β + 1,−x, x+ δ −N

α+ 1, β + δ + 1,−N
; 1

)
= Rx(n(n+ α+ β + 1);−N − 1, δ, α, β) (n, x = 0, 1, . . . , N).
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The orthogonality relation for these Racah polynomials involves a weighted sum
of terms (RmRn)

(
x(x+ δ−N);α, β,−N −1, δ

)
over x = 0, 1, . . . N , see also §3.2.

For Wilson polynomials we have also self-duality with a change of parameters
but the self-duality is not perfect, i.e., not related to the orthogonality relation:

const.Wn(x2; a, b, c, d) := 4F3

(
−n, n+ a+ b+ c+ d− 1, a+ ix, a− ix

a+ b, a+ c, a+ d
; 1

)
= const.W−ix−a

((
i(n+ a′)

)2
; a′, b′, c′, d′

)
, (2.12)

where a′ = 1
2(a+ b+ c+ d− 1), a′ + b′ = a+ b, a′ + c′ = a+ c, a′ + d′ = a+ d.

The duality (2.12) holds for −ix−a = 0, 1, 2, . . ., while the orthogonality relation
for the Wilson polynomials involves a weighted integral of (WmWn)(x2; a, b, c, d)
over x ∈ [0,∞).

As indicated in Figure 1, the dual Hahn polynomials

Rn
(
x(x+α+β+1);α, β,N

)
:= 3F2

(
−n,−x, x+ α+ β + 1

α+ 1,−N
; 1

)
(n = 0, 1, . . . , N)

are dual to the Hahn polynomials (2.7):

Qn(x;α, β,N) = Rx
(
n(n+ α+ β + 1);α, β,N

)
(n, x = 0, 1, . . . , N).

The duality is perfect: the dual orthogonality relation for the Hahn polynomials is
the orthogonality relation for the dual Hahn polynomials, and conversely. There
is a similar, but non-perfect duality between continuous Hahn and continuous
dual Hahn.

The classical OP’s are in two senses exceptional within the Askey scheme. First,
they are the only families which are not self-dual or dual to another family of
OP’s. Second, they are the only continuous families which are not related by
analytic continuation to a discrete family.

With the arrows in the Askey scheme given it can be taken as a leading principle
to link also the formulas and properties of the various families in the Askey
scheme by these arrows. In particular, if one has some formula or property for
a family lower in the Askey scheme, say for Jacobi, then one may look for the
corresponding formula or property higher up, and try to find it if it is not yet
known. In particular, if one could find the result on the highest Racah or Wilson
level, which is self-dual then, going down along the arrows, one might also obtain
two mutually dual results in the Jacobi case.
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2.2 The q-Askey scheme

The families of OP’s in the q-Askey scheme3 [18, Ch. 14] result from the classifi-
cation [16], [15], [17], [30] of OP’s satisfying (2.4), where L is defined in terms of
the operator L̃ and the function σ by (2.10), where L̃ is of type (2.5) or (2.9), and
where σ(x) = qx or equal to a quadratic polynomial in qx. This choice of σ(x)
is the new feature deviating from what we discussed about the Askey scheme.
And here q enters, with 0 < q < 1 always assumed. The q-Askey scheme is con-
siderably larger than the Askey scheme, but many features of the Askey scheme
return here, in particular it has arrows denoting limit relations. Moreover, the
q-Askey scheme is quite parallel to the Askey scheme in the sense that OP’s in
th q-Askey scheme, after suitable rescaling, tend to OP’s in the Askey scheme as
q ↑ 1. Parallel to Wilson and Racah polynomials at the top of the Askey scheme
there are Askey-Wilson polynomials [7] and q-Racah polynomials at the top of
the q-Askey scheme. These are again self-dual families, with the self-duality for
q-Racah being perfect.

The guiding principles discussed before about formulas or properties related by
duality or limit transitions now extend to the q-Askey scheme: both within the q-
Askey scheme and in relation to the Askey scheme by letting q ↑ 1. For instance,
one can hope to find as many dual pairs of significant formulas and properties
of Askey-Wilson polynomials as possible which have mutually dual limit cases
for Jacobi polynomials. In fact, we realize this in Section 5 with the addition
and dual addition formula by taking limits from the continuous q-ultraspherical
polynomials (a self-dual one-parameter subclass of the four-parameter class of
Askey-Wilson polynomials) to the ultraspherical polynomials (a one-parameter
subclass of the two-parameter class of Jacobi polynomials).

One remarkable aspect of duality in the two schemes concerns the discrete OP’s
living there. Leonard (1982) classified all systems of OP’s pn(x) with respect to
weights on a countable set {x(m)} for which there is a system of OP’s qm(y) on
a countable set {y(n)} such that

pn
(
x(m)

)
= qm

(
y(n)

)
.

His classification yields the OP’s in the q-Askey scheme which are orthogonal with
respect to weights on a countable set together with their limit cases for q ↑ 1 and
q ↓ −1 (where we allow −1 < q < 1 in the q-Askey scheme). The q ↓ −1 limit
case yields the Bannai-Ito polynomials [8].

3See http://homepage.tudelft.nl/11r49/pictures/large/q-AskeyScheme.jpg
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2.3 Duality for non-polynomial special functions

For Bessel functions Jα see [28, Ch. 10] and references given there. It is convenient
to use a different standardization and notation:

Jα(x) := Γ(α+ 1) (2/x)α Jα(x).

Then (see [28, (10.16.9)])

Jα(x) =
∞∑
k=0

(−1
4x

2)k

(α+ 1)k k!
= 0F1

(
−

α+ 1
;−1

4x
2

)
(α > −1).

Jα is an even entire analytic function. Some special cases are

J−1/2(x) = cosx, J1/2(x) =
sinx

x
. (2.13)

The Hankel transform pair [28, §10.22(v)], for f in a suitable function class, is
given by 

f̂(λ) =

∫ ∞
0

f(x)Jα(λx)x2α+1 dx,

f(x) =
1

22α+1Γ(α+ 1)2

∫ ∞
0

f̂(λ)Jα(λx)λ2α+1 dλ.

In view of (2.13) the Hankel transform contains the Fourier-cosine and Fourier-
sine transform as special cases for α = ±1

2 .

The functions x 7→ Jα(λx) satisfy the eigenvalue equation [28, (10.13.5)](
∂2

∂x2
+

2α+ 1

x

∂

∂x

)
Jα(λx) = −λ2 Jα(λx). (2.14)

Obviously, then also(
∂2

∂λ2
+

2α+ 1

λ

∂

∂λ

)
Jα(λx) = −x2 Jα(λx). (2.15)

The differential operator in (2.15) involves the spectral variable λ of (2.14), while
the eigenvalue in (2.15) involves the x-variable in the differential operator in
(2.14).

The Bessel functions and the Hankel transform are closely related to the Jacobi
polynomials (2.8) and their orthogonality relation. Indeed, we have the limit
formulas

lim
n→∞

P
(α,β)
n

(
cos(n−1x)

)
P

(α,β)
n (1)

= Jα(x), lim
ν→∞

νλ=1,2,...

P
(α,β)
n

(
cos(ν−1x)

)
P

(α,β)
n (1)

= Jα(λx).
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There are many other examples of non-polynomial special functions being limit
cases of OP’s in the (q-)Askey scheme, see for instance [21], [19].

In 1986 Duistermaat & Grünbaum [10] posed the question if the pair of eigenvalue
equations (2.14), (2.15) could be generalized to a pair

Lx
(
φλ(x)

)
= −λ2 φλ(x),

Mλ

(
φλ(x)

)
= τ(x)φλ(x)

(2.16)

for suitable differential operators Lx in x andMλ in λ and suitable functions φλ(x)
solving the two equations. Here the functions φλ(x) occur as eigenfunctions in two
ways: for the operator Lx with eigenvalue depending on λ and for the operatorMλ

with eigenvalue depending on x. Since the occurring eigenvalues of an operator
form its spectrum, a phenomenon as in (2.16) is called bispectrality. For the case
of a second order differential operator Lx written in potential form Lx = d2/dx2−
V (x) they classified all possibilities for (2.16). Beside the mentioned Bessel cases
and a case with Airy functions (closely related to Bessel functions) they obtained
two other families where Mλ is a higher than second order differential operator.
These could be obtained by successive Darboux transformations applied to Lx
in potential form. A Darboux transformation produces a new potential from a
given potential V (x) by a formula which involves an eigenfunction of Lx with
eigenvalue 0. Their two new families get a start by the application of a Darboux
transformation to the Bessel differential equation (2.14), rewritten in potential
form

φ′′λ(x)− (α2 − 1
4)x−2φλ(x) = −λ2φλ(x), φλ(x) = (λx)α+

1
2Jα(λx).

Here α should be in Z + 1
2 for a start of the first new family or in Z for a start

of the second new family. For other values of α one would not obtain a dual
eigenvalue equation with Mλ a finite order differential operator.

Just as higher order differential operators Mλ occur in (2.16), there has been a
lot of work on studying OP’s satisfying (2.4) with L a higher order differential
operator. See a classification in [25], [24]. All occurring OP’s, the so-called Jacobi
type and Laguerre type polynomials, have a Jacobi or Laguerre orthogonality
measure with integer values of the parameters, supplemented by mass points at
one or both endpoints of the orthogonality interval. Some of the Bessel type
functions in the second new class in [10] were obtained in [11] as limit cases of
Laguerre type polynomials.

2.4 Some further cases of duality

The self-duality property of the family of Askey-Wikson polynomials is reflected
in Zhedanov’s Askey-Wilson algebra [31]. A larger algebraic structure is the dou-
ble affine Hecke algebra (DAHA), introduced by Cherednik and extended by Sahi.
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The related special functions are so-called non-symmetric special functions. They
are functions in several variables and associated with root systems. Again there is
a duality, both in the DAHA and for the related special functions. For the (one-
variable) case of the non-symmetric Askey-Wilson polynomials this is treated in
[27]. In [23] limit cases in the q-Askey scheme are also considered.

Finally we should mention the manuscript [20]. Here the author extended the
duality (3.13) for continuous q-ultraspherical polynomials to Macdonald polyno-
mials and thus obtained the so-called Pieri formula [26, §VI.6] for these polyno-
mials.

3 Some special classes of orthogonal polynomials

3.1 Ultraspherical polynomials

Put

R(α,β)
n (x) :=

P
(α,β)
n (x)

P
(α,β)
n (1)

= 2F1

(
−n, n+ α+ β + 1

α+ 1
; 1
2(1− x)

)
, (3.1)

where P
(α,β)
n (x) is a Jacobi polynomial [18, (9.8.1)] in usual notation. In the

standardization (3.1) we have R
(α,β)
n (1) = 1. In the special case α = β we obtain

ultraspherical (or Gegenbauer) polynomials

Rαn(x) := R(α,α)
n (x) =

P
(α,α)
n (x)

P
(α,α)
n (1)

=
C

(α+ 1
2
)

n (x)

C
(α+ 1

2
)

n (1)
, (3.2)

where C
(λ)
n (x) is an ultraspherical polynomial in usual notation [18, §9.8.1] with

C
(λ)
n (1) = (2λ)n/n! . The polynomials Rαn satisfy the orthogonality relation∫ 1

−1
Rαm(x)Rαn(x) (1− x2)α dx = hαn δm,n (α > −1),

hαn =
22α+1Γ(α+ 1)2

Γ(2α+ 2)

n+ 2α+ 1

2n+ 2α+ 1

n!

(2α+ 2)n
.

3.2 Racah polynomials

We will consider Racah polynomials [18, Section 9.2]

Rn
(
x(x+ γ + δ + 1);α, β, γ, δ

)
:= 4F3

(
−n, n+ α+ β + 1,−x, x+ γ + δ + 1

α+ 1, β + δ + 1, γ + 1
; 1

)
(3.3)



14 T.H. Koornwinder

for γ = −N − 1, where N ∈ {1, 2, . . .}, and for n ∈ {0, 1, . . . , N}. These are
orthogonal polynomials on the finite quadratic set {x(x + γ + δ + 1) | x ∈
{0, 1, . . . , N}}:

N∑
x=0

(RmRn)
(
x(x+ γ + δ + 1);α, β, γ, δ

)
wα,β,γ,δ(x) = hn;α,β,γ,δ δm,n

(m,n ∈ {0, 1, . . . , N})

with

wα,β,γ,δ(x) =
(α+ 1)x(β + δ + 1)x(γ + 1)x(γ + δ + 1)x

(−α+ γ + δ + 1)x(−β + γ + 1)x(δ + 1)x x!

γ + δ + 1 + 2x

γ + δ + 1
, (3.4)

hn;α,β,γ,δ
h0;α,β,γ,δ

=
α+ β + 1

α+ β + 2n+ 1

(β + 1)n(α+ β − γ + 1)n(α− δ + 1)n n!

(α+ 1)n(α+ β + 1)n(β + δ + 1)n(γ + 1)n
,

h0;α,β,γ,δ =
N∑
x=0

wα,β,γ,δ(x) =
(α+ β + 2)N (−δ)N

(α− δ + 1)N (β + 1)N
(γ = −N − 1). (3.5)

3.3 Askey-Wilson polynomials

We will use the following standardization and notation for Askey-Wilson polyno-
mials :

Rn[z] = Rn[z; a, b, c, d | q] := 4φ3

(
q−n, qn−1abcd, az, az−1

ab, ac, ad
; q, q

)
. (3.6)

These are symmetric Laurent polynomials of degree n in z, so they are ordinary
polynomials of degree n in x := 1

2(z+ z−1). The polynomials (3.6) are related to
the Askey-Wilson polynomials pn(x; a, b, c, d | q) in usual notation [7, (1.15)], [18,
(14.1.1)] by

Rn[z; a, b, c, d | q] =
an

(ab, ac, ad; q)n
pn
(
1
2(z + z−1); a, b, c, d | q

)
. (3.7)

If |a|, |b|, |c|, |d| ≤ 1 such that pairwise products of a, b, c, d are not equal to 1 and
such that non-real parameters occur in complex conjugate pairs, then the Askey-
Wilson polynomials are orthogonal with respect to a non-negative weight function
on x = 1

2(z + z−1) ∈ [−1, 1]. For convenience we give this orthogonality in the
variable z on the unit circle, where the integrand is invariant under z → z−1:∫

|z|=1
Rm[z]Rn[z]w[z]

dz

iz
= hn δm,n, (3.8)
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where

w[z] = w[z; a, b, c, d; q] =

∣∣∣∣ (z2; q)∞
(az, bz, cz, dz | q)∞

∣∣∣∣2 , (3.9)

h0 = h0[a, b, c, d | q] =
4π(abcd; q)∞

(q, ab, ac, ad, bc, bd, cd; q)∞
, (3.10)

and where the explicit expression for hn can be obtained from [18, (14.1.2)]
together with (3.7).

3.4 Continuous q-ultraspherical polynomials

The continuous q-ultraspherical polynomials are a one-parameter subfamily of the
Askey-Wilson polynomials. For them we will use the following standardization
and notation:

Rβ;qn [z] = Rβ;qn
(
1
2(z + z−1)

)
:= Rn

[
z; q

1
4β

1
2 , q

3
4β

1
2 ,−q

1
4β

1
2 ,−q

3
4β

1
2 | q

]
= 4φ3

(
q−n, β2qn+1, q

1
4β

1
2 z, q

1
4β

1
2 z−1

βq,−βq
1
2 ,−βq

; q, q

)
.

(3.11)

The polynomials (3.11) are related to the continuous q-ultraspherical polynomials
in usual notation [18, §14.10.1] by

Rβ;qn (x) = q
1
4
nβ

1
2
n (q; q)n

(qβ2; q)n
Cn
(
x; q

1
2β | q

)
.

The continuous q-ultraspherical polynomials with β = qα tend to the ultraspher-
ical polynomials (3.2) as q ↑ 1:

lim
q↑1

Rq
α;q
n (x) = Rαn(x).

In view of [13, (3.10.13)] we can represent Rβ;qn by a different q-hypergeometric
expression:

Rβ;qn [z] = 4φ3

(
q−

1
2
n, q

1
2
n+ 1

2β, q
1
4β

1
2 z, q

1
4β

1
2 z−1

−q
1
2β, (qβ)

1
2 ,−(qβ)

1
2

; q
1
2 , q

1
2

)
. (3.12)

In particular, for m,n = 0, 1, 2, . . .,

Rβ;qn
[
q−

1
2
m− 1

4β−
1
2
]

= 4φ3

(
q−

1
2
n, q

1
2
n+ 1

2β, q−
1
2
m, q

1
2
m+ 1

2β

−q
1
2β, (qβ)

1
2 ,−(qβ)

1
2

; q
1
2 , q

1
2

)
.
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Hence we have the duality

Rβ;qn
[
q−

1
2
m− 1

4β−
1
2
]

= Rβ;qm
[
q−

1
2
n− 1

4β−
1
2
]

(m,n = 0, 1, 2, . . .). (3.13)

Note the special value

Rβ;qn
[
q

1
4β

1
2
]

= 1

and the coefficient of the term of highest degree

Rβ;qn (x) = 2n(q
1
2β)

1
2
n (q

1
2β; q)n

(qβ2; q)n
xn + terms of lower degree. (3.14)

For 0 < β < q−
1
2 the polynomials Rβ;qn (x) are orthogonal on [−1, 1] with respect

to the even weight function

wβ,q(x) := (1− x2)−
1
2

∣∣∣∣∣ (e2iθ; q)∞

(q
1
2βe2iθ; q)∞

∣∣∣∣∣
2

, x = cos θ, (3.15)

see [18, (14.10.18)]. This weight function satisfies the recurrence

wqβ,q(x)

wβ,q(x)
=
(
1 + q

1
2β
)2 − 4q

1
2βx2

= 4q
1
2β
(
a2 − x2

)
, a = 1

2

(
q

1
4β

1
2 + q−

1
4β−

1
2
)
. (3.16)

We will need the difference formula

Rβ;qn (x)−Rβ;qn−2(x) =
4q−

1
2
n+ 3

2β

(1 + q
1
2β)(1 + qβ)

1− qn−
1
2β

1− qβ

×
(
x2 −

(
1
2(q

1
4β

1
2 + q−

1
4β−

1
2 )
)2)

Rqβ;qn−2(x) (n ≥ 2). (3.17)

Proof of (3.17). More generally, let w(x) = w(−x) be an even weight function
on [−1, 1], let pn(x) = knx

n + · · · be orthogonal polynomials on [−1, 1] with
respect to the weight function w(x), and let qn(x) = k′nx

n + · · · be orthogonal
polynomials on [−1, 1] with respect to the weight function w(x)(a2−x2) (a ≥ 1).
Assume that pn and qn are normalized by pn(a) = 1 = qn(a). Let n ≥ 2. Then
pn(x) − pn−2(x) vanishes for x = ±a. Hence (pn(x) − pn−2(x))/(x2 − a2) is
a polynomial of degree n − 2. It is immediately seen that xk (k < n − 2) is
orthogonal to this polynomial with respect to the weight function w(x)(a2 − x2)
on [−1, 1]. We conclude that

pn(x)− pn−2(x) =
kn
k′n−2

(x2 − a2)qn−2(x) (n ≥ 2).

Now specialize to the weight function (3.15) and use (3.16) and (3.14).
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3.5 q-Racah polynomials

We will consider q-Racah polynomials [18, §14.2]

Rn(q−x + γδqx+1;α, β, γ, δ | q) := 4φ3

(
q−n, qn+1αβ, q−x, qx+1γδ

qα, qβδ, qγ
; q, q

)
(3.18)

for γ = q−N−1, where N ∈ {1, 2, . . .}, and for n ∈ {0, 1, . . . , N}. They are discrete
cases of the Askey-Wilson polynomials (3.6). Note that they are notated with
round brackets in (3.18), while Askey-Wilson polynomials in (3.6) have straight
brackets. The polynomials (3.18) are orthogonal polynomials on the finite q-
quadratic set {q−x + γδqx+1 | x ∈ {0, 1, . . . , N}}:

N∑
x=0

(RmRn)(q−x + γδqx+1;α, β, γ, δ | q)wα,β,γ,δ;q(x) = hn;α,β,γ,δ;q δm,n (3.19)

with

wα,β,γ,δ;q(x) :=
1− γδq2x+1

(αβq)x(1− γδq)
(αq, βδq, γq, γδq; q)x

(q, α−1γδq, β−1γq, δq; q)x
, (3.20)

hn;α,β,γ,δ;q
h0;α,β,γ,δ;q

:=
(1− αβq)(qγδ)n

1− αβq2n+1

(q, qβ, qαβγ−1, qαδ−1; q)n
(qα, qαβ, qγ, qβδ; q)n

, (3.21)

h0;α,β,γ,δ;q :=

N∑
x=0

wα,β,γ,δ;q(x) =
(q2αβ, δ−1; q)N
(qαδ−1, qβ; q)N

(γ = q−N−1). (3.22)

Clearly Rn(1 + q−Nδ;α, β, q−N−1, δ | q) = 1 while, by (3.18) and the q-Saalschütz
formula [13, (1.7.2)], we can evaluate the q-Racah polynomial for x = N :

Rn(q−N + δ;α, β, q−N−1, δ | q) =
(qβ, qαδ−1; q)n
(qα, qβδ; q)n

δn. (3.23)

The backward shift operator equation [18, (14.2.10)] can be rewritten as

wα,β,γ,δ;q(x)Rn
(
q−x + γδqx+1;α, β, γ, δ | q

)
=

1− q2γδ
q−x − γδqx+2

wqα,qβ,qγ,δ;q(x)Rn−1
(
q−x + γδqx+2; qα, qβ, qγ, δ | q

)
− 1− q2γδ
q−x+1 − γδqx+1

wqα,qβ,qγ,δ;q(x− 1)Rn−1
(
q−x+1 + γδqx+1; qα, qβ, qγ, δ | q

)
.

(3.24)

This holds for x = 1, . . . , N while for x = 0 (3.24) remains true if we put the
second term on the right equal to 0. In the case x = N the first term on the



18 T.H. Koornwinder

right is equal to zero because of (3.20), and the identity (3.24) can be checked by
using (3.20) and (3.23).

Hence, for a function f on {0, 1, . . . , N} we have

N∑
x=0

wα,β,γ,δ;q(x)Rn
(
q−x + γδqx+1;α, β, γ, δ | q

)
f(x) =

N−1∑
x=0

1− q2γδ
q−x − γδqx+2

× wqα,qβ,qγ,δ;q(x)Rn−1
(
q−x + γδqx+2; qα, qβ, qγ, δ | q

) (
f(x)− f(x+ 1)

)
. (3.25)

4 The addition and dual addition formula for ultra-
spherical polynomials

4.1 The addition formula

First we discuss the product and addition formula for ultraspherical polynomials,
see [4, §9.8]. The product formula reads

Rαn(x)Rαn(y) =
Γ(α+ 1)

Γ(α+ 1
2)Γ(12)

∫ 1

−1
Rαn

(
xy + (1− x2)

1
2 (1− y2)

1
2 t
)

(1− t2)α−
1
2 dt,

(4.1)

where α > −1
2 . Since Rαn

(
xy + (1− x2)

1
2 (1− y2)

1
2 t
)

is a polynomial of degree n
in t, it will have an expansion

Rαn

(
xy + (1− x2)

1
2 (1− y2)

1
2 t
)

=
n∑
k=0

ckR
α− 1

2
k (t)

with ck depending on x and y, and with c0 = Rαn(x)Rαn(y). This expansion is
called the addition formula for ultraspherical polynomials, in which the depen-
dence of ck on x and y turns out to have a nice factorized form:

Rαn

(
xy + (1− x2)

1
2 (1− y2)

1
2 t
)

=
n∑
k=0

(
n

k

)
α+ k

α+ 1
2k

(n+ 2α+ 1)k(2α+ 1)k
22k(α+ 1)2k

× (1− x2)
1
2
kRα+kn−k(x) (1− y2)

1
2
kRα+kn−k(y)R

α− 1
2

k (t). (4.2)

This addition formula is usually ascribed to Gegenbauer [14] (1874). However, it
was already stated and proved by Allé [3] in 1865.

For a better understanding of the dual addition formula and of the q-analogue of
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the addition formula we rewrite the product formula (4.1) in kernel form:

Rαn(x)Rαn(y) =
Γ(α+ 1)

Γ(α+ 1
2)Γ(12)

∫ xy+(1−x2)
1
2 (1−y2)

1
2

xy−(1−x2)
1
2 (1−y2)

1
2

Rαn(z)

× (1− x2 − y2 − z2 + 2xyz)α−
1
2(

(1− x2)(1− y2)
)α dz (x, y ∈ [−1, 1], α > −1

2). (4.3)

We can now recognize Rαn(x)Rαn(y) as the term c0 in the expansion

Rαn(z) =

n∑
k=0

ckR
α− 1

2
k

(
z − xy

(1− x2)
1
2 (1− y2)

1
2

)
.

The explicit expansion is a simple rewriting of the addition formula (4.2):

Rαn(z) =

n∑
k=0

(
n

k

)
α+ k

α+ 1
2k

(n+ 2α+ 1)k(2α+ 1)k
22k(α+ 1)2k

× (1− x2)
1
2
kRα+kn−k(x) (1− y2)

1
2
kRα+kn−k(y)R

α− 1
2

k

(
z − xy

(1− x2)
1
2 (1− y2)

1
2

)
. (4.4)

4.2 The dual addition formula

The linearization formula for Gegenbauer polynomials, see [5, (5.7)], can be writ-
ten as

Rα` (x)Rαm(x) =
`!m!

(2α+ 1)`(2α+ 1)m

min(`,m)∑
j=0

`+m+ α+ 1
2 − 2j

α+ 1
2

×
(α+ 1

2)j(α+ 1
2)`−j(α+ 1

2)m−j(2α+ 1)`+m−j

j! (`− j)! (m− j)! (α+ 3
2)`+m−j

Rα`+m−2j(x). (4.5)

From now on assume α > −1
2 . Then the linearization coefficients in (4.5) are

nonnegative (as they are in the degenerate case α = −1
2). We also assume,

without loss of generality, that ` ≥ m. Quite analogous to the way that the
addition formula (4.2) was suggested by the product formula (4.1) we may try to
recognize the coefficient of Rαl+m−2j(x) in (4.5) as a weight wj such that possibly
an explicit orthogonal system with respect to the weights wj is known. We
succeeded to identify wj in [22, §4]. They turn out to be the weights of special
Racah polynomials.
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Indeed, formula (4.5) can be rewritten as

Rα` (x)Rαm(x) =

m∑
j=0

wα− 1
2
,α− 1

2
,−m−1,−`−α− 1

2
(j)

h0;α− 1
2
,α− 1

2
,−m−1,−`−α− 1

2

Rα`+m−2j(x) (` ≥ m). (4.6)

Just substitute (3.4) and (3.5) in (4.6) and compare with (4.5). Formula (4.6)

can be considered as giving the constant term of an expansion of R
(α,α)
`+m−2j(x) as

a function of j in terms of the following special case of Racah polynomials (3.3):

Rn
(
j(j − `−m− α− 1

2); α− 1
2 , α−

1
2 ,−m− 1,−`− α− 1

2

)
= 4F3

(
−n, n+ 2α,−j, j − `−m− α− 1

2

α+ 1
2 ,−`,−m

; 1

)
.

The full expansion is the dual addition formula for ultraspherical polynomials :

Rα`+m−2j(x) =
m∑
k=0

α+ k

α+ 1
2k

(−`)k(−m)k(2α+ 1)k
22k(α+ 1)2k k!

(x2 − 1)k Rα+k`−k (x)Rα+km−k(x)

×Rk
(
j(j − `−m− α− 1

2); α− 1
2 , α−

1
2 ,−m− 1,−`− α− 1

2

)
, (4.7)

where ` ≥ m and j ∈ {0, 1, . . . ,m}. One should compare the dual addition
formula (4.7) with the addition formula in the form (4.4). The rols of n, z, x, y in
(4.4) are respectively played by x, `+m− 2j, `,m in (4.7).

5 The addition and dual addition formula for contin-
uous q-ultraspherical polynomials

5.1 The addition formula

The q-analogue of the product formula for ultraspherical polynomials in its form
(4.3) was given by Rahma & Verma [29, (1.20)]. It uses a different choice of
parameter for the q-ultraspherical polynomials:

Rn[z] := Rq
− 1

2 a2;q
n [z] = Rn

[
z; a, q

1
2a,−a,−q

1
2a | q

]
, (5.1)

where the most right part contains a special Askey-Wilson polynomial (3.6).
Then the duality (3.13) takes the form

Rn
[
q−

1
2
ma−1

]
= Rm

[
q−

1
2
na−1

]
(m,n = 0, 1, 2, . . .)
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or, in terms of special Askey-Wilson polynomials,

Rn
[
q−

1
2
ma−1; a, q

1
2a,−a,−q

1
2a | q

]
= Rm

[
q−

1
2
na−1; a, q

1
2a,−a,−q

1
2a | q

]
(m,n = 0, 1, 2, . . .). (5.2)

In terms of the polynomials (5.1) and with usage of (3.9), (3.10) the Rahman-
Verma product formula reads as follows:

Rn[u]Rn[v] =

∫
|z|=1

Rn[z]
w[z; auv, au−1v−1, auv−1, au−1v | q]
h0(auv, au−1v−1, auv−1, au−1v | q)

dz

iz

(|u|, |v| = 1, 0 < a < 1).

This suggests an expansion

Rn[z] =
n∑
k=0

ck Rk
[
z; auv, au−1v−1, auv−1, au−1v | q

]
,

where the term c0 equals Rn[u]Rn[v]. Indeed, [29, (1.24)] gives the addition
formula

Rn
[
z; a, q

1
2a,−a,−q

1
2a | q

]
=

n∑
k=0

(−1)kq
1
2
k(k+1)(q−n, a2, qna4, q−1a4; q)k

(q, q
1
2a2,−q

1
2a2,−a2; q)k(q−1a4; q)2k

× u−k(a2u2; q)k Rn−k
[
u; q

1
2
ka, q

1
2
(k+1)a,−q

1
2
ka,−q

1
2
(k+1)a | q

]
× v−k(a2v2; q)k Rn−k

[
v; q

1
2
ka, q

1
2
(k+1)a,−q

1
2
ka,−q

1
2
(k+1)a | q

]
×Rk

[
z; auv, au−1v−1, auv−1, au−1v | q

]
. (5.3)

If in (4.4) we substitue x = 1
2(u+u−1), y = 1

2(v+v−1) and replace z by 1
2(z+z−1)

then it will be the limit cae for q ↑ 1 of (5.3) with a = q
1
2
α+ 1

4 .

5.2 The dual addition formula

As mentioned in [6, (4.18)], Rogers already gave the linearization formula for
continuous q-ultraspherical polynomials in 1895. Here we refer for this formula
to [4, (10.11.10)]. It can be written in notation (3.11) as

Rβ;q` (x)Rβ;qm (x) =
(q; q)`(q; q)m

(qβ2; q)`(qβ2; q)m

min(`,m)∑
j=0

1− q`+m−2j+
1
2β

1− q
1
2β

(q
1
2β; q)j

(q; q)j

×
(q

1
2β; q)`−j

(q; q)`−j

(q
1
2β; q)m−j

(q; q)m−j

(qβ2; q)`+m−j

(q
3
2β; q)`+m−j

(q
1
2β)jRβ;q`+m−2j(x). (5.4)
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By the earlier assumption 0 < β < q−
1
2 the linearization coefficients in (5.4) are

nonnegative.

From now on assume without loss of generality that ` ≥ m. Specialization of
(3.20) and (3.22) gives

w
βq−

1
2 ,βq−

1
2 ,q−m−1,β−1q−`−

1
2 ;q

(j) =
(q

1
2β; q)`+m

(qβ2; q)`+m

(q; q)`

(q
1
2β; q)`

(q; q)m

(q
1
2β; q)m

× 1− q`+m−2j+
1
2β

1− q
1
2β

(q
1
2β; q)j

(q; q)j

(q
1
2β; q)`−j

(q; q)`−j

(q
1
2β; q)m−j

(q; q)m−j

(qβ2; q)`+m−j

(q
3
2β; q)`+m−j

(q
1
2β)j

and

h
0;βq−

1
2 ,βq−

1
2 ,q−m−1,β−1q−`−

1
2 ;q

=
(qβ2; q)`(qβ

2; q)m
(qβ2; q)`+m

(q
1
2β; q)`+m

(q
1
2β; q)`(q

1
2β; q)m

. (5.5)

The linearization formula (5.4) can now be seen to have the equivalent concise
expression

Rβ;q` (x)Rβ;qm (x) =
m∑
j=0

w
βq−

1
2 ,βq−

1
2 ,q−m−1,β−1q−`−

1
2 ;q

(j)

h
0;βq−

1
2 ,βq−

1
2 ,q−m−1,β−1q−`−

1
2 ;q

Rβ;q`+m−2j(x). (5.6)

This identity can be considered as giving the constant term of an expansion of
Rβ;q`+m−2j(x) as a function of j in terms of q-Racah polynomials

Rk(q
−j + β−1qj−`−m−

1
2 ;βq−

1
2 , βq−

1
2 , q−m−1, β−1q−`−

1
2 | q).

The general terms of this expansion will be obtained by evaluating the sum

Sβ;qk,`,m(x) :=
m∑
j=0

w
βq−

1
2 ,βq−

1
2 ,q−m−1,β−1q−`−

1
2 ;q

(j)Rβ;q`+m−2j(x)

×Rk(q−j + β−1qj−`−m−
1
2 ;βq−

1
2 , βq−

1
2 , q−m−1, β−1q−`−

1
2 | q), (5.7)

where we still assume l ≥ m and where k ∈ {0, . . . ,m}.

Theorem 5.1. The sum (5.7) can be evaluated as

Sβ;qk,`,m(x) =
(q

1
2
(`+m+1)β)k(β−1q−`−m+ 1

2 ; q)k

(−q
1
2β,±qβ; q)k

(±q
1
4β

1
2 z,±q

1
4β

1
2 z−1; q

1
2 )k

× (q2k+1β2; q)`−k(q
2k+1β2; q)m−k(q

k+ 1
2β; q)`+m−2k

(q2k+1β2; q)`+m−2k(q
k+ 1

2β; q)`−k(q
k+ 1

2β; q)m−k
Rq

kβ;q
`−k (x)Rq

kβ;q
m−k (x). (5.8)

Here we use the convention that (±a; q)n := (a; q)n(−a; q)n.
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Proof In (5.7) put

f(j) := Rβ;q`+m−2j(x).

Then comparison of (5.7) with (3.25) gives

Sβ;qk,`,m(x) =
m∑
j=0

w
βq−

1
2 ,βq−

1
2 ,q−m−1,β−1q−`−

1
2 ;q

(j)

×Rk(q−j + β−1qj−`−m−
1
2 ;βq−

1
2 , βq−

1
2 , q−m−1, β−1q−`−

1
2 | q) f(j)

=
m−1∑
j=0

1− β−1q−`−m+ 1
2

q−j − β−1q−`−m+j+ 1
2

w
βq

1
2 ,βq

1
2 ,q−m,β−1q−`−

1
2 ;q

(j)

×Rk−1(q−j + β−1qj−`−m+ 1
2 ;βq

1
2 , βq

1
2 , q−m, β−1q−`−

1
2 | q)

(
f(j)− f(j + 1)

)
.

We can handle the factor f(j)− f(j + 1) in the right part above by using (3.17):

f(j)− f(j + 1) = Rβ;q`+m−2j(x)−Rβ;q`+m−2j−2(x) = 4β2q
1
2
`+ 1

2
m+1

× q−j − β−1q−`−m+j+ 1
2

(1 + q
1
2β)(1− q2β2)

(
1
4

(
q

1
4β

1
2 + q−

1
4β−

1
2
)2 − x2)Rqβ;q`+m−2j−2(x).

So, with x = 1
2(z + z−1),

Sβ;qk,`,m(x) =
4βq−

1
2
`− 1

2
m+ 3

2 (1− βq`+m−
1
2 )

(1 + q
1
2β)(1− q2β2)

×
(
1
4

(
q

1
4β

1
2 + q−

1
4β−

1
2
)2 − x2)m−1∑

j=0

w
βq

1
2 ,βq

1
2 ,q−m,β−1q−`−

1
2 ;q

(j)

×Rk−1(q−j + β−1qj−`−m+ 1
2 ;βq

1
2 , βq

1
2 , q−m, β−1q−`−

1
2 | q)Rqβ;q`+m−2j−2(x)

=
q

1
2
`+ 1

2
m+ 1

2β(1− β−1q−l−m+ 1
2 )

(1 + q
1
2β)(1− q2β2)

(1 + q
1
4β

1
2 z)(1− q

1
4β

1
2 z)

× (1 + q
1
4β

1
2 z−1)(1− q

1
4β

1
2 z−1)Sqβ,qk−1,`−1,m−1(x).

Iteration gives

Sβ;qk,`,m(x) =
(q

1
2
(`+m+1)β)k(β−1q−`−m+ 1

2 ; q)k

(−q
1
2β,±qβ; q)k

× (±q
1
4β

1
2 z,±q

1
4β

1
2 z−1; q

1
2 )k S

qkβ;q
0,`−k,m−k(x). (5.9)

By (5.7)

Sβ;q0,`,m(x) = h
0;βq−

1
2 ,βq−

1
2 ,q−m−1,β−1q−`−

1
2 ;q
Rβ;q` (x)Rβ;qm (x). (5.10)
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Hence, by (5.5),

Sq
kβ;q

0,`−k,m−k(x) = h
0;βqk−

1
2 ,βqk−

1
2 ,qk−m−1,β−1q−`−

1
2 ;q
Rq

kβ;q
`−k (x)Rq

kβ;q
m−k (x)

=
(q2k+1β2; q)`−k(q

2k+1β2; q)m−k
(q2k+1β2; q)`+m−2k

(qk+
1
2β; q)`+m−2k

(qk+
1
2β; q)`−k(q

k+ 1
2β; q)m−k

Rq
kβ;q
`−k (x)Rq

kβ;q
m−k (x).

Substitution of this last result in (5.9) yields (5.8).

Theorem 5.2 (Dual addition formula). For l ≥ m and for j ∈ {0, . . . ,m} there
is the expansion

Rβ;q`+m−2j(x) =

m∑
k=0

q
1
2
k(k+`+m+2)βk

1− β2q2k

1− β2qk
(q−`, q−m, qβ2; q)k

(qβ, qβ, q; q)k

×
∏k−1
j=0

(
4qj+

1
2βx2 − (1 + qj+

1
2β)2

)
(−q

1
2β; q

1
2 )22k

Rq
kβ;q
`−k (x)Rq

kβ;q
m−k (x)

×Rk(q−j + β−1qj−`−m−
1
2 ;βq−

1
2 , βq−

1
2 , q−m−1, β−1q−`−

1
2 | q). (5.11)

Proof By (5.9) and (5.10)

Sβ;qk,`,m(x) =
(−1)kq

1
2
k(k−`−m+1)

(−q
1
2β; q)2k(q

2β2; q2)2k

(qβ2; q)`+k(qβ
2; q)m+k(q

1
2β; q)`+m

(q
1
2β; q)`+m(qβ2; q)`(qβ2; q)m

× h
0;βq−

1
2 ,βq−

1
2 ,q−m−1,β−1q−`−

1
2 ;q

(±q
1
4β

1
2 z,±q

1
4β

1
2 z−1; q

1
2 )kR

qkβ,q
`−k (x)Rq

kβ,q
m−k (x).

By Fourier-q-Racah inversion we obtain

Rβ,q`+m−2j(x) =

m∑
k=0

(−1)kq
1
2
k(k−`−m+1)

(−q
1
2β; q)2k(q

2β2; q2)2k

(qβ2; q)`+k(qβ
2; q)m+k(q

1
2β; q)`+m

(q
1
2β; q)`+m(qβ2; q)`(qβ2; q)m

×
h
0;βq−

1
2 ,βq−

1
2 ,q−m−1,β−1q−`−

1
2 ;q

h
k;βq−

1
2 ,βq−

1
2 ,q−m−1,β−1q−`−

1
2 ;q

(±q
1
4β

1
2 z,±q

1
4β

1
2 z−1; q

1
2 )kR

qkβ;q
`−k (x)Rq

kβ;q
m−k (x)

×Rk(q−j + β−1qj−`−m−
1
2 ;βq−

1
2 , βq−

1
2 , q−m−1, β−1q−`−

1
2 | q).

Now use (3.21).

If we put β = qα in (5.11) and take the limit for q ↑ 1 then we arrive at the dual
addition formula (4.7) for ultraspherical polynomials.
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5.3 A second proof of the dual addition formula

We will now show that the addition formula (5.3) and the dual additon formula
(5.11) coincide when both formulas are suitably restricted in their x or z variable.
This will follow from the duality (5.2).

In (5.11) put β = q−
1
2a2, x = 1

2(z + z−1) and use (5.1). Then the dual addition
formula takes the form

R`+m−2j
[
z; a, q

1
2a,−a,−q

1
2a | q

]
=

m∑
k=0

(−1)kq
1
2
k(k+`+m+1)a2k

1− a4q2k−1

1− a4qk−1
(q−`, q−m, a4; q)k

(q
1
2a2, q

1
2a2, q; q)k

(a2z2, a2z−2; q)k

(−a2; q
1
2 )22k

×R`−k
[
z; q

1
2
ka, q

1
2
(k+1)a,−q

1
2
ka,−q

1
2
(k+1)a | q

]
×Rm−k

[
z; q

1
2
ka, q

1
2
(k+1)a,−q

1
2
ka,−q

1
2
(k+1)a | q

]
×Rk

(
q−j + qj−`−ma−2; q−1a2, q−1a2, q−m−1, q−`a−2 | q

)
. (5.12)

Since both sides of (5.12) are symmetric Laurent polynomials in z, verification of

the identity for z = q−
1
2
na−1 (n = m,m+ 1,m+ 2, . . .) will settle the identity for

all z. Thus put z = q−
1
2
na−1 in (5.12) and use the duality (5.2) in the polynomials

R`+m−2j , R`−k and Rm−k occurring in (5.12). Furthermore, use (3.18) and (3.6)
in order to substitute

Rk(q
−j + qj−`−ma−2; q−1a2, q−1a2, q−m−1, q−`a−2 | q)

= 4φ3

(
q−k, qk−1ak, q−j , qj−`−ma−2

a2, q−`, q−m
; q, q

)
= Rk

[
q−

1
2
(`+m−2j)a−1; q−

1
2
(`+m)a−1, q

1
2
(`+m)a3, q

1
2
(`−m)a, q

1
2
(m−`)a | q

]
.

We obtain

Rn
[
q−

1
2
(`+m−2j)a−1; a, q

1
2a,−a,−q

1
2a | q

]
=

n∑
k=0

(−1)kq
1
2
k(k+`+m+1)a2k

1− a4q2k−1

1− a4qk−1
(q−`, q−m, a4; q)k

(q
1
2a2, q

1
2a2, q; q)k

(q−n, qna4; q)k

(−a2; q
1
2 )22k

×Rn−k
[
q−

1
2
`a−1; q

1
2
ka, q

1
2
(k+1)a,−q

1
2
ka,−q

1
2
(k+1)a | q

]
×Rn−k

[
q−

1
2
ma−1; q

1
2
ka, q

1
2
(k+1)a,−q

1
2
ka,−q

1
2
(k+1)a | q

]
×Rk

[
q−

1
2
(`+m−2j)a−1; q−

1
2
(`+m)a−1, q

1
2
(`+m)a3, q

1
2
(`−m)a, q

1
2
(m−`)a | q

]
.

(5.13)

Because of the factor (q−m; q)k on the right-hand side and since n ≥ m there was
no harm to replace m by n as the upper bound of the summation.
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On the other hand, for integers j,m, ` such that 0 ≤ j ≤ m ≤ ` and m ≤ n,
substitute z = q−

1
2
(`+m−2j)a−1, u = q−

1
2
`a−1, v = q−

1
2
ma−1 in (5.3) in order to

obtain

Rn
[
q−

1
2
(`+m−2j)a−1; a, q

1
2a,−a,−q

1
2a | q

]
=

n∑
k=0

(−1)kq
1
2
k(k+`+m+1)a2k(q−n, q−`, q−m, a2, qna4, q−1a4; q)k

(q, q
1
2a2,−q

1
2a2,−a2; q)k(q−1a4; q)2k

×Rn−k
[
q−

1
2
`a−1; q

1
2
ka, q

1
2
(k+1)a,−q

1
2
ka,−q

1
2
(k+1)a | q

]
×Rn−k

[
q−

1
2
ma−1; q

1
2
ka, q

1
2
(k+1)a,−q

1
2
ka,−q

1
2
(k+1)a | q

]
×Rk

[
q−

1
2
(`+m−2j)a−1; q−

1
2
(`+m)a−1, q

1
2
(`+m)a3, q

1
2
(`−m)a, q

1
2
(m−`)a | q

]
.

(5.14)

An easy computation shows that (5.13) can be rewritten as (5.14). Thus we have
shown that the addition formula (5.3) implies the dual addition formula (5.11).

Acknowledgement I thank Prof. M. A. Pathan and Prof. S. A. Ali for the
invitation to deliver the 2017 R. P. Agarwal Memorial Lecture and for their
cordiality during my trip to India on this occasion.
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[7] R. Askey and J. A. Wilson, Some basic hypergeometric orthogonal polyno-
mials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985),
no. 319.

[8] E. Bannai and T. Ito, Algebraic combinatorics. I: Association schemes,
Benjamin-Cummings, 1984.

[9] S. Bochner, Allgemeine lineare Differenzengleichungen mit asymptotisch
konstanten Koeffizienten, Math. Z. 33 (1931), 426–450.
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Abstract: An irregularly spaced generalization of the Whittaker–Kotel’nikov–
Sannon (WKS) sampling theorem in which the deterministic signal (function)
represented in the form of a Hankel–transform via Jν , Iν , Yν kernel function is
sampled exactly at the at the zeros of Bessel function of the first kind, at the
zeros of the modified Bessel function of the first kind or at the zeros of the Bessel
function of the second kind Yν we call J, I, Y –Bessel sampling, respectively.

The stochastic signals (Piranashvili–type L2–processes) possessing correlation
function representable also in the form of a Hankel–transform integral via Jν , Iν , Yν
kernel functions permit mean–square and almost sure P sense Bessel sampling
restoration, [14]. These results are presented in this exposure.
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1. Brief invitation to sampling series

Let the signal f (either deterministic function or stochastic process) be expressible
in a domain D in the form

f(x) =
∑
n∈Z

f(λn)Sn(x), x ∈ D ,
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where (λn) ⊆ D and Sn(x) ≡ Sn(x, λn) is some convenient function class. This
kind representation is the sampling series (of f), since f is restored by its sam-
pled values in the discrete subset (λn) ⊂ D by (in general) an infinite linear
combination.

The convergence of sampling series is either absolute, pointwise, uniform (deter-
ministic signals) considered in different norms or is in the mean–square, α–mean
sense of in almost sure P sense (with probability 1) used.

Te following simple example illustrates the sampling: When f(x) = kx+n, chose
two x values so, that λ0 = 0, λ1 = 1. In turn kx+ n = n(1− x) + (k + n)x, and
the deduced sampling restoration formula reads

f(x) = f(0)(1− x) + f(1)x ,

so that [8, p. 2, Eq. (1.1.1)]

S0(0) = 1− x, S1(1) = x .

However, the celebrated Cauchy integral formula

f(z) =
1

2πi

∮
γ

f(ζ)

ζ − z
dζ,

where γ is a suitable positively oriented closed integration path enclosing the
point z, is another kind of ”sampling restoration” formula, but here the sampling
set in uncountably infinite.

A short historical development of sampling we begin with the identity

f(λ0) + (x− λ0)f(λ0, λ1) + · · ·+ (x− λ0) · · · (x− λN−1)f(λ0, · · · , λN )

≡
N∑
j=0

f(λj)
GN (x)

G′N (λj)(x− λj)
,

where

f(λ0, λ1) =
f(λ1)− f(λ0)

λ1 − λ0
, f(λ0, λ1, λ2) =

f(λ1, λ2)− f(λ0, λ1))

λ2 − λ0
, . . . ,

and

GN (x) =
N∏
j=0

(
1− x

λj

)
,

we call today Lagrange interpolation formula 1.

1Lagrange has presented this result on his classes delivered at École Normal Paris during his
”Elementary mathematics course” around 1795–1976.
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Periodical interoplation formula

p(x) =
∑
|j|≤N

cje
ijx ,

holds for periodical signals using finite sampling sum

p(x) =
1

2N + 1

2N∑
j=0

p
( 2πj

2N + 1

) sin
(

(2N+1)x
2 − πj

)
sin
(
x
2 −

πj
2N+1

) ;

This Cauchy’s result was published in [4]. Gauß reported about some similar
formula around 1805.

Letting

f(x) =
1√
2π

∫ π

−π
g(t)eixt dt ,

the related Fourier expansion reads

f(x) =
∑
n∈Z

f(n) sinc(x− n), sinc(u) =


sinu

u
u 6= 0

1 u = 0
, (1)

where sinc denotes the sinus cardinalis; the notation was introduced by Wood-
ward in 1953, [7, 8]. Here f(n) is the Fourier coefficient of g. For all m,n ∈ Z it
is sinc(m−n) = δmn, which illustrates the interpolation property of sinc kernel.

The scaling of (1) is the famous Whittaker–Kotel’nikov–Shannon (WKS) sam-
pling series expansion theorem:

f(x) =
∑
n∈Z

f
(
n
π

w

)
sinc (wx− nπ) , w > 0. (2)

Here w > 0 stands for the so–called bandwidth. The cardinal series∑
n∈Z

an sinc(wx− nπ)

absolutely converges for all x ∈ C if and only if [16]∑′

n∈Z

∣∣∣an
n

∣∣∣ <∞ ,

we also refer to [12, 17, 18].
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2. Preparation and results needed

In the last few years one of my main interests is the so-called Bessel-sampling
reconstruction series which belong to the class of generalizations of Whittaker–
Kotel’nikov–Shannon sampling series. By these series we sample the input signal
(function or stochastic process) exactly at the zeros of Bessel function of the first
kind (J–Bessel sampling), at the zeros of the modified Bessel function of the first
kind (I–Bessel sampling) or at the zeros of the Bessel function of the second kind
Yν , which we call Y –Bessel sampling procedure.

Here deterministic signals (functions) restoration and stochastic L2–processes
signals sampling digital → analog reconstruction, when the correlation function
possesses Jν , Yν kernel function Hankel–transform are delivered [14]. The re-
sults of [14] belong to the irregular sampling series reconstruction method and
consist among others from the stochastic signals generalizations and implemen-
tations of certain J–Bessel deterministic findings by Zayed [20] and Knockaert
[10], while the Y –Bessel deterministic sampling results by Jankov Maširević et
al. [9]. The in medio and almost sure convergence results are in the first plane.
The main derivation tools are the Karhunen–Cramér theorem’s generalization
by Piranašvili, the integral forms of the Bessel (modified Bessel) functions and
certain their appropriate properties.

Now, certain summation of related series will be presented which originate back
to the sampling series for Bessel and modified Bessel functions Yν , Iν and Kν .
Related truncation error upper bounds are given in the case of Y –Bessel sampling
2

The main tools are Kramer’s sampling theorem and diverse convenient properties
of Bessel functions, when the sampling set (λn) coincides with the set of zeros
either for Yν , Iν or for Kν .

First I’ll recall Kramer’s cornerstone theorem.

2I am grateful to Professor T. Koornwinder who draw my attention during the discussion
after my talk at the International Conference on Special Functions & Applications (ICSFA-
2017) (XVIth Annual Conference of Society for Special Functions and their Applications) held
November 2–4 2017 in Bikaner, Rajasthan, India, to the fact that the WKS sampling theorem
(2) is actually a kind of J–Bessel sampling series being

sinc(x) =

√
πx

2
J1/2(x).

By this intervention the WKS formula (2) can be re–written into

f(x) =

√
π

2

∑
n∈Z

f
(
n
π

w

) √
wx− nπ J 1

2
(wx− nπ) .
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Theorem A. [11] Let K(x, t) ∈ L2(I) as the function of x, t ∈ R, where I = [a, b]
and let E = {tk}k∈Z be a countable real set, for which {K(x, tk)}k∈Z complete
orthogonal in L2(I). If

f(t) =

∫ b

a
g(x)K(x, t) dx, (3)

for some g ∈ L2[a, b] then

f(t) =
∑
k∈Z

f(tk)S
?
k(t),

where

S?k(t) =

∫ b

a
K(x, t)K(x, tk) dx∫ b

a
|K(x, tk)|2 dx

.

In general every f representable in the previous form (3) we call band–limited on
[a, b].

Theorem B. [19, p. 701] When for a convenient g ∈ L2(0, a) we have

f(t) =

∫ a

0
g(x) cos(xt) dx,

then

f(t) =
∑
k∈Z

f

((
k +

1

2

)
π

a

)
sin(at− (k + 1

2)π)

at− (k + 1
2)π

,

uniformly on all compact t–subregion of R.

In the same paper using [5, p. 716, Eq. 6.681.1]∫ π

0
J2ν

(
2b cos

x

2

)
cos(tx) dx = πJν+t(b)Jν−t(b),

it is proved a Bessel–sampling series result [19, p. 703, Eq. (2.8)]

Jν+t(b)Jν−t(b) =
∑
k∈Z

Jν+k+ 1
2
(b)Jν−k− 1

2
(b) sinc(t− k − 1

2) , <{ν} > −1
2 .

To ensure that such series expansion makes sense we remind that for real ν, Jν(z)
and Yν(z) possess countable many simple zeros except the z = 0, which is the
famous von Lommel’s theorem, see [1, p. 370].
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3. The first set of Bessel–sampling results

By convention we use in the sequel that for ν ≥ 0 the notations jν,k, yν,k stand
for the kth positive nil of the Bessel functions Jν , Yν of the first and second kind
of the order ν, respectively. Now, we are ready to state the first result.

Theorem 1. [9, p. 80, Theorem 1] For all ν > −1
4 we have

Iν+t(b)Iν−t(b) =
∑
k∈Z

Iν+k+ 1
2
(b)Iν−k− 1

2
(b) sinc(t− k − 1

2),

uniformly on all compact real t–domains.

Moreover

I2
ν (b) =

4

π

∑
k≥0

(−1)k

2k + 1
Iν+(k+ 1

2
)(b)Iν−(k+ 1

2
)(b),

and

sinh2 b = 2b
∑
k≥0

(−1)k

2k + 1
Ik+1(b)I−k(b) .

Theorem 2. [9, p. 80, Theorem 2] For |ν| < 1
2 we have

Kν(b) =
2

π

∑
k∈Z

K2k+1(b)
cosπ(ν2 − k)

2k + 1− ν
.

Moreover

e−b =
16
√
b√

π3

∑
k≥0

(−1)k(2k + 1)

(4k + 1) (4k + 3)
K2k+1(b) , (4)

where (4) holds when b→∞.

Theorem 3. [9, p. 81, Theorem 3] There holds true

Iν(t) = 2 (2t)ν cosh t
∑
k∈Z

(−1)k(π + 2kπ)1−ν

(π + 2kπ)2 + 4t2

× Jν
(
π
(
k + 1

2

))
, t ∈ R; <{ν} > 0 .

Also we deduce that

tanh(πt) =
8t

π

∑
k≥1

1

(2k − 1)2 + 4t2
, t ∈ R .
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It should be mentioned that based on the definition

Kν(t) =
π

2 sin(νπ)
(I−ν(t)− Iν(t)) ,

using ν = 1
2 we conclude

e−t = cosh t− sinh t .

As the modified Bessel Kν is expressible via Iν and Yν , for integer ν 6∈ Z we have

Kν(t) =
π

2

(
(i t)2ν cos(πν)

t2ν
− 1

)
Iν(t)

sin(πν)
− π(i t)ν

2tν
Yν(i t) .

Now, the summation for Yν follows as well.

4. The Y –Bessel sampling series

One of the well–known properties of the Bessel functions Jν , Yν and is that the
zeros of two consecutive order functions interlace [2, 15]:

jν,k < jν+1,k < jν,k+1 < · · · ; yν,k < yν+1,k < yν,k+1 < · · · .

Therefore Yν+1(yν,k) 6= 0, k ∈ N0 enables the

Theorem 4. [9, p. 80, Theorem 4] Let g ∈ L2(0, a), a > 0, and assume that

f(t) =

∫ a

0
g(x)
√
xYν(tx) dx .

Then for all t ∈ R and ν ∈ [0, 1) there holds

f(t) = 2Yν(at)
∑
k≥1

yν,k f(a−1yν,k)

(y2
ν,k − a2t2)Yν+1(yν,k)

. (5)

Corollary 4.1. [9, p. 81, Corollary 4.1] For <{ν} > 0, t ∈ R it is

Yν(t) Jν(t) = 2
∑
k≥1

(2t)ν+1 Yν(2t) Jν(
yν,k

2 )Yν(
yν,k

2 )

yν−1
ν,k (y2

ν,k − 4t2)Yν+1(yν,k)
,

while for t 6= k − 1
2 , k ∈ N we have

tan (πt) =
8t

π

∑
k≥1

1

(2k − 1)2 − 4t2
.
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5. Truncation error of Y –Bessel sampling series

For the sake of simplicity specify a = 1 in looking for the upper bound for the
error made in truncating the Y –Bessel series (5) to its Nth partial sum

S Y
N (f ; t) = 2Yν(t)

N∑
k=1

yν,k f(yν,k)

(y2
ν,k − t2)Yν+1(yν,k)

, t ∈ R

where f is band–limited with respect to (0, 1). The Nth truncation error we
write T Y

N (f ; t) =
∣∣f(t)−S Y

N (f ; t)
∣∣, that is

T Y
N (f ; t) =

∣∣∣∣∣∣
∑

k≥N+1

f(yν,k)
2 yν,k Yν(t)

(y2
ν,k − t2)Yν+1(yν,k)

∣∣∣∣∣∣ .
When f behavior is polynomial for t being large, that is

|f(t)| ≤ A |t|−(r+1), A > 0, r > 1
2 , (6)

we are looking for a manageable upper bound for T Y
N (f ; t). For ν ∈ [0, 1) this

implies

T Y
N (f ; t) ≤ 2A

∑
k≥N+1

|Yν(t)|
yrν,k|y2

ν,k − t2| |Yν+1(yν,k)|
;

since yν,k > 0 for ν ≥ 0, see [1, p. 370]. So the following result.

Theorem 5. [9, p. 83, Theorem 5] Let f behaves according to (6) when ν ∈ [0, 1).
Then for all t ∈ (0, yν,N+1), A > 0, r > 1

2 and N ≥ 2 we have

T Y
N (f ; t) < UYN (t) :=

2AH(t)MN (ν) (yν,N+1)
1
2
−r

π2 min
k≥N+1

√
yν,k |Yν+1(yν,k)|

, (7)

for the following Y –Bessel sampling series

f(t) = 2Yν(t)
∑
k≥1

yν,k f(yν,k)

(y2
ν,k − t2)Yν+1(yν,k)

.

Here

H(t) = 1 +
2

πν t
, MN (ν) = exp

{(
N +

1− π + 2(ν − yν,2)

2π

)−1
}
− 1 .

Moreover for all fixed t ∈ (0, yν,2) and enough large N there holds the estimate

T Y
N (f ; t) = O

(
N−r−

1
2

)
.
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Denote

h(t) =
Yν(t) Jν(t)

tν Yν(2t)
, S Y

N (h; t) =
N∑
k=1

2ν+1 Jν(
yν,k

2 )Yν(
yν,k

2 )

yν−1
ν,k (y2

ν,k − 4t2)Yν+1(yν,k)
.

0.8 1.0 1.2 1.4 1.6 1.8 2.0

-1.0

-0.5

0.5

1.0

Figure 1: Approximation in Y –Bessel sampling according to Corollary 4.1. h(t)
– green, S Y

1 (h; t) – blue, S Y
10(h; t) – violet and S Y

90(h; t) – yellow.

The figure presents h(t) and the truncated Y –Bessel partial sums S Y
N (h; t),

N = 1, 10, 90. We mention that here the t–band becomes
[

1
2y0,1,

1
2y0,2

]
≈

[0.446788, 1.97884], when ν = 0.

Helms and Thomas [6, p. 324, Eq. (7)] have proved certain results for generalized
Hankel–transforms. It is worth to mention that the magnitude of their truncation
error upper bound behaves like O(N−1) when the input signal is bounded, [6, p.
324, Eq. (7)]; our bound (7) is superior to their for any signal which satisfies (6)
with r > 1

2 .

6. Stochastic counterpart: Piranashvili processes

Let (Ω,A,P) be a standard probability space and ξ : T × Ω 7→ C, T ⊆ R, that is
{ξ(t) ≡ ξ(t, ω) : t ∈ T, ω ∈ Ω} a stochastic process. Denote L2(Ω,A,P) [in short
L2(Ω)] the space of finite second order moment complex valued random variables
over (Ω,A,P) with the norm ‖ · ‖2 :=

√
E| · |2 endowed. L2(Ω) is a Hilbert space

with the scalar/inner product 〈ξ η〉 = Eξ η.
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The mean–square closure of the linear span Ht(ξ) := L2{ξ(s) : s ≤ t} which is
generated by the family {ξ(s) : s ≤ t}, t ∈ R. This is a subspace of L2(Ω). When⋂
t∈RHt(ξ) = ∅, then ξ is regular (purely indeterministic); while

⋂
t∈RHt(ξ) =

H (ξ) means that the process is singular (purely deterministic) ξ.

We are focused here to a subclass of singular processes.

Consider a zero mean process mξ(t) = Eξ(t) = 0 , t ∈ T . The correlation function

Bξ(t, s) = Eξ(t) ξ(s), t, s ∈ T

and Dξ(t) := Bξ(t, t) is the variance of ξ for which there holds

Dξ(t) ≤ sup
u∈R

B2
ξ (u, u) := B2

ξ <∞ ,

being the considered process with finite second moment.

Consider non–stationary zero mean L2(Ω)–process ξ : R× Ω 7→ R having covari-
ance

B(t, s) =

∫
Λ

∫
Λ
f(t, λ)f∗(s, µ)Fξ(dλ,dµ), (8)

in which for λ ∈ Λ, the function f(·, λ) can be analytically continued to a complex,
exponentially bounded kernel function and the spectral distribution function Fξ
turns out to be a positive definite measure in the R2 plane so, that the total
variation

‖Fξ‖(Λ,Λ) =

∫
Λ

∫
Λ

∣∣Fξ(dλ,dµ)
∣∣ = VFξ <∞ ,

the constant VFξ is also called the Vitali variation [22, p. 153]. The type of
the trajectory of the process ξ(t) ≡ ξ(t, ω0) and f(t, λ) coincide by [3, p. 441,
Theorem 4], [13, Theorem 3]. Then, by the Karhunen–Cramèr theorem , the
spectral representation of the process ξ(t) is the following Lebesgue integral

ξ(t) =

∫
Λ
f(t, λ)Zξ(dλ) , (9)

where
Fξ(S1, S2) = EZξ(S1)Z∗ξ (S2) S1, S2 ⊆ σ(Λ).

Such processes ξ we call Piranashvili processes.

Special cases of Piranashvili processes are [21, 22]:

1. when Fξ(x, y) = δxyFξ(x) in (8) then we get the Karhunen – representation

B(t, s) =

∫
Λ
f(t, λ)f∗(s, λ)Fξ(dλ).
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2. When f(t, λ) = eitλ the Loève process is in charge:

B(t, s) =

∫
Λ

∫
Λ

ei(tλ−sµ)Fξ(dλ,dµ).

3. The Karhunen process with the Fourier kernel f(t, λ) = eitλ equipped becomes
the Hinčin (wide sense stationary) process, for which

B(τ) =

∫
Λ
eiτλFξ(dλ), τ = t− s.

4. Finally in the case of Λ = [−w,w], w > 0, the band–limited process is the
result. In that case the WKS theorem reads:

ξ(t) =
∑
k∈Z

ξ
( π
w
k
) sin(wt− kπ)

wt− kπ
, (10)

where the convergence is uniform in any t–compact in R in the mean–square
sense. Moreover, the last series (10) converges also in almost sure P sense too [3,
p. 443].

Now we apply Theorem 4. Denoting

S J
N (G; t) :=

2 Jν(bt)

bν tν

N∑
k=1

jν+1
ν,k G(b−1jν,k)

(b2t2 − j2
ν,k

) J ′ν(jν,k)

S Y
N (G; t) := 2Yν(bt)

N∑
k=1

yν,kG(b−1yν,k)

(y2
ν,k − b2t2)Yν+1(yν,k)

,

for the L2(0, b)–band-limited signal f or process ξ: G ∈ {f, ξ}, and

T J
N (G; t) := G(t)−S J

N (G; t) =
2 Jν(bt)

bν tν

∑
k≥N+1

jν+1
ν,k ξ(b−1jν,k)

(b2t2 − j2
ν,k

) J ′ν(jν,k)

T Y
N (G; t) := G(t)−S Y

N (G; t) = 2Yν(bt)
∑

k≥N+1

yν,k ξ(b
−1yν,k)

(y2
ν,k − b2t2)Yν+1(yν,k)

.

Our main goal is to give an useful upper bounds for the truncation error

∆J
N (ξ; t) = E

∣∣ξ(t)−S J
N (ξ; t)

∣∣2 = E
∣∣T J

N (ξ; t)
∣∣2,

∆Y
N (ξ; t) = E

∣∣ξ(t)−S Y
N (ξ; t)

∣∣2 = E
∣∣T Y

N (ξ; t)
∣∣2 .

To achieve this goal we need the spectral representations for the involved stochas-
tic signals and their series expansions. These constitute the next result.
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Theorem 6. [14, p. 13, Theorems 1, 2] Let ξ(t), t ∈ T ⊆ R be a Piranashvili
process, that is

ξ(t) =

∫
Λ
f(t, λ)Zξ(dλ) ,

where f(t, λ) ∈ L2(0, b) with respect to t for all λ ∈ Λ. Then we have in the
means–square

S B
N (ξ; t) =

∫
Λ

S B
N (f ; t)Zξ(dλ), B ∈ {J, Y }

T B
N (ξ; t) =

∫
Λ

T B
N (f ; t)Zξ(dλ), B ∈ {J, Y }

∆B
N (ξ; t) =

∫
Λ

∫
Λ

T B
N (f ; t) T B

N (f ; t)Fξ(dλ,dµ), B ∈ {J, Y } .

For the Karhunen process this turns out to be

∆B
N (ξ; t) =

∫
Λ

∣∣T B
N (f ; t)

∣∣2 Fξ(dλ), B ∈ {J, Y } .

Observe that the function class

L2(Λ;Fξ) :=

{
ϕ :

∫
Λ
|ϕ|2 Fξ(dλ) <∞

}
is also a H–space and it is isometrically isomorphic to H (ξ) by the correspondence
ξ(t)↔ f(t, λ).

The special case of the Karhunen process is the Hinčin stationary process. When
Λ = [−w,w],

∆J
N (ξ; t) =

∫ w

−w

∣∣T J
N (eitλ)

∣∣2 Fξ(dλ)

∆Y
N (ξ; t) =

∫ w

−w

∣∣T Y
N (eitλ)

∣∣2 Fξ(dλ) .

Theorem 7. [14, p. 14, Theorem 3] Assume the Piranashvili process {ξ(t) : t ∈
T ⊆ R} has integral representation (9) with kernel f(t, λ) ∈ L2(0, b) which is a
Hankel–transform in J, Y –Bessel form. Then there hold

ξ(t) = S J(ξ; t) =
2 Jν(bt)

bν tν

∑
k≥1

jν+1
ν,k ξ(b−1jν,k)

(b2t2 − j2
ν,k

) J ′ν(jν,k)

ξ(t) = S Y (ξ; t) = 2Yν(bt)
∑
k≥1

yν,k ξ(b
−1yν,k)

(y2
ν,k − b2t2)Yν+1(yν,k)

,

in the mean square sense.
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Next, we expose the truncation error bound results for Karhunen processes. For
the sake of simplicity take b = 1.

Theorem 8. [14, p. 16, Theorem 4] When the kernel function f of the related
Karhunen process ξ(t), t ∈ R has polynomial decay according to (6) then for all
ν ∈ [0, 1), t ∈ (ν, yν,2), min{A, r} > 0 and N ≥ 2 we have

∆Y
N (ξ; t) ≤

A2 VFξ (πνt+ 2)2 [(4yν,N+1 − ν − 1)
3
2 + (2ν + 3)(2ν + 5)]

π5 ν2 t2 y2r
ν,N+1[y2

ν,N+1 − (2n+ 3)(2n+ 7)]

×

(
exp

{(
N +

1− π + 2(ν − yν,2)

2π

)−1
}
− 1

)2

,

where VFξ it the Vitali (or total) variation of Fξ. Moreover

∆Y
N (ξ; t) = O

(
N−2r− 5

2

)
.

The almost sure convergence of Y –Bessel sampling series for Karhunen processes
is established by the following result, which can be proved by the use of Borel–
Cantelli Lemma

Theorem 9. [14, p. 16, Theorem 5]

Consider a Karhunen process ξ(t) which kernel f is of polynomial decay (see (6)).
Then for all ν ∈ [0, 1), t ∈ (ν, yν,2), min{A, r} > 0 and N ≥ 2 we have

P

{
lim
N→∞

S Y
N (ξ; t) = ξ(t)

}
= 1 .
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Abstract

A certain integral in the literature is known by the names: ultra gamma func-
tion, generalized gamma, Krätzel integral, inverse Gaussian integral, reaction-
rate probability integral, Bessel integral, the unconditional density in a Bayesian
structure and the Mellin convolution of a product. Thus, this integral is very
important to various people in different disciplines. In this article, this integral
is examined for its structural properties and then it is evaluated in computable
series form. It is shown that the names, generalized gamma and ultra gamma are
not appropriate for this integral. The name a Bessel integral is justifiable. This
integral really belongs to the Krätzel family of integrals.

Keywords: Mellin convolution, Krätzel integral, ultra gamma function, gener-
alized gamma function, Bessel integral, reaction-rate probability integral, inverse
Gaussian integral, computable series form.
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1. Introduction

Consider the following integrals which are given to be convergent:

A =

∫ ∞
0

e−ax−bφ(x)dx <∞, B =

∫ ∞
0

e−axdx <∞, C =

∫ ∞
0

e−bφ(x)dx <∞.

(1.1)
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For b = 0 in A, one has B the exponential integral and for a = 0 in A one has the
integral in C. Is there any justification in calling A the generalized exponential
integral or ultra exponential integral? For b 6= 0, A has no connection to an
exponential integral as in B. In the same context can we call B or C a contracted
form of A? If one has an integral D =

∫∞
0 e−ax

δ
dx < ∞, for a > 0, δ > 0 then

we can say that B is a special case of D or D as a generalization of B, but A is
neither a generalization or contraction of D. For φ(x) = xδ or φ(x) = x−ρ with
δ > 0, ρ > 0, a > 0, b > 0 we have the forms

A1 =

∫ ∞
0

xα−1e−ax−bx
δ
dx <∞, (1.2)

A2 =

∫ ∞
0

xα−1e−ax−bx
−ρ

dx <∞ for α > 0. (1.3)

These two integrals in A1 and A2 are very popular in the literature. These are
also the Laplace transforms, with Laplace parameter a, of the functions e−bx

δ
and

e−bx
−ρ

respectively. For ρ = 1, A2 is the basic Krätzel integral and associated with
it one has the Krätzel transform. For ρ = 1, the integrand in A2, multiplied with
a normalizing constant, is the inverse Gaussian density in stochastic processes.
Both A1 and A2 are also connected to Bayesian analysis, Mellin convolutions,
statistical densities of products and ratios etc. To this end, we will consider a
more general integral. Consider the integral

B1 = c1

∫ ∞
0

xγ−1e−ax
δ−bx−ρdx (1.4)

for a > 0, b > 0, γ > 0, δ > 0, ρ > 0. If the integrand in B1 is to be a statistical
density then we take the constant c1 as the normalizing constant. In that case
the function is defined for x ≥ 0 and zero otherwise. The integrand in B1 for
δ = 1, ρ = 1 and multiplied by the normalizing constant c1 is the inverse Gaussian
density for appropriate values of a, b, γ, c1. For δ = 1, ρ = 1

2 it is the basic
reaction-rate probability integral in nuclear reaction-rate theory. For general
values of δ and ρ, Mathai and Haubold (1988) call the integral in (1.4) as the
generalized reaction-rate probability integral. For the general parameters case,
there is no physical interpretation yet but the theory is worked out in Mathai and
Haubold (1988) and in later papers so that one day the corresponding physical
interpretations will be found. For δ = 1, ρ = 1 the integral is the basic Krätzel
integral in applied analysis, which is also connected to Krätzel transform, see
Krätzel (1979), Mathai (2012). Hence one may call (1.4) as the generalized
Krätzel integral. If b = 0 then it is a generalized gamma integral but when b = 0
the special nature of (1.4) is lost. Hence it is not appropriate to call (1.4) as
generalized gamma or ultra gamma function because the connection to gamma
function is only when b = 0 and this is not an admissible value in (1.4). All
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sorts of studies are done by people working in special functions, treating (1.4)
as generalization of gamma function. For two functions f1(x1) and f2(x2) the
Mellin convolution of a product has the basic structure

g(u) =

∫
v

1

v
f1(

u

v
)f2(v)dv (1.5)

where 1
v is the Jacobian in the transformation u = x1x2 and v = x2. Here the

Mellin transform of g, with the Mellin parameter s, denoted by Mg(s), is given
by

Mg(s) = Mf1(s)Mf2(s). (1.6)

This is the Mellin convolution of a product property. How can we identify (1.1)
as a Mellin convolution of a product formula? Let

f1(x1) = e−x
ρ
1 , 0 ≤ x1 <∞, ρ > 0, u = b

1
ρ (1.7)

f2(x2) = xγ2e−ax
δ
2 , 0 ≤ x2 <∞, δ > 0, γ > 0. (1.8)

Then ∫ ∞
0

1

v
f1(

u

v
)f2(v)dv =

∫ ∞
0

xγ−1e−ax
δ−bx−ρdv (1.9)

where b = u
1
ρ . A constant multiple of (1.9) can also be the statistical density of

a product. Let x1 > 0, x2 > 0 be two real scalar positive random variables with
density functions f1(x1) and f2(x2) respectively, independently distributed or
enjoying the the product probability property (PPP) in the sense that their joint
density is the product f1(x1)f2(x2). Then, (1.4), multiplied with the normalizing
constant is the density of the product u = x1x2. A structure of the type in (1.4)
is also of interest for statisticians working on different topics. Connections to
inverse Gaussian density and density of a product are already pointed out. It is
also of interest for people working in Bayesian analysis. Consider a conditional
density of a real scalar positive random variable y, at given value of a parameter
or another variable x, which is a generalized gamma density of the following form:

f(y|x) = c1e
− y
xρ , 0 ≤ y <∞, x > 0 (1.10)

and zero elsewhere, where c1 is the normalizing constant. Consider the marginal
density of x, a generalized gamma density of the form:

f1(x) = c2x
γ−1e−ax

δ
, 0 < x <∞, a > 0, γ > 0, δ > 0 (1.11)
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and zero elsewhere, where c2 is the normalizing constant. Then the unconditional
density of y, denoted by g(y), is available by integrating over x of the joint density
of x and y, namely f(y|x)f1(x). That is,

g(y) = c1c2

∫ ∞
0

xγ−1e−ax
δ−yx−ρdx (1.12)

which is nothing but (1.4), multiplied by the constant c1c2. Hence, from the
point of view of Bayesian analysis also the integral in (1.4) is very important.
The integral in (1.11) can be interpreted as a continuous mixture in statistical
distribution theory. Since it is a very interesting integral in many topics, we will
evaluate it explicitly and represent it in computable forms.

2. Evaluation of the Generalized Krätzel Integral

Comparing (1.12) with B1 of (1.4) we see that y = b. Let us take the Mellin
transform with respect to b in (1.4) or with respect to y in (1.12), with Mellin
parameter s, denoted by, Mb(s), or take it as the Mellin transform of the function
g(y) of (1.12) with b = y or consider My(s). Then

My(s) =

∫ ∞
0

ys−1[

∫ ∞
0

xγ−1e−ax
δ−yx−ρdx]dy. (2.1)

Interchange of integrals is valid here and taking the integral over y and then
integral over x we have the following:∫ ∞

y=0
ys−1e−yx

−ρ
dy = Γ(s)(x−ρ)−s = xρsΓ(s),<(s) > 0. (2.2)

Now, the integral over x gives the following:∫ ∞
0

xγ+ρs−1e−ax
δ
dx =

1

δ
Γ(
γ + ρs

δ
)a−(

γ+ρs
δ

). (2.3)

Therefore, from (2.2) and (2.3), we have

My(s) =
1

δa
γ
δ

Γ(s)Γ(
γ

δ
+
ρ

δ
s)a−

ρ
δ
s. (2.4)

Hence by taking the inverse Mellin transform of (2.4) we get B1 as the inverse
Mellin transform. That is,

B1 =
1

δa
γ
δ

1

2πi

∫ c+i∞

c−i∞
Γ(s)Γ(

γ

δ
+
ρ

δ
s)(ba

ρ
δ )−sds, i =

√
−1 (2.5)

where the c in the contour is any positive number. The integral in (2.5) can be
written as a H-function of the following format: The theory and applications of
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H-function may be found from any book on H-function, see for example Mathai
et al. (2010). Then it is seen that

B1 =
1

δz
γ
δ

H2,0
0,2 [ba

ρ
δ |(0,1),( γ

δ
, ρ
δ
)]. (2.6)

When ρ = δ one can get an interesting special case in terms of Meijer’s G-
function. In this special case the coefficient of s in the inverse Mellin transform
in (2.5) is 1 and hence one can write it as a G-function. A detailed description of
the theory and applications of G-function is available from Mathai (1993). That
is, for ρ = δ,

B1 = (δa
γ
δ )−1G2,0

0,2[ab|0, γδ ]. (2.7)

3. Explicit Evaluation in Computable Series Forms

For explicit evaluations, the best place to start is the integrand in the Mellin-
Barnes representation in (2.5) for the general case when δ 6= ρ and for the special
case δ = ρ. Then (2.5) or (2.7) can be evaluated as the sum of the residues
at the poles of the integrand in (2.5). To this end let us examine the poles
of the gammas there. The poles of Γ(s) are at s = 0,−1, ... and the poles of
Γ(γδ + ρ

δ s) are γ
δ + ρ

δ s = −ν, ν = 0, 1, 2, ... or s = −γ
ρ −

δ
ρν, ν = 0, 1, 2, .... Hence

if γ
ρ + δ

ρν, ν = 0, 1, 2, ... is not a positive integer then the poles of the integrand
in the Mellin-Barnes representation in (2.5) are simple and then the residues
will be in simple forms. Then one can sum up these two sets of residues easily.
Then evaluating the sums of residues at the poles of Γ(s) and Γ(γδ + ρ

δ s) we have
the explicit series form. Let us look at the sum of the residues at the poles of
Γ(s), s = −ν, ν = 0, 1, 2, ... is

(δa
γ
δ )−1

∞∑
ν=0

(−1)ν

ν!
Γ(
γ

δ
− ρ

δ
ν)(ba

ρ
δ )ν . (i)

For computing the sum of residues at the poles of Γ(γδ + ρ
δ s) it is convenient to

make a transformation γ
δ + ρ

δ s = s1 ⇒ s = −γ
ρ + δ

ρs1, ds = δ
ρds1,

(ba
ρ
δ )−s = (ba

ρ
δ )

γ
ρ
− δ
ρ
s1 = b

γ
ρ a

γ
δ (b

δ
ρa)−s1 .

and the sum of the residues is the following:

b
γ
ρ

δ

∞∑
ν=0

(−1)ν

ν!
Γ(−γ

ρ
− δ

ρ
ν)(ab

δ
ρ )ν . (ii)
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Therefore for the simple poles case, B is available as the sum of (i) and (ii). That
is,

B1 = (δa
γ
δ )−1

∞∑
ν=0

(−1)ν

ν!
Γ(
γ

δ
− ρ

δ
ν)(ba

ρ
δ )ν

+
b
γ
ρ

δ

∞∑
ν=0

(−1)ν

ν!
Γ(−γ

ρ
− δ

ρ
ν)(ab

δ
ρ )ν , (3.1)

for γ
ρ + δ

ρν is not a positive integer for ν = 0, 1, ..., γ
δ −

ρ
δ ν 6= 0,−1,−2, ... for

ν = 0, 1, .... For ρ = δ note that the coefficient of ν is 1 and then both the gammas
in the first and second lines of (3.1) with gammas with +ν in the denominator
and then the series will become Bessel series in both the lines. Hence, in this
case one can obtain B1 as linear functions of two Bessel series. Hence it is
more appropriate to call B1 as Bessel integral or extended Bessel integral, not as
generalized or ultra gamma integral.

Special case (1): ρ = δ and γ
δ is not a positive integer

Then

Γ(
γ

δ
) = (

γ

δ
− 1)(

γ

δ
− 2)..(

γ

δ
− ν)Γ(

γ

δ
− ν)

Γ(
γ

δ
− ν) =

Γ(γδ )

(−1)ν(−γ
δ + 1)ν

where, for example, (a)n = a(a+1)...(a+n−1), a 6= 0, (a)0 = 1 is the Pochhammer
symbol. Also

Γ(−γ
ρ
− ν) =

Γ(−γ
ρ )

(−1)ν(γρ + 1)ν
.

Then for ρ = δ and γ
δ not a positive integer, we have from (3.1)

B1 =
Γ(γδ )

ρa
γ
ρ

0F1( ;−γ
ρ

+ 1; ab)

+
Γ(−γ

δ )

ρ
b
γ
ρ 0F1( ;

γ

ρ
+ 1; ab) (3.2)

Thus, it is the sum of two Bessel series. Hence Bessel integral is an appropriate
name to be used for (1.4).

Special case (2): ρ = δ, γδ = m,m = 1, 2, ...
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In this case the poles at s = 0,−1,−2, ...,−(m− 1) are simple and the poles
at s = −m,−m− 1, ... are of order two each. In this case

B1 =
1

ρa
γ
ρ

1

2πi

∫ c+i∞

c−i∞
Γ(s)Γ(m+ s)(ab)−sds. (3.3)

Sum of the residues at the poles s = 0,−1, ..,−(m− 1) is given by

1

δa
γ
δ

∞∑
ν=0

(−1)ν

ν!
Γ(m− ν)(ab)ν . (iii)

For x = −m− ν, ν = 0, 1, ... the poles are of order two each. Let

φ(s) = Γ(s)Γ(m+ s)(ab)−s.

Then the residue at the poles of order two, denoted by Rν , is given by the
following:

Rν = lim
s→−ν

d

ds
{(s+ ν)2Γ(s)Γ(m+ s)(ab)−s}

= lim
s→−ν

d

ds
{(s+ ν)2

(s+ ν − 1)2...(s+m)2(s+m− 1)...s

(s+ ν − 1)2...(s+m)2(s+m− 1)...s
Γ(s)Γ(m+ s)(ab)−s}

= lim
s→−ν

d

ds
{ Γ2(s+ ν + 1)

(s+ ν − 1)2...(s+m)2(s+m− 1)...s
(ab)−s}

Note that (ab)−s = e−s ln(ab) and

d

ds
φ(s) = φ(s)

d

ds
lnφ(s).

Also

lim
s→−ν

φ(s) = lim
s→−ν

Γ2(s+ ν + 1)

(s+ ν − 1)2...(s+m)2(s+m− 1)...s
(ab)−s

=
(−1)m

ν!(ν −m)!
(ab)ν , ν = m,m+ 1, ...

lim
s→−ν

lnφ(s) = lim
s→−ν

d

ds
lnφ(s)

= lim
s→−ν

[2ψ(s+ ν + 1)− 2

s+ ν − 1
− ...− 2

s+m

− 1

s+m− 1
− ...− 1

s
− ln(ab)]

= 2ψ(1) + 2[1 +
1

2
+ ...+

1

ν −m
] + (

1

ν −m+ 1
+ ...+

1

ν
)− ln(ab)

= ψ(ν + 1) + ψ(ν −m+ 1)− ln(ab)
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where ψ(z) = d
dz ln Γ(z) is the psi function. The above simplification is done by

using the properties of the psi function. Hence

Rν = [ψ(ν + 1) + ψ(ν −m+ 1)− ln(ab)]
(−1)m

ν!(ν −m)!
(ab)ν , ν = m,m+ 1, ... (3.4)

Therefore

B1 =
1

δa
γ
δ

{
m−1∑
ν=0

(−1)ν

ν!
Γ(m− ν)(ab)ν

+
∞∑
ν=m

[ψ(ν + 1) + ψ(ν −m+ 1)− ln(ab)][
(−1)m

ν!(ν −m)!
(ab)ν ]}. (3.5)

By using the same procedure one can write the logarithmic version corresponding
to (2.5) when the poles of Γ(s)Γ(γδ + ρ

δ s) differ by integers. Since the expressions
become too lengthy they are not listed here.

References

[1] E. Krätzel: Integral transformations of Bessel type. In Generalized Func-
tions of Operational Calculus, Proc. Conf. Verna, 1975, Bulgarian Academy of
Sciences, Sofia, pp.148-165, 1979.

[2] A.M. Mathai: A Handbook of Generalized Special Functions for Statistical
and Physical Sciences, Oxford University Press, Oxford, 1993.

[3] A.M. Mathai: Generalized Krätzel integral and associated statistical densities,
International Journal of Mathematical Analysis, 6(51)(2012), 2501-2510.

[4] A.M. Mathai and H.J. Haubold: Modern Problems in Nuclear and Neutrino
Astrophysics, Akademie-Verlag, Berlin, 1988.

[5] A.M. Mathai, R.K. Saxena and H.J. Haubold: The H-function: Theory and
Applications, Springer, New York, 2010.



Proceedings of the 16th Annual Conf.
SSFA, Vol.16, 2017, pp. 53–57

A SHORT NOTE ON SIGN CHANGES OF FOURIER
COEFFICIENTS OF CUSP FORM

Soumyarup Banerjee
Harish-Chandra Research Institute, HBNI

Chhatnag Road, Jhunsi, Allahabad 211 019, India
Emails: soumyabanerjee@hri.res.in; soumya.tatan@gmail.com

Abstract: In this note we have studied the sign changes for the subsequence
{a(nj)} for any j ∈ N of the Fourier coefficients a(n) of Hecke eigen cusp form
for the full modular group SL2(Z).
Keywords and Phrases: Sign changes, Fourier coefficients, Cusp forms
Mathematics subject Classification: Primary: 11F30 , Secondary: 11M06.

1. Introduction
Sign changes of Fourier coefficients of cusp forms in one or in several variables
have been studied in various aspects by many authors. It is known that, if the
Fourier coefficients of a cusp form are real then they change signs infinitely often
[2]. Further, many quantitative results for the number of sign changes for the
sequence of the Fourier coefficients have been established. The sign changes of
the subsequence of the Fourier coefficients at prime numbers was first studied
by M. Ram Murty [10]. Later, Meher et. al. in [8] studied the problem for the
subsequence {a(nj)}n≥1 (j = 2, 3, 4). W.Kohnen and Y.Martin [4] in 2014 proved
that the subsequence {a(pjn)}n≥0 has infinitely many sign changes for almost all
primes p and j ∈ N .

Here we investigate the sign changes of the subsequence {a(nj)}n≥1 for j =
5, 6, 7, 8. we also genaralize the result of [8] by showing that, for any j ∈ N
the subsequence {a(nj)}n≥1 has infinitely many sign changes under some certain
conditions.

2. Preliminaries
Let, Γ = SL2(Z). For k be an even integer and k ≥ 4, denote Sk(Γ) as the space
of cusp form of weight k on Γ. Consider, f(z) =

∑
n≥1

a(n)qn ∈ Sk(Γ) be an Hecke

eigenform where, q = e2πiz.
Denote, normalized Fourier coefficient by λ(n) = a(n)

n(k−1)/2 where, λ(n) is real
and satisfies the multiplicative property

λ(m)λ(n) =
∑

d|(m,n)

λ

(
mn

d2

)
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In 1974, P. Deligne [1] proved the Ramanujan-Petersson conjecture

|λ(n)| ≤ d(n)

where d(n) is the divisor function.

The j th symmetric power L-function attached to f ∈ Sk(Γ) is defined as,

L(symjf, s) :=
∏
p

j∏
m=0

(1− α(p)j−mβ(p)mp−s)−1 (1)

where α(p) + β(p) = λ(p) and α(p)β(p) = 1.[1]

3. Statement of the results
Here we state our main results.

Theorem 3.1. Let f ∈ Sk(Γ) be a nonzero Hecke eigenform with normalized
Fourier coefficients λ(n) ∈ R. Then for j ∈ {5, 6, 7, 8}, {λ(nj)}n≥1 has infinitely
many sign changes.

Theorem 3.2. Let f ∈ Sk(Γ) be a nonzero Hecke eigenform with normalized
Fourier coefficients λ(n) ∈ R. If L(symjf, s) is automorphic cuspidal. Then for
any j ∈ N, {λ(nj)}n≥1 has infinitely many sign changes.

4. Proof of Theorem 3.1

We need to use the following two lemmas to prove our result.

Lemma 4.1 [G. Lu (6; Theorem 1.2)] Let f ∈ Sk(Γ) be nonzero Hecke eigenform
with normalized Fourier coefficients λ(n) ∈ R. Then for any j ∈ N there exist a
suitable constant c1 depending on f and j such that,∑

n≤x
λ2(nj)d(n− 1) = c1 xlogx(1 + o(1)) (2)

where d(n) is the divisor function.

lemma 4.2 [G. Lu and H. Tang (7; Theorem 1.1)] Let f ∈ Sk(Γ) be nonzero Hecke
eigenform with normalized Fourier coefficients λ(n) ∈ R. Then for j ∈ {5, 6, 7, 8}
there exist a suitable constant c2 > 0 such that,∑

n≤x
λ(nj)� x exp(−c2

√
logx) (3)
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Proof of Theorem 3.1. If possible, let us assume that the sequence {λ(nj)}n≥1
for j ∈ {5, 6, 7, 8} are of constant sign say positive for all n ∈ (x, 2x].

From lemma 4.1, we get∑
x<n≤2x

λ2(nj)d(n− 1) = c12x log 2x− c1x log x+ o(x log x)

= c1x log x

(
2 log 2x

log x
− 1

)
+ o(x log x)

� x log x (4)

On the other hand, by using lemma 4.2 and Delign’s bound [1] on λ(n), we get∑
x<n≤2x

λ2(nj)d(n− 1) =
∑

x<n≤2x
λ(nj)λ(nj)d(n− 1)

�
∑

x<n≤2x
λ(nj)d(nj)d(n− 1)

� x2ε
∑

x<n≤2x
λ(nj) [ε > 0, sufficiently small]

� x2ε{2x e(−c2
√
log 2x) + x e(−c2

√
logx)}

� x2εx e(−c2
√
logx) (5)

Now, by comparing the bounds of
∑

x<n≤2x
λ2(nj)d(n− 1) in equation (4) and (5),

we arrive at a contradiction. Therefore, atleast one λ(nj) for n ∈ (x, 2x] is nege-
tive. Hence the sequence {λ(nj)}n≥1 for j ∈ {5, 6, 7, 8}, has infinitely many sign
changes.

5. Proof of Theorem 3.2.
We need to use Lemma 4.1 and the following lemma to prove this result.

Lemma 5.1 [Lau and Lu(5; Theorem 1)] Let f ∈ Sk(Γ) be nonzero Hecke
eigenform with normalized Fourier coefficients λ(n) ∈ R. Suppose L(symjf, s) is
automorphic cuspidal for j ∈ N. Then for any j ≥ 3 and j ∈ N,∑

n≤x
λ(nj)� x

j
j+2 (6)

Proof of Theorem 3.2. If possible, let us assume that the sequence {λ(nj)}n≥1
for j ≥ 3 and j ∈ N are of constant sign say positive for all n ∈ (x, 2x].
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By using lemma 5.1 and Delign’s bound [1] on λ(n), we get∑
x<n≤2x

λ2(nj)d(n− 1) =
∑

x<n≤2x
λ(nj)λ(nj)d(n− 1)

� x2ε
∑

x<n≤2x
λ(nj) [ε > 0, sufficiently small]

� x2ε{(2x)
j

j+2 + x
j

j+2 }

� x2εx
j

j+2 (7)

Equation (4) gives the lower bound of
∑

x<n≤2x
λ2(nj)d(n− 1) for any j ∈ N. Now,

by comparing the bounds of
∑

x<n≤2x
λ2(nj)d(n − 1) in equation (4) and (7), we

arrive at a contradiction. Hence, we can conclude that our theorem is true for
j ≥ 3. For the case j = 1 and 2, the theorem holds true by the references [4] and
[8].

Remark

The condition of automorphic cuspidality of L(symjf, s) is necessary to conclude
the result of infinitely many sign changes of the subsequence {λ(nj)}n≥1 in theo-
rem 3.2. By theorem 3.1 and references [4] and [8] the result holds unconditionally
for j ∈ {1, 2, · · · , 8}.
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Abstract: We present a generalized Rathie-Swamee (GRS) distribution, by in-
troducing one more parameter. We present various properties of GRS distribu-
tion, such as Quantiles, moments, order statistics, maximum likelihood estimates,
gamma- and beta- generated distributions, Marshall-Olkin-Rathie-Swamee distri-
bution, and corresponding GRS-loglogistic distribution is defined and discussed.
The family of GRS distributions is very flexible and fits well asymmetric data.
The utility of the GRS distribution is illustrated by analyzing real data sets in-
volving: (a) Old Faithful Geyser waiting times to the next eruption data, (b) Old
Faithful Geyser durations of the eruptions data, and (c) Environmental Perfor-
mance Index (EPI) data.

Keywords: Generalized logistic distribution, GRS distribution, Data analysis.

A.M.S. Subject Classification: 60E05, 33C60

1 Introduction

In this article, we put forward a new multi-modal distribution with four param-
eters. This family of distribution, called generalized Rathie-Swamee (GRS), is
very flexible and fits well asymmetric data. Rathie and Swamee (2006) [see also,
Rathie (2011)] introduced the following multimodal distribution for a random
variable X, generalizing the logistic distribution:

F0(x) =
1

{1 + exp[−x(a+ b|x|p)]}
, (1)

with the corresponding density function

f0(x) =
[a+ b(p+ 1)|x|p] exp[−x(a+ b|x|p)]

{1 + exp[−x(a+ b|x|p)]}2
, (2)
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where x ∈ <, a, b ≥ 0 (not both zeros simultaneously) and p ≥ −1. The dis-
tribution and density functions (1) and (2) reduce to Swamee-Rathie generalized
logistic (SRGL) distribution for a = 0. The SRGL distribution approximeted
very well the standard normal distribution for b = 1.7255 and p = 0.12 [see,
Swamee and Rathie (2007)].

The generalized Rathie-Swamme (GRS) distribution is defined by

F (x) =
1

{1 + exp[−x(a+ b|x|p)]}λ
, (3)

with the corresponding density function

f(x) =
λ[a+ b(p+ 1)|x|p] exp[−x(a+ b|x|p)]
{1 + exp[−x(a+ b|x|p)]}λ+1

, (4)

where x ∈ <, a, b ≥ 0 (not both zeros simultaneously), λ > 0 and p ≥ −1.
For λ = 1, (3) and (4) reduce to (1) and (2) respectively. Symbolically, X ∼
GRS(a, b, p, λ). The density functions are plotted for various values of a, b, p and
λ in Figures 1 and 2. Using a location parameter µ ∈ <, (4) may be changed to
g(x) as

g(x) =
λ[a+ b(p+ 1)|x− µ|p] exp[−(x− µ)(a+ b|x− µ|p)]

{1 + exp[−(x− µ)(a+ b|x− µ|p)]}λ+1
. (5)

In the article, we study (3) and (4) as follows:Section 2 deals with quan-
tiles while moments are given in Section 3. In Section 4, we show that the
density function f(x) is an linear combination of densities. Order statistics are
indicated in Section 5. Section 6 deals with two generalized gamma-generated
GRS distributions while in Section 7 a beta-generated GRS distribution is given.
Marshall-Olkin GRS distribution is mentioned in Section 8. Section 9 deals with
estimation of parameters by MLE method and three data applications: (a) Old
Faithful Geyser waiting times to the next eruption data, (b) Old Faithful Geyser
durations of the eruptions data, and (c) Environmental Performance Index (EPI)
data. In Section 10, GRS-loglogistic distribution is defined and discussed, while
Section 11 concludes the article.

2 Quantiles

Using (3) we have

F
1
λ (x) = {1 + exp[−x(a+ b|x|p)]}−1.

Replacing F by F
1
λ in Rathie et. al (Rathie et al., 2013, eq. (1.5)), we have the

following expression for the quantiles:



60 P. K. Swamee, R. T. Nojosa and P. N. Rathie

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

b = 4.0, p = 4.0, λ = 0.3

x

a = 0.01
a = 3.00
a = 5.50
a = 9.80

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

a = 0.4, p = 2.5, λ = 0.9

x

b = 0.04
b = 0.01
b = 0.003
b = 0.0001

−8 −6 −4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

a = 3.0, b = 0.9, λ = 0.12

x

p = 0.2
p = 1.0
p = 1.5
p = 2.0

−8 −6 −4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

a = 0.8, b = 0.5, p = 0.9,

x

λ = 7.0
λ = 2.0
λ = 0.5
λ = 0.15

Figure 1: Some shapes for the GRS density.

x =


−
∞∑
r=0

(−ba )r

r!

Γ(rp+ r + 1)

Γ(rp+ 2)

[
1

a
ln

(
1− F

1
λ

F
1
λ

)]rp+1

, F ≤ 0.5λ

∞∑
r=0

(−ba )r

r!

Γ(rp+ r + 1)

Γ(rp+ 2)

[
1

a
ln

(
F

1
λ

1− F
1
λ

)]rp+1

, F > 0.5λ.

(6)

3 Moments

Using

(1 + x)−δ =
∞∑
r=0

(−x)r

r!
(δ)r, |x| < 1, (7)
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Figure 2: Some trimodal shapes for the GRS density: solid line: a = 2.3, b =
3.0, p = 4.0, λ = 1.1; dashed line: a = 1.9, b = 0.6, p = 6.0, λ = 0.9; dotted
line: a = 1.3, b = 0.12, p = 4.9, λ = 1.0.

we have for x > 0,

f(x) = λ[a+ b(1 + p)xp]
∞∑
r=0

(−1)r(λ+ 1)r
r!

exp[−(r + 1)x(a+ bxp)] (8)

and for x < 0,

f(x) = λ[a+ b(1 + p)|x|p]
∞∑
r=0

(−1)r(λ+ 1)r
r!

exp[−(r + λ)|x|(a+ b|x|p)]. (9)

Hence,

E(Xn) =

∫ ∞
−∞

xnf(x)dx = λ
∞∑
r=0

(−1)r(λ+ 1)r
r!

[I1 + (−1)nIλ],

where

Iη =

∫ ∞
0

xn[a+ b(1 + p)xp] exp[−(r + η)x(a+ bxp)]dx. (10)

Using (see Mathai et al. (2010, p. 41))∫ ∞
0

tα exp[−t(a1 + b1t
p1)]dt = a−α−11 H1, 1

1, 1

[
ap1+1
1 b−11

∣∣∣∣ (1, 1)

(α+1, p1+1)

]
,
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we obtain

Iη = a[a(r + η)]−n−1H1, 1
1, 1

[
[a(r + η)]p+1

b(r + η)

∣∣∣∣ (1, 1)

(n+1, p+1)

]
+ b(1 + p)[a(r + η)]−n−p−1H1, 1

1, 1

[
ap+1(r + η)p

b

∣∣∣∣ (1, 1)

(n+p+1, p+1)

]
. (11)

The H-function in (11) is defined by

Hm,n
p, q

[
x
∣∣∣( a1, A1), ... ,( an, An),( an+1, An+1), ... ,( ap, Ap)

( b1, B1), ... ,( bm, Bm),( bm+1, Bm+1), ... ,( bq , Bq)

]
=

1

2πi

∫
L

∏m
j=1 Γ(bj −Bjs)

∏n
j=1 Γ(1− aj +Ajs)∏q

j=m+1 Γ(1− bj +Bjs)
∏p
j=n+1 Γ(aj −Ajs)

xsds. (12)

See Mathai et al. (2010) for more details about (12).

Thus, the n-th moments are given by

E(Xn) = λ

∞∑
r=0

(−1)r(λ+ 1)r
r!

[I1 + (−1)nIλ], (13)

where Iη is given by (11), and p 6= 0.

4 Linear combinations

We have

f(x) =
∞∑
r=0

λ(−1)r(λ+ 1)r
(r + 1)!

g1r Ix>0 +

∞∑
r=0

λ(−1)r(λ+ 1)r
(r + λ)r!

g2r Ix<0, (14)

where the density functions g1r and g2r are given by

g1r(x) = (r + 1)[a+ b(1 + p)xp] exp[−(r + 1)x(a+ bxp)], x > 0 (15)

and

g2r(x) = (r + λ)[a+ b(1 + p)|x|p] exp[−(r + λ)|x|(a+ b|x|p)], x < 0. (16)

Hence, f(x) is an infinite linear combination of density functions.
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5 Order Statistics

The n-th and 1-st order statistics are given below:

Fn(x) = Fn(x) = {1 + exp[−x(a+ b|x|p)]}−nλ, (17)

fn(x) = nFn−1(x)f(x), (18)

F1(x) = 1− [1− F (x)]n, (19)

f1(x) = n[1− F (x)]n−1f(x). (20)

where F (x) and f(x) are given respectively in (3) and (4).

6 Generalized gamma-generated GRS distributions

Using the distribution function

H1(x) =
γβ

α
γ

Γ(αγ )

∫ − ln(1−F (x))

0
wα−1 exp(−βwγ)dw, α, β, γ > 0, (21)

and Rathie and Silva (2017), we have

H1(x) =
β
α
γ

Γ(1 + α
γ )
{− ln[1− F (x)]}α−11F1

(
α

γ
; 1 +

α

γ
;−β{− ln[1− F (x)]}γ

)
,

(22)

where F (x) is given in (3), and 1F1 is confluent hypergeometric function (see,
Luke (1969, p.115)).

Using the series expansion for 1F1, we get

H1(x) =
β
α
γ

Γ(1 + α
γ )

∞∑
s=0

(
α
γ

)
s

(−β)s

s!
(

1 + α
γ

)
s

{− ln[1− F (x)]}α+γs−1

=
β
α
γ

Γ(1 + α
γ )

∞∑
s=0

(
α
γ

)
s

(−β)s

s!
(

1 + α
γ

)
s

[F (x)]α+γs−1
{
− ln[1− F (x)]

F (x)

}α+γs−1
. (23)

Using the Theorem 2.2 of Rathie and Silva (2017), H1(x) is written as

H1(x) =
β
α
γ

Γ(1 + α
γ )

∞∑
s=0

(
α
γ

)
s

(−β)s

s!
(

1 + α
γ

)
s

∞∑
r=0

[
r∑

k=0

(−1)r−k(1− α− γs)r−k
(r − k)!

C(k)(r−k)

]
[F (x)]r+α+γs−1, (24)
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where

C(0)(t) =

(
1

2

)t
(25)

and

C(m)(t) =
2

m

m∑
l=1

[l(t+ 1)−m]

l + 2
C(m−l)(t), m ≥ 1. (26)

Hence H1(x) is an infinite linear combination of the distribution functions

{1 + exp[−x(a+ b|x|p)]}−λ(r+α+γs−1) . (27)

The corresponding result for logistic distribution is obtained by putting b = 0,
λ = 1 in (22) and is given by

H1(x) =
β
α
γ

Γ(1 + α
γ )
{− ln[1 + exp(ax)]}α−1

1F1

(
α

γ
; 1 +

α

γ
;−β{− ln[1 + exp(ax)]}γ

)
. (28)

Using another form of generalized gamma distribution function,

H2(x) = 1− γβ
α
γ

Γ(αγ )

∫ − lnF (x)

0
wα−1 exp(−βwγ)dw, α, β, γ > 0, (29)

and Rathie and Silva (2017), we have

H2(x) = 1− β
α
γ

Γ(1 + α
γ )

[− lnF (x)]α1F1

(
α

γ
; 1 +

α

γ
;−β[− lnF (x)]γ

)
, (30)

where F (x) is given in (3).
Alternatively,

H2(x) = 1− β
α
γ

Γ(1 + α
γ )

∞∑
s=0

(
α
γ

)
s

(−β)s

s!
(

1 + α
γ

)
s

[− ln{1− [1− F (x)]}]sγ+α

= 1− β
α
γ

Γ(1 + α
γ )

∞∑
s=0

(
α
γ

)
s

(−β)s

s!
(

1 + α
γ

)
s

[1− F (x)]sγ+α
[
− ln{1− [1− F (x)]}

1− F (x)

]sγ+α
. (31)



Generalized Rathie-Swamee distribution and applications 65

Using the Theorm 2.2 of Rathie and Silva (2017) and (7), H2(x) takes the
following form:

H2(x) = 1− β
α
γ

Γ(1 + α
γ )

∞∑
s=0

(
α
γ

)
s

(−β)s

s!
(

1 + α
γ

)
s

∞∑
r=0

[
r∑

k=0

(−1)r−k(−α− γs)r−k
(r − k)!

C(k)(r−k)

]
∞∑
q=0

(−r − α− γs)q
q!

[F (x)]q. (32)

Thus, H2(x) is an infinite linear combination of the distribution functions

{1 + exp[−x(a+ b|x|p)]}−λq .

For b = 0, and λ = 1 the corresponding result for logistic distribution is

H2(x) = 1− β
α
γ

Γ(1 + α
γ )
{ln[1 + exp(−ax)]}α

1F1

(
α

γ
; 1 +

α

γ
;−β{ln[1 + exp(−ax)]}γ

)
. (33)

7 Beta-generated GRS distribution

From Andrade and Rathie (2016), we have the beta-generated distribution given
by

G(x) =
1

B(α, β)

∫ F (x)

0
uα−1(1− u)β−1du

=
Fα(x)

αB(α, β)
2F1(α, 1− β; 1 + α;F (x)) , (34)

for α, β > 0, with its density function

g(x) =
1

B(α, β)
Fα−1(x)[1− F (x)]β−1f(x), (35)

where F (x) and f(x) are given respectively in (3) and (4). In (34), 2F1 is Gauss
hypergeometric function (see, Luke (1969, p.41)).
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Using the series for 2F1, we have

G(x) =
1

αB(α, β)

∞∑
r=0

(α)r(1− β)r
r!(1 + α)r

[F (x)]α+r. (36)

Thus, G(x) is an infinite linear combination of the distribution functions

{1 + exp[−x(a+ b|x|p)]}−λ(α+r) .

The beta-generated density function for logistic base distribution is obtained
from (35) by putting b = 0, λ = 1 and is

g(x) =
1

B(α, β)

a exp(−aβx)

[1 + exp(−ax)]α+β
. (37)

8 Marshall-Olkin generalized Rathie-Swamee distri-
bution

Using the Marshall-Olkin distribution function (Marshall and Olkin, 1997), the
distribution function of Marshall-Olkin Generalized Rathie-Swamee (MOGRS)
distribution is defined by

H(x) =
F (x)

F (x) + γF̄ (x)
, γ > 0, x ∈ <, (38)

where F (x) is given in (3). Hence

H(x) =
F (x)

γ + (1− γ)F (x)
=

1

1− γ + γ{1 + exp[−x(a+ b|x|p)]}λ
. (39)

For logistic distribution function (b = 0, λ = 1), (39) reduces to

H(x) =
1

1 + γ exp[−ax]
,

which is a generalization (asymmetric) of logistic distribution.

9 Estimation and applications

The log-likelihood function for a sample x∼ = (x1, . . . , xn) from GRS(a, b, p, λ, µ),
with density function (5) and θ∼ = (a, b, p, λ, µ) is given by

ln g( θ∼ |x∼ ) = n lnλ+

n∑
i=1

ln[a+ b(p+ 1)|xi − µ|p]−
n∑
i=1

(xi − µ)(a+ b|xi − µ|p)

− (λ+ 1)

n∑
i=1

ln{1 + exp[−(xi − µ)(a+ b|xi − µ|p)]}. (40)
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The parameters a, b, p, λ and µ are estimated by solving simultaneously the
equations

∂ ln g( θ∼ |x∼)
∂a = 0,

∂ ln g( θ∼ |x∼)
∂b = 0,

∂ ln g( θ∼ |x∼)
∂p = 0,

∂ ln g( θ∼ |x∼)
∂λ = 0,

∂ ln g( θ∼ |x∼)
∂µ = 0.

These equations cannot be solved analytically and an iterative method can be
used to solve them numerically.

The goodness of fit of the GRS model will be assessed by Kolmogorov-Smirnov
(KS), Anderson-Darling (AD) and Cramér-von-Mises (CvM) tests, smaller values
indicate better fit to the data. The tests are described in Thas (2010).

The Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)
and Corrected Akaike Information Criterion (AICc) are defined by

AIC = −2 ln g( θ∼ |x∼ ) + 2p,

BIC = −2 ln g( θ∼ |x∼ ) + p log(n),

AICc = −2 ln g( θ∼ |x∼ ) + 2p+

[
2p(p+ 1)

n− p− 1

]
,

where ln g( θ∼ |x∼ ) is the log-likelihood function, n the sample size and p the number
of parameters of the model. The best model has the least value of the criterion
used.

The measures of accuracy: Mean Square Error (MSE), Mean Absolute De-
viation (MAD) and Maximum Absolute Deviation (MaxAD), which are given
by

MSE =

∑n
i=1 (Fe(xi)− F̂ (xi))

2

n
,

MAD =

∑n
i=1 |Fe(xi)− F̂ (xi)|

n
,

MaxAD = max(|Fe(xi)− F̂ (xi)|),

where Fe(xi) and F̂ (xi), i = 1, . . . , n, are the empirical and fitted cumulative
distributions of the data. The best model has the least value of the measure
used.

Three applications of the generalized Rathie-Swamee (GRS) model defined in
(5) are given for the following data sets:

(a) Old Faithfull Geyser of the Yellowstone National Park in Wyoming state,
USA, duration and waiting time eruptions.

(b) The Environmental Performance Index (EPI) of 132 countries based on
22 performance indicators and 10 policy categories, given in 2012. The
EPI measures how close countries are to established environmental goals
(http://epi.yale.edu/).
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Maximum likelihood method is used to obtain the estimates of the parameters
given in Table 1 in all the three data sets. We used the BFGS method available
at the constrOptim function in R program (R Core Team (2017)).

Table 1: Maximum likelihood estimates for GRS model.
Data set (sample size) λ a b p µ

Waiting time (299) 1.5774 0.2820 0.8416 1.2078 -0.4224
Eruption duration (272) 1.4602 0.1944 0.7427 2.8771 -0.3027
EPI (132) 1.9340 0.1246 3×10−6 3.0234 46.5798

The density and distribution functions for histogram and empirical cumulative
distribution functions for each data set are given in Figure 3. The data sets for
Old Faithful Geyser are standardized by using the observed mean and standard
deviation. Thus, we can compare our results for 299 data points about eruption
waiting times with the ones given by Abdulah and Elsalloukh (2014) using Epsilon
Skew Inverted Gamma (ESIG) distribution. Our results for 272 data points
about eruption duration time is compared with the corresponding results given
by Ali et al. (2010) where they used Skewed Inverse Reflected Pareto (SIRP)
distribution. The Figure 3 indicates that GRS distribution fits all data sets
adequately. Table 2 gives the p-values for the goodness of fit tests of the GRS
model. The results also indicate that we do not reject the hypothesis to fit the
data using GRS model.

The measures of accuracy and criteria for model selection are given in Table
3. Comparing the results of the GRS model with those available for the ESIG
and SIRP models, the proposed GRS model is best in all measures.

Table 2: p-values for KS, AD and CvM test.
Data set

Test Waiting time Eruption duration EPI

KS 0.4745 0.3250 0.9339
AD 0.6172 0.2200 0.9625
CvM 0.6932 0.3102 0.9423

10 GRS-loglogistic distribution

The GRS-loglogistic distribution density and distribution functions corresponding
to (4) and (3) are defined as follows:

G(x) =
1

{1 + exp[− lnx(a+ b| lnx|p)]}λ
, (41)
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Figure 3: Ajusted GRS density and distribution functions.

with the corresponding density function

g(x) =
λ[a+ b(p+ 1)| lnx|p] exp[− lnx(a+ b| lnx|p)]

{1 + exp[− lnx(a+ b| lnx|p)]}λ+1
. (42)

For λ = 1, (41) and (42) yield the RS-loglogistic distribution defined, studied
and applied to analyse data earlier by Swamee and Rathie (2007), Ben-Zvi (2009)
and Rathie et al. (2011).
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Table 3: Log-likelihood, criteria for model selection and measures of accuracy.
Waiting time Eruption duration EPI
GRS ESIG GRS SIRP GRS

LogL -372.59 -566.9 -239.38 -385.5 -487.27
AIC 755.17 1139.8 488.76 984.53
BIC 773.68 1150.9 506.79 998.94
AICc 755.38 488.98 985.01
MSE (×103) 0.63 0.83 0.29
MAD (×102) 1.30 2.26 1.38
MaxAD (×102) 4.88 5.77 4.69

11 Concluding remarks

A generalized Rathie-Swamee (GRS) distribution is introduced and several of
its properties studied. The new generalized gamma- and beta-generated density
and distribution functions derived in Section 6 and 7, MOGRS distribution of
Section 8 and GRS-loglogistic distribution of Section 10 are very flexible and
may be used to model data sets. The importance of the GRS distribution is
shown by analyzing the Old Faithful Geyser waiting times and duration of the
eruption data as well as the Environmental Performance Index data.
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1. Introduction
Integral equations of several types have been studied by means of fractional inte-
gration with special functions as kernel. Several authors (Ta Li [14], Buschman
[1] and Higgins [4]) have applied the Laplace transform to solve convolution equa-
tions which are special cases of

x∫
0

(x− t)b−1
1F1(a; b; c(x− t))f(t)dt = g(x); Re(b) > 0,

as discussed by Prabhakar [9].
Erdèlyi [3] investigated the solutions of integral equations whose kernel contain
Legendre functions,

x∫
α

(
x2 − t2

)− 1
2
µ
Pµν

(x
t

)
f(t)dt = g(x),
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where α ≤ x ≤ β , α, β > 0 and the values of µ and ν are unrestricted, except for
Re(µ) < 1. Higgins [5] and Wimp [13] studied some integral equations involving
the hypergeometric function F (a, b; c; z). One of them is

1∫
x

1

Γ(c)
(t− x)c−1F

(
a, b; c; 1− t

x

)
f(t)dt = g(x),

for α ≤ x ≤ 1.
Love [6] considered the following integral equations involving hypergeometric
functions in the kernel.

x∫
0

1

Γ(c)
(x− t)c−1F

(
a, b; c; 1− x

t

)
f(t)dt = g(x),

for 0 < x < d where 0 < d ≤ ∞. Further, he discussed the integral equation

x∫
0

1

Γ(c)
(x− t)c−1F

(
a, b; c; 1− t

x

)
f(t)dt = g(x),

for 0 < x < d in the same paper.

Recently, Desai et al. [2] studied the integral equation containing generalized
Mittag-Leffler function as the kernel. The classical Mittag-Leffler function [8] is
defined by

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
, (1)

where z is a complex variable and α ≥ 0 that occurs as the solution of fractional
order differential equation or fractional order integral equations. The Mittag-
Leffler function is a direct generalization of exponential function to which it
reduces for α = 1. For 0 < α < 1 and |z| < 1, it interpolates between the

exponential function ez and a geometric function 1
(1−z) =

∞∑
k=0

zk.

Wiman [12] suggested the generalization of Eα(z) as

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, (2)

for α, β ∈ C, Re (α) ,Re (β) > 0, which is known as Wiman’s function or the
generalized Mittag-Leffler function.
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Prabhakar [10] further extended the Mittag-Leffler function as

Eγα,β(z) =
∞∑
n=0

(γ)n
Γ(αn+ β)

zn

n!
, (3)

for α, β, γ ∈ C , Re (α) ,Re (β) ,Re (γ) > 0, (γ)n is a Pochhammer symbol,

(γ)n = γ (γ + 1) ... (γ + n− 1) = Γ(γ+n)
Γ(γ) , n ≥ 1,(γ)0 = 1,γ 6= 0.

A new generalization of Mittag-Leffler function was defined by Salim [11] as

Eγ,δα,β(z) =

∞∑
n=0

(γ)n
Γ(αn+ β)

zn

(δ)n
, (4)

where α, β, γ, δ ∈ C;Re(α), Re(β), Re(γ), Re(δ) > 0.

Equation (4) is the generalization of exponential function. Equations (1)–(3)
can reduce to E1,1

1,1 (z) = exp(z), E1,1
α,1(z) = Eα(z), E1,1

α,β(z) = Eα,β(z) and Eγ,1α,β(z) =

Eγα,β(z). Further, on setting γ = δ, we get

Eδ,δα,β(z) = Eα,β(z). (5)

In recent times the attention of mathematicians towards the Mittag-Leffler func-
tion has increased from both the analytical and numerical point of view. Moti-
vated with the same, in this paper, we discuss the integral equation with Eγ,δα,β(z)
in the kernel. For 0 < a < x < b <∞,

1

Γ(δ)

x∫
a

(x− t)δ−1Eγ,δα,β (t− x) f(t)dt = g(x). (6)

2. Preliminary Notes

Definition 1 L denote the linear space of real (or complex) valued functions
f(x) which are L - integrable on a finite [a, b], i.e.

L(a, b) =

f : ‖f‖1 ≡
b∫
a

|f(t)| dt <∞

 . (7)
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Definition 2 Riemann-Liouville fractional integrals of order µ (Miller and Ross
[7]): Let f(x) ∈ L(a, b), µ ∈ C; Re(µ) > 0. Then Iµ : L→ L is a linear operator
defined by the fractional integral

Iµf(x) = aI
µ
x f(x) = Iµa+f(x) =

1

Γ(µ)

x∫
a

f(t)

(x− t)1−µdt, (8)

for almost all x ∈ (a, b).
It is well known that if Iµ is bounded and f is locally integrable. Then

Iµf = 0⇒ f = 0. (9)

Hence, inverse operator exists on subspace Lµ of L. If 0 < Re(µ) < Re(ν), then
it can be proved that Lν ⊂ Lµ ⊂ L and the inclusion is proper. For Re(µ) < 0,
Iµ is defined as the inverse of I−µ. If Re(µ) 6= 0,Re(ν) 6= 0, then IµIνf = Iµ+νf
for locally integrable functions f . Similarly, for x < b <∞,

Jµf(x) = xI
µ
b f(x) = Iµb−f(x) =

1

Γ(µ)

b∫
x

f(t)

(t− x)1−µdt. (10)

3. The fractional operator G and its properties

We define the operator G (α, β, γ, δ) associated with Eγ,δα,β, on space L by

Gf(x) = G (α, β, γ, δ) f(x) =

x∫
a

(x− t)δ−1

Γ(δ)
Eγ,δα,β(t− x)f(t)dt, (11)

for Re(α),Re(β),Re(γ),Re(δ) > 0. First we need to justify the existence of the
integral operator (11).

Theorem 3 (Existence of the operator) If Re(µ) > 0, f ∈ L(a, b), α, β, γ ∈ C
and Re(α),Re(β),Re(γ),Re(δ) > 0, then

x∫
a

(x− t)δ−1

Γ(δ)
Eγ,δα,β(t− x)f(t)dt

defines a function in L.

Proof: To prove G is a function, it is sufficient to prove ‖G‖ is finite, i.e., ‖G‖ <
∞. By definition of the operator (11), we have

‖G‖ =

b∫
a

∣∣∣∣∣∣
x∫
a

(x− t)δ−1

Γ(δ)
Eγ,δα,β(t− x)f(t)dt

∣∣∣∣∣∣ dx.
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By change of order of integration, permitted under prescribed condition, and then
substituting t− x = v, we get

‖G‖ =

b∫
a

b∫
t

∣∣∣∣∣f(t)
(x− t)δ−1

Γ(δ)
Eγ,δα,β (t− x)

∣∣∣∣∣dxdt,
≤

b∫
a

|f(t)| dt
b−t∫
0

∣∣∣∣∣(−1)δ−1

Γ(δ)
vδ−1Eγ,qα,β(v)

∣∣∣∣∣dv.
Since Eγ,δα,β(v) is an entire function, it is bounded in (a, b). Hence, the double
integral in above equation is finite.

Theorem 4 If α, β, γ, δ, λ ∈ C and Re (α) ,Re (β) ,Re (γ) ,Re (δ) > 0 , then

1

Γ(λ)Γ(δ)

x∫
t

(x− s)λ−1(s− t)δ−1Eγ,δα,β(t− s)ds =
(x− t)δ+λ−1

Γ(λ+ δ)
Eγ,λ+δ
α,β (t− x) (12)

Proof: In accordance with (4), changing order of integration and summation
that is permitted under prescribed condition and substituting s = t + (x − t)u,
we obtain

1

Γ(λ)Γ(δ)

x∫
t

(x− s)λ−1(s− t)δ−1Eγ,δα,β(t− s)ds

=
1

Γ(δ)Γ(λ)

∞∑
n=0

(−1)n(γ)n
Γ(αn+ β)(δ)n

1∫
0

(x− t)λ−1(1− u)λ−1(x− t)δ+n−1uδ+n−1(x−t)du.

This yields

1

Γ(δ)Γ(λ)

∞∑
n=0

(−1)n(γ)n
Γ(αn+ β)(δ)n

1∫
0

(x− t)λ−1(1− u)λ−1(x− t)δ+n−1uδ+n−1(x−t)du.

The integral immediately leads to

1

Γ(δ)Γ(λ)

∞∑
n=0

(−1)n(γ)n
Γ(αn+ β)(δ)n

(x− t)λ+δ+n−1B(λ, δ + n),

and (12) is proved.
Since the operator G (α, β, γ, δ) is an integral operator, its composition with
Riemann-Liouville fractional integral operator Iµ, given by (8), is given in the
form of following theorem.
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Theorem 5 (Shifting Property): Let α, β, γ, δ, µ ∈ C and Re(α), Re(β), Re(γ),
Re(δ), Re(µ) > 0. Then

IµG (α, β, γ, δ) f(x) = G (α, β, γ, µ+ δ) f(x). (13)

Proof: For Re(µ) > 0 and any f , which is L-integrable, by Theorem 3, Gf is
also L-integrable. Hence, the composition also belongs to L. i.e., IµGf(x) ∈ L.
Therefore,

IµGf(x) = IµG (α, β, γ, δ) f(x).

From (11), we have

IµGf(x) = Iµ

 s∫
a

(s− t)δ−1

Γ(δ)
Eγ,qα,β(t− s)f(t)dt

 ,
=

1

Γ(µ)

x∫
a

(x− s)µ−1ds

s∫
a

(s− t)δ−1

Γ(δ)
Eγ,qα,β(t− s)f(t)dt.

Since Eγ,δα,β is bounded in the region of integration, order of integration can be
changed by Fubini’s theorem.
On using Theorem 4, above equation reduces to

IµGf(x) =

x∫
a

(x− t)δ+µ−1

Γ(δ + µ)
Eγ,δ+µα,β (t− x)f(t)dt,

= G (α, β, γ, δ + µ) .

It can be observed that the composition of the fractional operator Iµ and the
operator G result into shifting of the forth parameter δ of G by the order of
fractional integral operator µ, whereas, all other parameters remain unaltered.
Hence, this property is called the shifting property.

4. Solution of the integral equation (6)

From (6) and (11), we get

G (α, β, γ, δ) f(x) =

x∫
a

(x− t)δ−1

Γ(δ)
Eγ,δα,β(t− x)f(t)dt = g(x). (14)

Let us consider

G (α, β, γ, δ) f(x) = g(x).
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On invoking the fractional integral operator, given by (8) and using (13), we
obtain

IδG (α, β, γ, γ) f(x) = Iγg(x).

Since inverse operator I−δ exists, this can be written as

G (α, β, γ, γ) f(x) = I−δIγg(x).

Therefore,
f(x) = G−1 (α, β, γ, γ) I−δIγg(x). (15)

Hence f(x), given by (15), if exists, is a solution of the integral equation (6).
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1. Introduction, Notations and Definitions

Throughout this paper, we shall employ the Pochhammer symbol defined by,

(λ)n =

{
1, if n = 0
λ(λ+ 1)(λ+ 2)...(λ+ n− 1), if n = 1, 2, 3, ... .

(1.1)

In term of Gamma function, we have

(λ)n =
Γ(λ+ n)

Γ(λ)
(1.2)

and

(λ)−n =
Γ(λ− n)

Γ(λ)
=

(−1)n

(1− λ)n
, n = 1, 2, ...; λ 6= 0,±1,±2, ... . (1.3)

The generalized hypergeometric series is defined as,

rFs

[
a1, a2, ..., ar; z
b1, b2, ..., bs

]
=

∞∑
n=0

(a1)n(a2)n...(ar)nz
n

(b1)n(b2)n...(bs)nn!
(1.4)
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The rFs series in (1.4) converges for |z| < ∞ if r ≤ s; for |z| < 1 if r = s + 1
and diverges for all z 6= 0 if r > s + 1. Also, the denominator parameters
bi 6= 0,−1,−2, ... for i = 1, 2, ..., s.
In 1947, Bailey [1] established the following simple but very useful transformation;
If

βn =

n∑
r=0

αrun−rvn+r (1.5)

and

γn =
∞∑
r=0

δr+nurvr+2n, (1.6)

where ur, vr, αr and δr are any functions of r alone and the series γn exists, then

∞∑
n=0

αnγn =

∞∑
n=0

βnδn, (1.7)

provided both series of (1.7) converge.
We shall make use of following results.

3F2

[
−n, 1 + n+ 2x+ 2y, x; 1
1 + x+ y, 1 + 2x

]
=

(1)n(1 + x)m(1 + y)m
(1 + 2x)n(1 + x+ y)m(1)m

, (1.8)

[Verma and Jain 3; (2.26)p. 1028]

where m is the greatest integer ≤ n
2 .

3F2

[
−n, 1 + n+ 2x+ 2y, 1 + x; 1
1 + x+ y, 1 + 2x

]
=

(−1)n(1)n(1 + x)m(1 + y)m
(1 + 2x)n(1 + x+ y)m(1)m

, (1.9)

[Verma and Jain 3; (2.27)p. 1028]

where m is the greatest integer ≤ n
2 .

3F2

[
−n, 2 + n+ b+ 2x, x; 1
1 + 1

2b+ x, 2 + 2x

]

=
(1)n(2 + b+ x)n

(
3
2 + 1

2b+ x
)
m

(
1 + 1

2b
)
m

(
1 + 1

2x
)
2m

(1 + x)n(2 + b+ 2x)n(1)m
(
3
2 + x

)
m

(
1 + 1

2b+ 1
2x
)
2m

, (1.10)

[Verma and Jain 3; (3.2)p. 1033]

where m is the greatest integer ≤ n
2 .

3F2

[
−n, 2 + n+ b+ 2x, 1 + x; 1
1 + 1

2b+ x, 2 + 2x

]
=

(−1)n(1)n
(
3
2 + 1

2b+ x
)
m

(
1 + 1

2b
)
m

(2 + b+ 2x)n(1)m(1 + x)m
,

(1.11)
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[Verma and Jain 3; (3.4)p. 1033]

where m is the greatest integer ≤ n
2 .

4F3

[
x, 12x−

1
2 , 1 + a+ n,−n; 1

x− 1, x+ 1, 12 + 1
2a

]
=

(1)n(1 + a− x)n
(
1 + 1

2a
)
m

(
1
2 + 1

2a
)
m

(1 + a)n(1 + x)n(1)m
(
1
2 + 1

2a−
1
2x
)
m

,

(1.12)

[Verma and Jain 3; (3.6)p. 1033]

where m is the greatest integer ≤ n
2 .

3F2

[
a
3 , 1 + a+ n,−n; 3

4
1
2 + 1

2a, 1 + 1
2a

]
=

(1)n
(
1 + a

3

)
m

(1 + a)n(1)m
, (1.13)

[Verma and Jain 3; (4.6)p. 1036]

where m is the greatest integer ≤ n
2 .

3F2

[
a
3 , 1 + a+ n,−n; 1
a
2 ,

1
2 + 1

2a

]
=

(−1)n−m(1)m
(
1 + a

3

)
m

(1 + a)n(1)m
, (1.14)

[Verma and Jain 3; (4.7)p. 1036]

where m is the greatest integer ≤ n
2 .

4F3

[
a
3 , 1 + a

2 , 1 + a+ n,−n; 1
a
2 ,

1
2 + 1

2a, 2 + a
2

]
=

(1)n
(
a
2

)
n

(
1 + a

3

)
m

(
2 + a

6

)
m

(1 + a)n
(
2 + a

2

)
n

(1)m
(
a
6

)
m

, (1.15)

[Verma and Jain 3; (4.9)p. 1037]

where m is the greatest integer ≤ n
2 .

1F0[a;−; z] = (1− z)−a, |z| < 1. (1.16)

[Slater 2; (2.2.2.2)p. 46]

2. Main Results
In this section we have established following results
(i)

(1− z)−2x−2y−1 2F1

[
x, 12 + x+ y;− 4z

(1−z)2

1 + 2x

]
= 2F1

[
1 + y, 12 + x+ y; z2
1
2 + x

]
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+
z(1 + 2x+ 2y)

(1 + 2x)
2F1

[
1 + y, 32 + x+ y; z2
3
2 + x

]
, (2.1)

provided max.
(
|z|,
∣∣∣ 4z
(1−z)2

∣∣∣) < 1.

(ii)

(1− z)−2x−2y−1 2F1

[
1 + x, 12 + x+ y;− 4z

(1−z)2

1 + 2x

]
= 2F1

[
1 + y, 12 + x+ y; z2
1
2 + x

]

−z(1 + 2x+ 2y)

(1 + 2x)
2F1

[
1 + y, 32 + x+ y; z2
3
2 + x

]
, (2.2)

provided max.
(
|z|,
∣∣∣ 4z
(1−z)2

∣∣∣) < 1.

(iii)

(1− z)−2−2x−b 2F1

[
3
2 + 1

2b+ x, x;− 4z
(1−z)2

2x+ 2

]

= 7F6

[
1 + x+ b

2 ,
3
2 + x+ b

2 , 1 + b
2 + x

2 ,
3
2 + b

2 + x
2 , 1 + b

2 ,
1
2 + x

4 , 1 + x
4 ; z2

1
2 + x

2 , 1 + x
2 , 1 + b

2 + x, 32 + x, 12 + b
4 + x

4 , 1 + b
4 + x

4

]

+
(2 + b+ x)z

(1 + x)
7F6

[
3
2 + b

2 + x, 2 + x+ b
2 ,

3
2 + b

2 + x
2 , 2 + b

2 + x
2 ,

1
2 + x

4 , 1 + x
4 , 1 + b

2 ; z2

1 + x
2 ,

3
2 + x, 2 + b

2 + x, 32 + x, 12 + b
4 + x

4 , 1 + b
4 + x

4

]
(2.3)

provided max.
(
|z|,
∣∣∣ 4z
(1−z)2

∣∣∣) < 1.

(iv)

(1−z)−3−2x−b 2F1

[
3
2 + b

2 + x, 1 + x;− 4z
(1−z)2

2 + 2x

]
= 2F1

[
3
2 + b

2 + x, 1 + b
2 ; z2

3
2 + x

]
,

(2.4)

provided max.
(
|z|,
∣∣∣ 4z
(1−z)2

∣∣∣) < 1.

(v)

(1−z)−1−a 3F2

[
x, x2 −

1
2 , 1 + a

2 ;− 4z
(1−z)2

x− 1, x+ 1

]
= 3F2

[
1 + a

2 −
x
2 , 1 + a

2 ,
1
2 + a

2 ; z2

1
2 + x

2 , 1 + x
2

]

+
(1 + a− x)

(1 + x)
4F3

[
1 + a

2 −
x
2 ,

3
2 + a

2 −
x
2 , 1 + a

2 ,
1
2 + a

2 ; z2

1 + x
2 ,

3
2 + x

2 ,
1
2 + a

2 −
x
2

]
, (2.5)
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provided max.
(
|z|,
∣∣∣ 4z
(1−z)2

∣∣∣) < 1.

(vi)

(1− z)−1−a 1F0

[
a

3
;−;− 3z

(1− z)2

]
= (1 + z + z2) 1F0

[
1 +

a

3
;−; z3

]
(2.6)

provided max.
(
|z|,
∣∣∣ 3z
(1−z)2

∣∣∣) < 1.

(vii)

(1− z)−1−a 2F1

[ 1
2 + a

2 ,
a
3 ;− 3z

(1−z)2

a
2

]
= (1− z + z2) 1F0

[
1 +

a

3
;−; z3

]
(2.7)

provided max.
(
|z|,
∣∣∣ 3z
(1−z)2

∣∣∣) < 1.

(viii)

(1− z)−1−a 3F2

[ a
3 , 1 + a

2 , 1 + a
2 ;− 3z

(1−z)2

a
2 , 2 + a

2

]
= 3F2

[
1
3 + a

6 , 2 + a
6 , 1 + a

3 ; z3

1 + a
6 ,

4
3 + a

6

]

+
az

a+ 4
4F3

[
1
3 + a

6 , 2 + a
6 ,

2
3 + a

6 , 1 + a
3 ; z3

a
6 ,

4
3 + a

6 ,
5
3 + a

6

]

+
a(a+ 2)z2

(a+ 4)(a+ 6)
3F2

[
2
3 + a

6 , 1 + a
6 , 1 + a

3 ; z3

a
6 ,

5
3 + a

6

]
, (2.8)

provided max.
(
|z|,
∣∣∣ 3z
(1−z)2

∣∣∣) < 1.

Proof of (2.1)-(2.8)

As an illustration, we give the proof of (2.1).

Choosing ur = 1
(1)r

, vr = (1 + 2x + 2y)r, αr = (x)r(−1)r
r!(1+x+y)r(1+2x)r

and δr = zr in

(1.5) and (1.6) and applying the summation formula (1.8) and binomial theorem
(1.16) respectively we find the values of βn and γn. Putting these values of αn,
βn, γn and δn in (1.7) we get (2.1) after some simplifications.

Proceeding as above by choosing properly ur, vr, αr and δr in (1.5) and (1.6)
and then applying the summation formulas (1.9)-(1.15) and binomial theorem
(1.16) one can easily calculate βn and γn. Putting these values in (1.7) we find
(2.2)-(2.8).

3. Special Cases

In this section we have deduced certain results as special cases of the results of
section 2.
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(i) Taking y = −1 in (2.1) we get,

2F1

[
x, x− 1

2 ;− 4z
(1−z)2

1 + 2x

]
=

{
1 +

z(2x− 1)

(2x+ 1)

}
(1− z)2x−1. (3.1)

(ii) For y = 0 (2.1) yields,

2F1

[
x, x+ 1

2 ;− 4z
(1−z)2

1 + 2x

]
= (1− z)2x. (3.2)

(iii) Taking y = −1 in (2.2) we get,

2F1

[
1 + x, x− 1

2 ;− 4z
(1−z)2

2x+ 1

]
=

{
1− z(2x− 1)

(2x+ 1)

}
(1− z)2x−1. (3.3)

(iv) Putting y = 0 in (2.2) we find,

2F1

[
1 + x, 12 + x;− 4z

(1−z)2

2x+ 1

]
=

(1− z)2x+1

(1 + z)
. (3.4)

(v) Adding (3.1) and (3.3) we have,

2F1

[
x, x− 1

2 ;− 4z
(1−z)2

2x+ 1

]
+ 2F1

[
1 + x, x− 1

2 ;− 4z
(1−z)2

2x+ 1

]

= 2(1− z)2x−1.

(vi) Substracting (3.3) from (3.1) we obtain,

2F1

[
x, x− 1

2 ;− 4z
(1−z)2

2x+ 1

]
− 2F1

[
1 + x, x− 1

2 ;− 4z
(1−z)2

2x+ 1

]

=
2z(2x− 1)

(2x+ 1)
(1− z)2x−1. (3.6)

(vii) Taking b = −2 in (2.3) we get,

2F1

[
x, x+ 1

2 ;− 4z
(1−z)2

2x+ 2

]
=

(
1 +

x

(1 + x)

)
(1− z)2x. (3.7)

(viii) Putting b = −2 in (2.4) we get,

2F1

[
1 + x, x+ 1

2 ;− 4z
(1−z)2

2x+ 2

]
= (1− z)2x+1. (3.8)
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(ix) For b = 0, (2.4) yields,

2F1

[
3
2 + x, 1 + x;− 4z

(1−z)2

2x+ 2

]
=

(1− z)2x+2

(1 + z)
. (3.9)

(x) From (3.8) and (3.9) we get

(1− z) 2F1

[
1 + x, x+ 1

2 ;− 4z
(1−z)2

2x+ 2

]
= (1 + z) 2F1

[
3
2 + x, 1 + x;− 4z

(1−z)2

2x+ 2

]
(3.10)

(xi) Taking a = −1 in (2.5) we have

3F2

[
x, x2 −

1
2 ,

1
2 ;− 4z

(1−z)2

x− 1, x+ 1

]
=

(
1− xz

1 + x

)
. (3.11)

(xii) For a = −3, (2.7) yields

2F1

[
−1

2 ,−1;− 3z
(1−z)2

−3
2

]
=

(1− z + z2)

(1− z)2
. (3.12)
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are zero. Also contravariant set–theoretical entropy of Euler’s totient function
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1. Introduction
Various types of entropies have been studied in different branches of mathematics.
In category Set one may consider set–theoretical and contravariant set–theoretical
entropies of self–maps. Our main aim in this text is to study set–theoretical be-
haviour of some well–known number theoretical maps like Euler’s totient function,
Dedekind psi function and their generalizations. However set–theoretical and con-
travariant set–theoretical entropies of a “nice” self–maps have interactions with
infinite orbit number’s concept and infinite anti–orbit number’s concept so we
pay attention to these concepts too. We continue our studies in topological aris-
ing concepts in this regard, our main emphasis in topological point of view deals
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with Alexandroff topological spaces’ approach.
Let N = {1, 2, . . .} be the set of natural numbers and P = {2, 3, 5, 7, . . .} the set
of prime numbers. For finite set A by ]A we mean the number of elements of A.
Also we say λ : X → X is finite fibre if λ−1(x) is finite for all x ∈ X.
Background on infinite orbit number and infinite anti–orbit number of
a self–map. For self–map λ : X → X we say the one–to–one sequence {an}n≥1
is:
• an infinite λ−orbit if for all n ≥ 1, an+1 = λ(an),
• an infinite λ−anti–orbit if for all n ≥ 1, an = λ(an+1) (see e.g., [6, Defini-
tion 1.2] and [7, Definition 1.1]).
Moreover we set [4]:

o(λ) := sup({n ≥ 1 : there exists n disjoint infinite λ−orbit sequences} ∪ {0}),
a(λ) := sup({n ≥ 1 : there exists n disjoint infinite λ−anti–orbit

sequences} ∪ {0}),

we call o(λ) infinite orbit number of λ and a(λ) infinite anti–orbit number of λ.
Background on set–theoretical and contravariant set–theoretical en-
tropies. For λ : X → X and finite subset A of X the following limit exists

entset(λ,A) = lim
n→∞

](A ∪ λ(A) ∪ · · · ∪ λn−1(A))

n

and we call entset(λ) := sup{entset(λ,B) : B is a finite subset of X} set–
theoretical entropy of λ [2]. Moreover for finite fibre onto map µ : X → X
and finite sunset A of X the following limit exists

entcset(µ,A) = lim
n→∞

](A ∪ µ−1(A) ∪ · · · ∪ µ−(n−1)(A))

n

and we call entcset(µ) := sup{entcset(µ,B) : B is a finite subset of X} set–
theoretical entropy of µ. On the other hand if λ : X → X is finite fibre and
sc(λ) :=

⋂
n≥1

λn(X), then λ �sc(λ): sc(λ) → sc(λ) is finite fibre and onto, we call

entcset(λ) := entcset(λ �sc(λ)) contravariant set–theoretical entropy of λ [5].
Note 1.1. For λ : X → X we have entset(λ) = o(λ) [2, Proposition 2.16], also
for finite fibre λ : X → X we have entcset(λ) = a(λ) [5, Theorems 3.2, 3.9].
Some number theoretical special functions. Let’s recall the following func-
tions (n ≥ 1 and for convenient suppose all of them map 1 to 1):
• Jordan’s totient function (for k ≥ 1): Jk(n) = {(s1, . . . , sk) : s1, . . . , sk ∈
{1, . . . , n}, gcd(s1, . . . , sk, n) = 1}(nk

∏
{1− 1

pk
: p ∈ P, p|n}) (so well–known Eu-

ler’s totient function ϕ is J1) (see e.g., [13])
• Generalized Dedekind psi function (for k ≥ 1): ψk(n) = nk

∏
{1 + 1

pk
: p ∈
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P, p|n} = J2k(n)
Jk(n)

(so well–known Dedekind psi function, ψ(= ψ1) is J2
J1

) [12]

• Unitary totient function: ϕ∗(n) =
∏
{pα − 1 : pα|n, pα+1 6 |n, p ∈ P, α ≥ 1} (see

e.g., [8, 11])
• Ω(n) =

∑
{α : pα|n, pα+1 6 |n, p ∈ P} [9]

• ω(n) =
∑
{1 : pα|n, pα+1 6 |n, p ∈ P, α ≥ 1}

• dl(n) = ]{(s1, · · · , sl) ∈ Nl : s1 · · · sl = n} (l ≥ 2) (we denote d2 with d) [9]
• σl(n) = Σ

d|n,d≤n
dl (l ≥ 2) [9]

2. Infinite orbit number and infinite anti–orbit number of ϕ
In this section we compute infinite orbit number and infinite anti–orbit number
of Euler’s totiont function, Dedekind psi function and some other well–known
maps.
Lemma 2.1. For f : N→ N with f(n) ≤ n we have o(f) = 0.
Proof. Suppose {xn}n≥1 is an infinite f−orbit and for all n ≥ 1 we have f(n) ≤ n,
thus x1, x2 = f(x1), x3 = f2(x1), . . . ∈ {1, 2, . . . , x1}, thus {xn}n≥1 is not infinite
and one–to–one sequence.

�

Lemma 2.2. For f : N→ N with f(n) ≥ n we have a(f) = 0.
Proof. Suppose {xn}n≥1 is an infinite f−anti–orbit and for all n ≥ 1 we have
f(n) ≥ n, thus for all n ≥ 1 we have x1 = fn(xn+1) ≥ fn−1(xn+1) ≥ · · · ≥ xn+1,
so x1, x2, x3, . . . ∈ {1, 2, . . . , x1} thus {xm}m≥1 is not infinite and one–to–one.

�

Lemma 2.3. For f : N→ N with f(n) > n for all n > 1, we have o(f) > 0.
Proof. Let x ≥ 2, then {fn(x)}n≥1 is an infinite f−orbit, thus o(f) > 0.

�

Lemma 2.4. For k ≥ 1 let Sk := {2k3n}n≥1, then S1, S2, . . . are disjoint infinite
ϕ−anti–orbit sequences, so a(ϕ) = +∞.
In addition for all n ≥ 1, ϕ(n) ≤ n so o(ϕ) = 0.
Proof. For n, k, s, t ≥ 1 we have ϕ(2k3n+1) = 2k−1(2 − 1)3k(3 − 1) = 2k3n

moreover 2k3n = 2s3t if and only if k = s and n = t.

�

Lemma 2.5. For p ∈ P \ {2} let Sp := {xpn}n≥1 with

• xp1 = p,

• xpn+1 = px
p
n−1 (n ≥ 1),
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then S3, S5, S7, S11, . . . are disjoint infinite d−anti–orbit sequences, so
a(d) = +∞.
In addition for all n ≥ 1, d(n) ≤ n so o(d) = 0.
Proof. For n,m ≥ 1 and p, q ∈ P\{2} we have d(xpn+1) = d(px

p
n−1) = xpn−1+1 =

xpn moreover if xpn = xqm then the unique prime divisor of xpn is p and the unique
prime divisor of xqm is q, so p = q thus xpn = xpm moreover for all i ≥ 1 we have
xpi < xpi+1, so xpn = xpm leads to n = m.

�

Lemma 2.6. For p ∈ P let Sp := {xpn}n≥1 with

• xp1 = p,

• xpn+1 = px
p
n (n ≥ 1),

then S2, S3, S5, S7, S11, . . . are disjoint infinite Ω−anti–orbit sequences, so
a(Ω) = +∞.
In addition for all n ≥ 1, Ω(n) ≤ n so o(Ω) = 0.
Proof. For n,m ≥ 1 and p, q ∈ P we have Ω(xpn+1) = Ω(px

p
n) = xpn moreover if

xpn = xqm then the unique prime divisor of xpn is p and the unique prime divisor
of xqm is q, so p = q thus xpn = xpm moreover for all i ≥ 1 we have xpi < xpi+1, so
xpn = xpm leads to n = m.

�

Lemma 2.7. For p ∈ P \ {2} let Sp := {xpn}n≥1 with (suppose qn is the nth
prime number):

• xp1 = p = qj ,

• xpn+1 = pqj+1q2 · · · qj+xpn−1 (n ≥ 1),

then S3, S5, S7, S11, . . . are disjoint infinite ω−anti–orbit sequences, so
a(ω) = +∞.
In addition for all n ≥ 1, ω(n) ≤ n so o(ω) = 0.
Proof. For n,m ≥ 1 and p, q ∈ P \ {2} we have

ω(xpn+1) = ω(pqj+1qj+2 · · · qj+xpn−1) = xpn

moreover if xpn = xqm then the least prime divisor of xpn is p and the least prime
divisor of xqm is q, so p = q thus xpn = xpm moreover for all i ≥ 1 we have xpi < xpi+1,
so xpn = xpm leads to n = m.

�
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Lemma 2.8. For k ≥ 1 let Sk := {3k2n}n≥1, then S1, S2, . . . are disjoint infinite
ψ−orbit sequences, so o(ψ) = +∞.
In addition for all n ≥ 1, ψ(n) ≥ n so a(ψ) = 0.
Proof. For n,m, s, t ≥ 1 we have ψ(3m2n) = 3m−1(3 + 1)2n−1(2 + 1) = 3m2n+1

moreover if 3m2n = 3s2t if and only if m = s and n = t.

�

Lemma 2.9. For k ≥ 1 let Sk := {22n+1k+2n−13}n≥1, then S1, S2, . . . are disjoint
infinite J2−orbit sequences, so o(J2) = +∞.
In addition for all n ≥ 1, J2(n) ≥ n so a(J2) = 0.
Proof. For n,m, s, t ≥ 1 we have J2(2

2n+1m+2n−13) = 22(2
n+1m+2n−1)−2(22 −

1)32−2(32 − 1) = 22(2
n+1m+2n−1)+13 = 22

(n+1)m+2n+1−13 moreover:

22
n+1m+2n−13 = 22

s+1t+2s−13 ⇔ 2n+1m+ 2n − 1 = 2s+1t+ 2s − 1

⇔ 2n(2m+ 1) = 2s(2t+ 1)

⇔ n = s ∧m = t .

�

Note 2.10. Suppose f : N→ N is a multiplicative function g : P×N→ N ∪ {0}
and h : P→ N∪{0} such that f(1) = 1 and f(pn) = pg(p,n)h(p)(≥ 1) for all p ∈ P
and n ≥ 1. Also suppose there exist distinct p, q ∈ P and u, v ≥ 1 with pu = h(q)
and qv = h(p) define s, t : N → N with s(x) = g(p, x) + u, t(x) = g(q, x) + v.
If there exists (x1, y1), (x2, y2), . . . ∈ N × N such that N× N→ N× N

(n,m)7→(sn(xm),tn(ym))
is

one–to–one, then o(f) = +∞ since for Sn := {psi(xn)qti(yn)}i≥1, the sequences
S1, S2, . . . are disjoint infinite f−orbit sequences (use the fact that

f(ps
i(xn)qt

i(yn)) = pg(p,s
i(xn))h(p)qg(q,t

i(yn))h(q)

= pg(p,s
i(xn))+uqg(q,t

i(yn))+v = ps
i+1(xn)qt

i+1(yn) ).

Lemmas 2.8 and 2.9 are examples of the above construction.
Note 2.11. As a generalization of Note 2.10 suppose f : N→ N is a multiplicative
function g : P × N → N ∪ {0} and h : P → N ∪ {0} such that f(1) = 1 and
f(pn) = pg(p,n)h(p)(≥ 1) for all p ∈ P and n ≥ 1. Also suppose there exist distinct
p1, . . . , pm ∈ P and (ui1, . . . , u

i
m) ∈ Nm (for i = 1, . . . ,m) with uij + g(pi, x) ≥ 1

for all i, j, x and p
ui1
1 · · · p

uim
m = h(pi) define si : N → N with si(x) = g(pi, x) +

(u1i + · · · + umi ). If there exists (x11, x
2
1, . . . , x

m
1 ), (x12, x

2
2, . . . , x

m
2 ), . . . ∈ N × N

such that Nl → Nl
(i,j)7→(si1(x

1
j ),s

i
2(x

2
j ),...,s

i
m(xmj ))

is one–to–one, then o(f) = +∞ since for

Sn := {ps
i
1(x

1
n)

1 p
si2(x

2
n)

2 · · · ps
i
m(xmn )
m }i≥1, the sequences S1, S2, . . . are disjoint infinite
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f−orbit sequences.
Table 2.12. We have the following table:

λ o(λ) a(λ)

1st. row ϕ = J1, d(= d2),Ω, ω 0 +∞
2nd. row ϕ∗ 0

3rd. row J2, ψ(= ψ1) +∞ 0

4th. row σk, ψk, Jk+2(k ≥ 1) > 0 0

Proof. For the 1st. row use Lemmas 2.4, 2.5, 2.6, and 2.7.
For the 2nd. row use Lemma 2.1.
For the 3rd. row use Lemmas 2.8 and 2.9.
For the 4th. row use Lemmas 2.2, 2.3 and the fact that for all n ≥ 2 we have
σk(n) > n,ψk(n) > n, Jk+2(n) > n (for k ≥ 1).

�

Note 2.13. 1. For f : N → N with f(n) ≥ n (for all n ≥ 1) we have f−1(m) ⊆
{1, . . . ,m} (for all m ≥ 1) and f : N → N is finite fibre, thus σk, ψk, Jk+1 (for
k ≥ 1) are finite fibre.
2. For distinct prime numbers p1, . . . , pn and α1, . . . , αn ≥ 1 with ϕ(pα1

1 · · · pαn
n ) =

m we have pi− 1 ≤ m and 2αi−1 ≤ pαi−1
i ≤ m for all i = 1, . . . , n, so p1, . . . , pn ≤

m+ 1 and α1, . . . , αn ≤
logm

log 2
+ 1 therefore

pα1
1 · · · p

αn
n ≤

∏p
[

logm

log 2
+1

]
: p ∈ P, p ≤ m+ 1

 ,

hence for all m ≥ 1 we have

ϕ−1(m) ⊆

1, . . . ,
∏p

[
logm

log 2
+1

]
: p ∈ P, p ≤ m+ 1


 .

Thus for all m ≥ 1, ϕ−1(m) is finite and ϕ is finite fibre.
3. For k ≥ 2 we have P ⊆ ω−1∩Ω−1(1)∩d−1k (k) thus ω,Ω, dk are not finite fibre.
Table 2.14. By Table 2.12 and Note 2.13 we have the following table (where “−”
indicates that for the corresponding case λ is not finite fibre and contravariant
set–theoretical entropy of λ is undefined):

λ entset(λ) entcset(λ)

ϕ(= J1) 0 +∞
Ω, ω 0 −
J2, ψ(= ψ1) +∞ 0

σk, ψk, Jk+2(k ≥ 1) > 0 0
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Problem 2.15. Consider k ≥ 1:
• Compute a(ϕ∗), o(dk+2), a(dk+2).
• For λ = σk, ψk+1, Jk+2 compute entset(λ).
3. Some notes on Euler’s totient function and Alexandroff topologies
on N
We call topological space X Alexandroff, if intersection of any nonempty family of
open sets is open [1]. In Alexandroff topological space (X, τ) for every x ∈ X we
denote the smallest open neighbourhood of x ∈ X with V (x, τ). For f : X → X:

• B = {
⋃
{f−n(x) : n ≥ 0} : x ∈ X}

• B = {{fn(x) : n ≥ 0} : x ∈ X}

are basis of Alexandroff topologies on X. We call topology generated by B,
functional Alexandroff topology onX (with respect to f) and denote this topology
by τf [3]. We call topology generated by B, Alexandroff topology on X with
respect to f and denote this topology by τ f [10]. For f : X → X and x ∈ X, we
have:

• V (x, τf ) =
⋃
{f−n(x) : n ≥ 0},

• V (x, τ f ) = {fn(x) : n ≥ 0}.

As it has been mentioned in [4], set–theoretical entropies of f : X → X interact
with cellularities of the above mentioned Alexandroff spaces on X. So we devote
this section to arising Alexandroff topologies from some of number theoretical
functions.
Lemma 3.1. For f : N→ N and k ∈ N we have:

1. if for n ≥ 1 we have f(n) ≥ n, then V (k, τf ) ⊆ {1, . . . , k};

2. if for n ≥ 1 we have f(n) ≤ n, then V (k, τ f ) ⊆ {1, . . . , k}.

Proof. 1) Suppose for all n ≥ 1 we have f(n) ≥ n. For k ≥ 1 suppose x ∈ V (k, τf ),
then there exists m ≥ 0 with k = fm(x) ≥ x.
2) Suppose for all n ≥ 1 we have f(n) ≤ n. For k ≥ 1 suppose x ∈ V (k, τ f ), then
there exists m ≥ 0 with x = fm(k) ≤ k.

�

Lemma 3.2. For f : N → N and k ∈ N if for n > 1 we have f(n) < n and
f(1) = 1, then 1 ∈ V (k, τ f ) and (N, τ f ) is connected. Also V (1, τf ) = N and
(N, τf ) is connected too.
Proof. Suppose m = minV (k, τ f ), then f(m) ∈ V (k, τ f ), so

m ≥ f(m) ≥ minV (k, τ f )
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and m = f(m) hence m = 1 and 1 ∈ V (k, τ f ). Since 1 belongs to every nonempty
subset of (N, τ f ), thus it does not have any disjoint nonempty open subset and
it is connected.
For all n ≥ 1 we have fn(n) = 1, so n ∈ V (1, τf ) and V (1, τf ) = N. For
nonempty open subsets of U, V of (N, τf ) with N = U ∪V we may suppose 1 ∈ U
so V (1, τf ) ⊆ U and N = U which leads to connectivity of (N, τf ).

�

Lemma 3.3. For f : N→ N suppose for n > 1 we have f(n) ≥ n and f(1) = 1,
then (N, τ f ) and (N, τf ) are disconnected.
Proof. {1},N \ {1} is a separation of (N, τ f ) (and (N, τf )).

�

Example 3.4. For 1 ≤ α ≤ ℵ0 suppose M is a partition of N to α infinite
subsets of N. For D ∈M suppose D = {nDk }k≥1 with nD1 < nD2 < · · · and define
fD : D → D with fD(nDk ) = nDk+1 for k ≥ 1, then for f :=

⋃
D∈M

fD : N → N, we

have f(n) > n for all n ≥ 1 and M is the collection of all connected components
of (N, τf ).
Table 3.5. By Lemmas 3.2 and 3.3 we have following table:

λ (N, τλ) and (N, τλ)

ϕ(= J1), ϕ
∗, ω,Ω, d(= d2) connected

σk, ψk, Jk+1(k ≥ 1) disconnected
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Abstract: In this paper, we present a method to evaluate the Laplace trans-
formations of any {pth (p > 1)} power of a function and nonlinear terms of the
differential equations and then obtain the large values of approximate solution
of nonlinear differential equations to compute them from the problems occurring
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1. Introduction

This paper is devoted to the study of nonlinear differential equations which arise
in many branches of Physical Sciences, for example in damped oscillatory motions,
electrical circuits, electromagnetic fields and other dynamical systems of chemical
and biological sciences (see, van der Pol ([32] and [35]), Lalesco [20], Raleigh [33],
Shohat [35], Pipes ([29], [30] and [31]), Jacobsen [13], Liu et al. [23]). These
differential equations have been solved by many methods of approximations as
by equating the like powers of the coefficients of the series, stability analysis,
autonomous systems, Kryloff and Bogoliuboff methods (see, Pipes [31, p.688]).
Some nonlinear differential equations are solved by decomposition techniques
such as; Adomian decompositions, homotopy perturbation methods on applying
He’s polynomials [12] and other operational methods etcetera. (See, Bougoffa [5],
Mohyuddin [25], El-Sayed [7], Gorbani and Nadjfi [8]).

The Riccati equation has frequently used in the engineering field and in branch
of optimal control ([4] and [38]). These equations have been solved by various
methods (see Abbasbandy ([1] and [2]), Liu et al. [23], Mak and Harko [24],
Zeidan [38]).
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The Abel differential equations occur in the modeling of real problems in various
areas such as big picture in oceanic circulation [3], in problems of magneto-statics
([14] and [22]), control theory [27], cosmology [9], fluid mechanics ([28] and [5]),
solid mechanics [26], biology ([11] and [34]), and cancer therapy [10].
The basic motivation of this paper is to develop and explore some of the con-
sequences of the approximation methods of Laplace transformations which need
not additional polynomials (He’s or Adomian polynomials) as in the methods
developed by other researchers (see [1], [2], [5], [7], [8], [12] and [25]).
In our work we claim the Hölder’s inequality (for 1

p + 1
q = 1, p > 0, q > 0 ) given

by (see, Steele [36, p.151])
∫∞

0 u(t)v(t)dt ≤ (
∫∞

0 (|u(t)|)pdt)
1
p (
∫∞

0 |v(t)|qdt)
1
q to

find the approximation solution due to Laplace transformation.
Remark 1 It is noted that the Hölder’s inequality (for 1

p + 1
q = 1, p > 0, q > 0)

becomes a Cauchy-Schwarz inequality, when, p = q = 2. The Cauchy-Schwarz
inequality is a very powerful tool, which is given by∫∞

0 u(t)v(t)dt ≤ (
∫∞

0 (|u(t)|)2dt)
1
2 (
∫∞

0 |v(t)|2dt)
1
2 . Recently, Kumar [15] has ap-

plied it to analyze the characteristics of Lupas-Kumar-Pathan type integral op-
erators.
2. Theorems on approximation methods of Laplace transformation
Here in this section, we introduce two theorems on approximation methods of
Laplace transformation to obtain the approximate solution of various nonlinear
differential equations.
Theorem 1
If the Laplace transformation of pth power of any function v(t) is denoted by
L[{v(t)}p], and

lim
s→0+

∫ ∞
0

e−st|v(t)|pdt = Ap <∞, 2 ≤ p <∞,

lim
s→0+

∫ ∞
0

e−stv(t)dt = ṽ(0+) <∞, v(t) = 0, when t < 0. (1)

Here, the Laplace transform of v(t) is denoted by L[v(t)] = ṽ(s) =
∫∞

0 e−stv(t)dt.

Then, there exists an analytic function Φ(p, k; s) = (−1)k
∫∞

0 e−sttk{v(t)}pdt, and
Φ(p, k; s) is bounded by

(−1)k(Γ(2k + 1))
1
2 (s)p−(k+1){ṽ(s)}p ≥ Φ(p, k; s)

≥



k∑
r=0

(
k

r

)
Γ(p)

Γ(p− r)
dk−r

dsk−r
{ṽ(s)}p, when r < p− 1,

k+1∑
p=1

Γ(k + 1)

Γ(k + 2− p)
dk+1−p

dsk+1−p {ṽ(s)}p, when r = p− 1,

0, when r > p− 1, ∀1 ≤ p <∞ and k = 0, 1, 2, 3, . . .

(2)
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Again then, the L[{v(t)}p] exists in discrete form

L[{v(t)}p] =

{
∼= s(p−1){ṽ(s)}p, when 2 ≤ p <∞,
= ṽ(s), when p = 1.

. (3)

Further the inverse [{v(t)}p] is presented as

[{v(t)}p] =

{
∼= L−1{s(p−1){ṽ(s)}p}, when 2 ≤ p <∞,
= L−1{ṽ(s)}, when p = 1.

. (4)

Proof
We prove this theorem on applying the Hölder′s inequality (for 1

p + 1
q = 1, p >

0, q > 0) to find that∫ ∞
0

e−stv(t)dt =

∫ ∞
0

e
− st

p e
− st

q v(t)dt ≤ (

∫ ∞
0

(e
− st

p )
p
dt)

1
p

(

∫ ∞
0

(e
− st

q )
q
|v(t)|

q
dt)

1
q ,

so that due to our assumptions given in Eqn. (1) of the Theorem 1, there exists∫ ∞
0

e−st|v(t)|qdt = L[{v(t)}q] ≥ s(q−1){ṽ(s)}q, q > 0.

Otherwise, we may write

L[{v(t)}p] ≥ s(p−1){ṽ(s)}p, p > 0. (5)

Again, we are familiar with that Laplace transformation of a function be analytic,
hence, L[{v(t)}p] is analytic.
Then, with the aid of assumptions of Eqns. (1) and on differentiating Eqn. (5)
both of the sides as k − times with respect to s and to get

Φ(p, k; s) ≥
k∑
r=0

(
k
r

)
Γ(p)

Γ(p− r)
dk−r

dsk−r
{ṽ(s)}p. (6)

Therefore, from Eqn. (6) we may write

Φ(p, k; s) ≥



k∑
r=0

(
k

r

)
Γ(p)

Γ(p− r)
dk−r

dsk−r
{ṽ(s)}p, when r < p− 1,

k+1∑
p=1

Γ(k + 1)

Γ(k + 2− p)
dk+1−p

dsk+1−p {ṽ(s)}p, when r = p− 1,

0, when r > p− 1, ∀1 ≤ p <∞ and k = 0, 1, 2, 3, . . .

(7)
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Further use the Cauchy-Schwarz inequality (see Remark 1) in the integral∫ ∞
0

e−st(−t)k|v(t)|qdt,∀k ∈ N0 = {0, 1, 2, 3, . . . },

and appeal to the assumptions given in Eqns. (1) and the result (5), we find

Φ(p, k; s) ≤ (−1)k(Γ(2k + 1))
1
2 (s)

p−(k+1)
{ṽ(s)}p,∀k ∈ N0

= {0, 1, 2, 3, . . . }, 1 ≤ p <∞. (8)

Then, make an appeal to the inequalities (7) and (8), we obtain the function
Φ(p, k; s) is bounded by Eqn. (2) ∀k ∈ N0 = {0, 1, 2, 3, . . . }, 1 ≤ p <∞.
Again, in Eqn. (2) the function Φ(p, k; s) is monotonic ∀k ∈ N0 = {0, 1, 2, 3, . . . }, 1 ≤
p <∞ and hence it may be expressible as Taylor’s series

Φ(p, k; s) =

∞∑
m=0

Φ(p, k; a)
(s− a)m

m!
, (0 < s < 2a)

and again, this series has every term positive for s < a, thus

lim
s→0+

Φ(p, k; s) = Φ(p, k; 0+) =

∞∑
m=0

Φ(p, k; a)
(−a)m

m!
∀k ∈ N0

= {0, 1, 2, 3, . . . }, 1 ≤ p <∞.

The series Φ(p, k; 0+) will be convergent if |Φ(p,k;a)
(a)m

| < 1, ∀m ∈ N0. Then, we also

write Φ(p, k; s) = O(s−m)∀k,m ∈ N0, 1 ≤ p <∞. Thus our assumptions given in
Eqns. (1) and (2) are valid.
Now, to evaluate the uniqueness of inverse of the approximate formula of Laplace
transform given in Eqn. (2), we define a sequence of functions identical to Widder
[37, p. 288] operator given by for any real positive numbers t and ∀k ∈ N0 =
{0, 1, 2, 3, . . . }, 1 ≤ p <∞ :

L−1
k,t

{
Φ

(
p, k; s =

k

t

)}
=

1

k!

(
k

t

)k+1 ∫ ∞
0

e−
k
t
uuk{v(u)}pdu. (9)

Here, in Eqn. (9), limk→∞ L−1
k,t{Φ(p, k; s = k

t )} = {v(t)}p.
So that due to Eqn. (9), we have L−1

k,t{Φ1(p, k; s = k
t )} = 1

k!(
k
t )
k+1 ∫∞

0 e−
k
t
uuk{v1(u)}pdu

and L−1
k,t{Φ2(p, k; s = k

t )} = 1
k!(

k
t )
k+1 ∫∞

0 e−
k
t
uuk{v2(u)}pdu. Then, for {v1(t)}p 6=

{v2(t)}p, we find limk→∞ L−1
k,t{Φ1(p, k; s = k

t )} 6= limk→∞ L−1
k,t{Φ2(p, k; s = k

t )} .

Hence, for a function {v(t)}p the inversion formula L−1
k,t{Φ(p, k; s)} is unique.

Therefore, on applying Eqns. (3), the Eqn. (4) is computed.
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Finally, for getting the large values of the results, we now take the limit k → 0
in the Eqns. (7) and (8), it implies that the result (3)

s(p−1){ṽ(s)}p ≤ L[{v(t)}p] ≤ s(p−1){ṽ(s)}p, ∀1 ≤ p <∞. (10)

Hence, the Theorem1 is proved.

In our investigations, we also make an application of the Laplace transformation
of nth derivative of a function v(t) which is given by (see Churchill [6])

L{v(t)(n)} = snṽ(s)− sn−1v(0)− sn−2v(0)(1) − · · · − v(0)(n−1),

where , v(t)(n) =
dn

dtn
v(t), v(0)(n−1) =

dn−1

dtn−1
v(t)|

t = 0
. (11)

Now, applying above methods of Theorem 1 and Eqn. (11), we state and prove
following theorem:

Theorem 2 If the Laplace transformation of u beL{u} = ũ(s), then, there exists

L
{
u2du

dt

}
=

1

3
s3{ũ(s)}3 − 1

3
(u(0))

3

. (12)

Proof Take Laplace transformation of u2 du
dt , and then on integrate it by parts,

we have

L
{
u2du

dt

}
=

∫ ∞
0

e−stu2du

dt
dt = {e−stu3}| t =∞

t = 0
.−
∫ ∞

0

{
−se−stu2 + e−st2u

du

dt

}
udt

(13)

Again, here we have L{u} = ũ(s) =
∫∞

0 e−stu(t)dt. Thus, the Eqn. (13) gives us

L
{
u2du

dt

}
=

1

3
s

∫ ∞
0

e−stu3dt− 1

3
(u(0))

3

=
1

3
sL{u3} − 1

3
(u(0))

3

(14)

Finally, make an appeal to the formulae (3) and (11) in Eqn. (14), we get the
Eqn. (12).

3. Illustrative Examples

Example. Solution of van der Pol’s Equation [32], [35].

Analyze the solution of the van der Pol’s differential equation that may be found
in the damped oscillatory motions as

d2u

dt2
+ µ(u2 − 1)

du

dt
+ u = 0, 0 < µ ≤ 1, (15)

provided that u′(0) = 0, u(0) = u0.
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Solution. Take the Laplace transformation of both sides of Eqn. (15) (as setting
L{u} = ũ(s)) and then use the Theorems 1 and 2 and the result (12), to get

µ

3
s3{ũ(s)}3 + [s2 − µs+ 1]ũ(s)− µ

3
(u(0))3 + µu(0)− u′(0)− su(0) = 0 (16)

Now, make some manipulations in Eqn. (16) and put it in the form{
µ

3
[
s2{ũ(s)}3

s2
]

}
+

{[
1

s
− µ

s2
+

1

s3

]
ũ(s)

}
+

{
µu(0)− µ

3 (u(0))3 − u′(0)

s3

}
−
{
u(0)

s2

}
= 0

(17)
Then, with the use of the formula (4), the inverse Laplace transformation of Eqn.
(17) gives us the equation

µ

3

∫ t

0
(t− τ)u

3

(τ)dτ +

∫ t

0
u(τ)dτ − µ

∫ t

0
(t− τ)u(τ)dτ +

1

2

∫ t

0
(t− τ)2u(τ)dτ

+

[
µu(0)− µ

3
(u(0))

3
− u′(0)

]
t2

2
− [u(0)]t = 0 (18)

If we differentiate the Eqn. (18), we get the required solution

u(t) = µ

∫ t

0
u(τ)dτ−µ

3

∫ t

0
u3(τ)dτ−

∫ t

0
(t− τ)u(τ)dτ−[µu(0)−µ

3
(u(0))

3
−u′(0)]t+[u(0)]

(19)
Sequential solutions and analysis: To find approximate solution of problem

(15), first we evaluate the sequential solutions to suppose that u = limn→∞
1
n

n∑
k=1

uk

and now consider the Eqn. (19) in the form

uk(t) = µ

∫ t

0
uk−1(τ)dτ − µ

3

∫ t

0
uk−1

3(τ)dτ −
∫ t

0
(t− τ)uk−1(τ)dτ

+

[
µ

3
(u(0))

3
+ u′(0)− µu(0)

]
t+ [u(0)],∀k = 1, 2, 3, . . . (20)

Put k = 1, u′(0) = 0, u(0) = u0 in Eqn. (20), we find that

u1(t) = u0

{
t2

2
+ 1

}
(21)

Again put k = 2 in Eqn. (21), we find that

u2(t) = u0{1−
t2

2
+
µ

6
(1− u0

2)t3 − t4

24
− µ

20
u0

2t5 − µ

168
u0

2t7} (22)
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Finally, making an appeal to the Eqns. (21) and (22) in (u = limn→∞
1
n

n∑
k=1

uk ),

we find the approximate solution

u(t) = u0

{
1 +

µ

12
(1− u0

2)t3 − t4

48
− µ

40
u0

2t5 − µ

336
u0

2t7 + . . .

}
(23)

Again, the series (23) may be written by

u(t) = u0+t− t
2

2
+1−

{
1− t2

2
+ u0

t4

48

}
−
{
t− µ

12
(1− u0

2)u0t
3 +

µ

40
u0

3t5 − µ

336
(−u0)3t7 + . . .

}
.

(24)

Thus, due to the series (24), we approach the oscillatory solution of van der
Pol’s Equation [15]

u(t) ≈ u0 + t− t2

2
+ 1− cosω1t− sinω2t, when,

1

2
=
u0(ω1)2

2!
,
u0

48
=

(ω1)4

4!
,
µ

12
(1−u0

2)u0 =
(ω2)3

3!
,
µ

40
u0

3 =
(ω2)5

5!
and

µ

336
(−u0)3 =

(ω2)7

7!
.

(25)

Computation of the large oscillations of van der Pol’s equation due to
the result (23)

On substituting u0 = 5, µ = .5, t = 0 to t = 10, in result (23), we draw
u, (vertically down ward), with respect to t > 0, (horizontal), as:

Figure 1: Large Oscillations due to van der Pol’s Eqn. (15)
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Example. Compute the initial value problem

du

dt
= up + f(t), p ≥ 2, u(0) = u0. (26)

Solution: Take Laplace transforms of u(t) and f(t) are û(s) and f̂(s), respectively,
then on making the Laplace transformations of the Eqn. (26) and then use the
Eqn. (11) with approximation methods of Theorem 1, we get

{û(s)}p − û(s)

sp−2
+
u(0)

sp−1
+
f̂(s)

sp−1
= 0, 2 ≤ p <∞ (27)

From, Eqn. (27), we find the discrete equationsL
−1
{
sp−1{û(s)}p

sp−1

}
− L−1

{
û(s)
sp−2

}
+ L−1

{
u(0)
sp−1

}
+ L−1

{
f̂(s)
sp−1

}
= 0,∀3 ≤ p <∞;

L−1
{
s{û(s)}2

s

}
− L−1{û(s)}+ L−1

{
u(0)
s

}
+ L−1

{
f̂(s)
s

}
= 0, when, p = 2

.

(28)
Then, on using inverse Laplace transformations in conjugation with formulae (4)
in Eqn. (28), we find that

1
Γ(p−1)

∫ t
0 (t− τ)p−2(u(τ))pdτ− 1

Γ(p−2)

∫ t
0 (t− τ)p−3u(τ)dτ + 1

Γ(p−1)

∫ t
0 (t− τ)p−2f(τ)dτ+

+u0
tp−2

Γ(p−1) = 0, ∀3 ≤ p <∞;

u(t) =
∫ t

0 (u(τ))2dτ +
∫ t

0 f(τ)dτ + u0, when, p = 2.

.

(29)
Case I. When we put p = 2 and f(t) = t in the problem (26), it becomes
Riccati’s nonlinear differential equation [21, p. 1092, Eqn. (20.36)]

du

dt
= u2 + t, u(0) = u0. (30)

Then, making an appeal to the second part of Eqn. (29), we get the integral
solution of the Eqn. (30), given by

u(t) =

∫ t

0
(u(τ))2dτ +

t2

2
+ u0 (31)

Sequential solutions and analysis:
The Eqn. (31) gives the sequential solutions

uk(t) =

∫ t

0
(uk−1(τ))2dτ +

t2

2
+ u0, ∀k = 1, 2, 3, . . . (32)

The Eqn. (32) gives us
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u1(t) =
t2

2
+u0

2t+u0, u2(t) =
t5

20
+
u0

2

4
t4 +

u0

3
(u0

3 +1)t3 +(u0
3 +

1

2
)t2 +u0

2t+u0

(33)

Finally, with the help of Eqn. (33), we find the approximate solution of the
Riccati’s nonlinear differential equation (30) as

u(t) =
t5

40
+
u0

2

8
t4 +

u0

6
(u0

3 + 1)t3 +
1

2
(u0

3 + 1)t2 + u0
2t+ u0 + . . . (34)

Computation of large solutions of Riccati’s equation (30) with aid of
the result (34):

Substitute u0 = 5, t = 0 to t = 10, in result (34), we draw u, (vertically upward),
with respect to t > 0, (horizontal), as:

Figure 2: Large values due to Riccati’s problem (30)

Case II. When we put p = 3 and f(t) = t in the problem (26), it becomes
Abel’s nonlinear differential equation [21, p. 1092, Eqn. (20.37)]

du

dt
= u3 + t, u(0) = u0. (35)

Then, making an appeal to the first part of Eqn. (29), and differentiating with
respect to t, we get the integral solution of the Eqn. (35), given by

u(t) =

∫ t

0
(u(τ))3dτ +

t2

2
+ u0 (36)
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Sequential solutions and Analysis:

The Eqn. (36) gives the sequential solutions

uk(t) =

∫ t

0
(uk−1(τ))3dτ +

t2

2
+ u0, ∀k = 1, 2, 3, . . . (37)

The Eqn. (37) gives us

u1(t) =
t2

2
+ u0

3t+ u0,

u2(t) =
t7

56
+
u0

3

8
t6+

3u0

10
(u0

5+
1

2
)t5+u0

4(
u0

5

4
+

3

4
)t4+u0

2(u0
5+

1

2
)t3+(

3

2
u0

5

+
1

2
)t2+u0

3t+u0

(38)

Finally, with the help of Eqn. (38), we find the approximate solution of the
Abel’s nonlinear differential equation (35)

u(t) =
t7

112
+
u0

3

16
t6 +

3u0

20

(
u0

5 +
1

2

)
t5 +u0

4

(
u0

5

8
+

3

8

)
t4 +

u0
2

2

(
u0

5 +
1

2

)
t3

+

(
3

4
u0

5

+
1

2

)
t2 + u0

3t+ u0 + . . . (39)

Computation of the large solutions of Abel’s equation (35) with the
aid of result (39):

Substitute u0 = 5, t = 0 to t = 10, in the solution (39), we draw u, (vertically upward),
with respect to t > 0, (horizontal), as:

Example. (The Troesch’s problem [25], ). Analyze the nonlinear differential
equation

d2

dt2
u(t) = β sinhβu(t), 0 < t < 1, (40)

u(0) = 0, u(1) = 1.

Solution. In the right hand side of Eqn. (40), we apply the formula

sinhθ = θ+ θ3

3! + θ5

5! + · · ·+ θ2n−1

2n−1! + . . . , and then taking Laplace transformation
of both of the sides of it and using Theorem 1 together with the result (11), we
get

û(s)

s2n−4
=
u′(0)

s2n−2
+β2 û(s)

s2n−2
+
β4

3!

(û(s))3

s2n−4
+
β6

5!

(û(s))5

s2n−6
+ · · ·+ β2n+2

2n− 1!
(û(s))2n−1 + . . .

(41)
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Figure 3: Large values due to Abel’s problem (35)

Now for large n, take inverse Laplace transformation of both the sides of Eqn.
(41), and use Eqn. (4) of Theorem 1 to find that

1

2n− 5!

∫ t

0
(t− τ)2n−5u(τ)dτ =

u′(0)

2n− 3!
t2n−3 +

β2

2n− 3!

∫ t

0
(t− τ)2n−3u(τ)dτ

+
β4

3!2n− 3!

∫ t

0
(t− τ)2n−3(u(τ))3dτ +

β6

5!2n− 3!

∫ t

0
(t− τ)2n−3(u(τ))5dτ

+ · · ·+ β2n+2

2n+ 1!2n− 3!

∫ t

0
(t− τ)2n−3(u(τ))2n+1dτ (42)

Now, differentiating both of the sides of Eqn. (42) 2n − 4 times with respect to
t, we get

u(t) = u′(0)t+
β2

1!

∫ t

0
(t− τ)u(τ)dτ+

β4

3!

∫ t

0
(t− τ)(u(τ))3dτ+

β6

5!

∫ t

0
(t− τ)(u(τ))5dτ

+ · · ·+ β2n+2

2n+ 1!

∫ t

0
(t− τ)(u(τ))2n+1dτ (43)

When, n→∞, the Eqn. (43) may be written as

u(t) = u′(0)t+ β

∫ t

0
(t− τ)sinhβu(τ)dτ (44)

It is noted that the Eqn. (44) satisfies the first condition of Eqn. (40) as

u(0) = 0. (45)
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Further due to another condition of Eqn. (40), the Eqn. (44) gives us

u′(0) = 1− β
∫ 1

0
(1− τ)sinhβu(τ)dτ (46)

Hence, using the Eqns (44) and (46), finally, we find the approximate solution of
the problem (40) as

u(t) = t{1− β
∫ 1

0
(1− τ)sinhβu(τ)dτ}+ β

∫ t

0
(t− τ)sinhβu(τ)dτ (47)

Sequential solutions and analysis:

From Eqn. (47), we find the sequential solutions

un(t) = t{1−β
∫ 1

0
(1− τ)sinhβun−1(τ)dτ}+β

∫ t

0
(t− τ)sinhβun−1(τ)dτ, (48)

provided that u0(τ) = 0,∀0 ≤ τ ≤ t < 1.

Therefore, the Eqn. (48) for n = 1, gives us

u1(t) = t (49)

Again, from Eqn. (48), for n = 2, we find that

u2(t) = t(1− sinhβ

β
) +

sinhβt

β
(50)

Since, both the solutions u1(t) and u2(t), independently, satisfies the boundary
conditions, hence the function u(t) will also satisfy the Eqn. (40), given by

u(t) = t− t

2

sinhβ

β
+

1

2

sinhβt

β
(51)

Computation of approximate solution of the Troesch’s problem due to
Laplace Transformation Methods

Numerical solution for Troesch’s problem (40) due to the result (51), when β = .5
and t = 0.1 to 1.0 :

Now, to find the validity of our results, we claim the work of Mohyud-din [25]
who has presented following VIM formula

u(t) = t+ p
∫ t

0

∫ t
0 β

2 sinhβu(τ)dτdτ , u(t) = u0(t) + pu1(t) + p2u2(t) + . . . , which
may be written as

u(t) = t+pβ2

∫ t

0
(t− τ) sinhβu(τ)dτ, u(t) = u0(t) +pu1(t)+p2u2(t) + . . . (52)
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t Exact Solution Approximate so-
lution

% Error

0.1 0.0951769 0.0979113 2.87

0.2 0.1906338 0.195948 2.78

0.3 0.2866534 0.294235 2.64

0.4 0.3835229 0.392898 2.44

0.5 0.4815373 0.492065 2.18

0.6 0.5810019 0.591863 1.87

0.7 0.6822351 0.692423 1.49

0.8 0.7855717 0.793876 1.06

0.9 0.8913669 0.896356 0.56

1.0 0.9999999 1.000000 0.1

%Error =
Approximate solution - Exact value

Exact value
× 100

Table 1: Percentage error in approximate solutions with respect to exact values

Computation of series solutions of the Troesch’s problem due to VIM
formula

Numerical solution for Troesch’s problem (40) due to the result (52), when β = .5
and t = 0.1 to 1.0

4. Conclusion

The fact that the proposed technique of our paper solves nonlinear problems
without using He’s or Adomian’s polynomials is a clear advantage over the ap-
proximation method of Laplace transformations studied extensively by others
which needs an additional polynomials (see [1], [2], [5], [7], [8], [12], [25]). This is
a simple method and by this method, we may compute large required values in a
small screen (see Figures 1, 2, and 3). In the same vein , in solving the Troesch’s
problem, by our method we find very near values to the numerical exact solu-
tions and the percentage error due to VIM formula is more than that of Laplace
transformation methods (see Tables 1 and 2). That is the unifying theme of this
work.

Innovation and Future Directions

The Abel differential equations occur in the modeling of real problems in various
areas such as big picture in oceanic circulation [3], in problems of magneto-statics
([14] and [22]), control theory [27], cosmology [9], fluid mechanics ([28] and [5]),
solid mechanics [26], biology ([11] and [34]), and cancer therapy [10]. Kumar,
Pathan and Srivastava ([16], [17], [18]),and Kumar, Pathan and Yadav [19] have
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t Exact Solution Series Solution % Error

0.1 0.0951769 0.100042 5.11

0.2 0.1906338 0.200334 5.09

0.3 0.2866534 0.301128 5.05

0.4 0.3835229 0.402677 4.99

0.5 0.4815373 0.505241 4.92

0.6 0.5810019 0.609082 4.83

0.7 0.6822351 0.71447 4.72

0.8 0.7855717 0.821682 4.59

0.9 0.8913669 0.931008 4.45

1.0 0.9999999 1.04274 4.27

%Error =
Series solution - Exact value

Exact value
× 100

Table 2: Percentage error in series solutions with respect to exact values

computed the space-and-time fractional initial value problems, anomalous diffu-
sion problem, advection-dispersion problem with the help of sequential solutions,
hence, in further extensions in the researches to these problems may be computed
by the approximation method of Laplace transformations in small screen.
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Abstract:The aim of the present paper is to obtain new relations using Pathway
integral operator on Mittag-Leffler type Hypergeometric functions. The formulas
established here are basic in nature and are likely to have useful applications in
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1. Introduction and Preliminaries:

(a) Definitions

The Wright function: The Wright function plays an important role in the
solution of a linear partial differential equation. The Wright function, which we
denote by W (z; α, β), is so named in honor of Wright, who introduced and in-
vestigated this function in a series of notes starting from 1993 in the framework
of the asymptotic theory of partitions. This function is related to Mittag−Leffler
function [19, 20, 21, 23]. We obtain a number of useful relationships between the
Mittag−Leffler functions and the Wright functions.
Definition 1.1:The Wright function is defined by the series representation, con-
vergent in the whole z-complex plane [2]

W (z;α, β) =

∞∑
K=0

zk

k!Γ(ak + β)
(1.1.1)
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Definition 1.2: The Pathway fractional integration operator

Let us recall the definition of left sided Riemann−Liouville fractional integral
operator. Let f(x) ∈ L(a, b), then

(Iαa+Ψ)(x) =
1

Γ(α)

∫ x

a

Ψ(t)

(x− t)1−α
dt, (α ∈ C,Re(α) > 0) (1.2.1)

For more details, see [4], [5], [15] and other books on fractional calculus.

If f(t) is replaced by tγf(t) in (1.2.1), the above operator turns out to be the
Erdélyi – Kober fractional integral; if it is replaced by2F1(η+β,−γ; η; 1− t

x)f(t),
then (1.2.1) takes the form of the Saigo hypergeometric fractional integral, see
e.g. [12]:

Γ(η)

x−η−β
Iη,β,γ0+ f(x) =

∫ x

0
(x− t)η−1 2F1(η + β,−γ; η; 1− t

x
)f(t)dt (1.2.2)

Many other operators of generalized fractional calculus can be obtained if on the
place of f(t) one can use φ(t)f(t) with a suitably chosen special function φ(t).
As it is done in Kriyakova [5] for a well known Fox’s H- Function.

In this paper we introduce compositions of Pathway integral operator on Mittag
– Leffler type Hypergeometric Functions.

Let f(x) ∈ L(a, b), ρ ∈ C,Re(ρ) > 0, a > 0 and let us take a pathway parameter
α < 1. Then the pathway fractional integration operator, as an extension of
(1.2.1), is defined and represented as follows (see [11, p. 239]):

(P ρ,α,a0+ f)(t) = tρ
∫ t

a(1−α)

0

[
1− a(1− α)τ

t

] ρ
1−α

f(τ)dτ (1.2.3)

where L(a, b) is the set of Lebesgue measurable functions defined on (a, b).

The pathway model is introduction by Mathai [6] and studied further by Mathai
and Haubold [7], [8].

Definition 1.3: The generalized Wright’s function is defined as follows
(see, e.g. [22]):



Compositions of Pathway integral operator on Mittag- Leffler type Hypergeometric functions115

pΨq

[
(α1, A1), ...., (αp, Ap);
(β1, B1), ...., (βp, Bp);

z

]
=
∞∑
n=o

∏p
j=1 Γ(αj +Ajn)∏q
j=1 Γ(βj +Bjn)

zn
n!

(1.3.1)

where the coefficients A1 ,...,Ap and B1 ,...,Bp are positive real numbers such that

1 +

q∑
j=1

Bj −
p∑
j=1

Aj = 0

Definition 1.4: The generalized Mittag-Leffler function

In 1971, Prabhakar (1971) introduced the generalized Mittag-Leffler function
Eγρ,µ(z) (see [1], [9]):

Eγρ,µ(z) =

∞∑
k=0

(γ)kz
k

Γ(ρk + µ)k!
(1.4.1)

(ρ, µ, γ ∈ C,Re(ρ) > 0, Re(β) > 0, Re(γ) > 0)

where at(γ = 1,E1
ρ,µ(z) coincides with the classical Mittag-Leffler function Eρ,µ(z)

and in particularE1,1(z) = ez and when ρ = 1 it coincides with Kummer’s conflu-
ent hypergeometric function φ(γ;µ; z) with the exactness to the constant multi-
plier [Γ(µ)]−1.In 2007, Shukla and Prajapati (2007) (cf. [16]) introduced the func-
tion Eγ,qρ,µ(z), which is defined for ρ, µ, γ ∈ C,Re(ρ) > 0, Re(β) > 0, Re(γ) > 0
and q ∈ (0, 1) ∪N as

Eγ,qρ,µ(z) =

∞∑
k=0

(γ)qkz
k

Γ(ρk + µ)k!
(1.4.2)

In 2009, Tariq O. Salim (2009) (cf. [13]) introduced the functionEγ,δρ,µ(z), which
is defined for ρ, µ, γ, δ ∈ C;Re(ρ) > 0, Re(β) > 0, Re(γ) > 0, Re(δ) > 0 as

Eγ,δρ,µ(z) =
∞∑
k=0

(γ)kz
k

Γ(ρk + µ)(δ)n
(1.4.3)

In 2012, a new generalization of Mittag – Leffler function was defined by Salim
(2012) (cf. [14]) as

Eγ,δ,qρ,µ,p(z) =

∞∑
k=0

(γ)qkz
k

Γ(ρk + µ)(δ)pk
(1.4.4)
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whereρ, µ, γ, δ ∈ C; min(Re(ρ), Re(β), Re(γ), Re(δ)) > 0 .
Compositions of Pathway integral operator on (1.4.2) and (1.4.3) are studied by
Nagar and Tripathi [10]. In this paper we introduce new composition of Pathway
Operator on generalized Mittag – Leffler function defined by Khan and Ahmed
[3],

Eγ,qα,β,δ(z) =
∞∑
k=0

(γ)qkz
k

Γ(αk + β)(δ)k
(1.4.5)

whereα, β, γ, δ ∈ C; min(Re(α), Re(β), Re(γ), Re(δ)) > 0 and q ∈ (0, 1) ∪N .

Further the generalization of definition (1.4.5) defined and investigated as follows
by Khan and Ahmed [3]

Eτ,ζ,γ,qα,β,ν,σ,δ,p(z) =

∞∑
k=0

(γ)qk(τ)ζkz
k

Γ(αk + β)(ν)σk(δ)pk
(1.4.6)

(b) Required Result:

The following formula is required (see [11, eq. (12)])

P
(ρ,α,a)
0+ {tβ−1} =

tρ+β

[a(1− α)]β
Γ(β)Γ(1 + ρ

1−α)

Γ( ρ
1−α + β + 1)

(1.4.7)

where α < 1;Re(ρ) > 0;Re(β) > 0.

2. Main Results:

Theorem 2.1 : Let η, µ, ρ, λ ∈ C, a > 0, ρ > 0, Re(η) > 0, Re(µ) > 0, Re(λ) >
0, β > 0 andα < 1.
Then we have the following relation:

P
(ρ,α,a)
0+ {zλ−1W (z; η, µ)}

=
zρ+λΓ(1 + ρ

1−α)

[a(1− α)]λ
1Ψ2

[
(λ, 1);(

1 + λ+ ρ
1+α , 1

)
, (µ, η);

(
z

a(1− α)

)]
(2.1.1)

Proof of theorem (2.1): To prove the relation in (2.1.1), we denote left – hand
side of the relation by ∆1 i.e.

∆1 = P
(ρ,α,a)
0+ {zλ−1W (z; η, µ)}



Compositions of Pathway integral operator on Mittag- Leffler type Hypergeometric functions117

Now using the definition (1.1.1), we get

∆2 = P
(ρ,α,a)
0+

{
zλ−1

∞∑
n=0

(z)n

n!Γ(ηn+ µ)

}

=

∞∑
n=0

1

n!Γ(ηn+ µ)
P

(ρ,α,a)
0+ {zn+λ−1}

By using the well – known relationship between the Beta function and the Gamma
function (ef. [17, pp. 9-11] and [18, pp. 7-10])and using (1.4.7) with β replaced
by n+ λ to the pathway integral and finally after a simplification, we get

∆2 =

∞∑
n=0

Γ(1 + ρ
1−α)Γ(n+ λ)

n!Γ(ηn+ µ)Γ(n+ λ+ ρ
1−α + 1)

zn+ρ+λ

[a(1− α)]n+λ

=
zρ+λΓ(1 + ρ

1−α)

[a(1− α)]λ

∞∑
n=0

Γ(λ+ η)

Γ(µ+ ηn)Γ(η + λ+ ρ
1−α + 1)n!

(z)n

[a(1− α)]n

Now in view of the result (1.3.1) therein, we at once arrive at the desired result
in (2.1.1).

Theorem 2.2: Let η, µ, γ, δ, ρ, λ ∈ C, a > 0, C ∈ R, ρ > 0, Re(η) > 0, Re(µ) >
0, Re(γ) > 0, Re(δ), Re(λ) > 0, β > 0 andα < 1, q ∈ (0, 1)∪N. Then we have the
following relation:

P
(ρ,α,a)
0+ {zλ−1Eγ,qη,µ,δ(cz

β)}

=
zρ+λΓ(1 + ρ

1−α)

[a(1− α)]λΓ(γ)
3Ψ3

[
(γ, q), (λ, β), (1, 1);

(µ, η), (δ, 1)(1 + λ+ ρ
1+α , β);

c

(
z

a(1− α)

)β]
(2.2.1)

Proof of theorem (2.2): To prove the relation in (2.2.1), we denote left – hand
side of the relation by ∆2 i.e.

∆2 = P
(ρ,α,a)
0+ {zλ−1Eγ,qη,µ,δ(cz

β)}

Now using the definition (1.4.5), we get

∆2 = P
(ρ,α,a)
0+

{
zλ−1

∞∑
n=0

(γ)qn(czβ)n

Γ(ηn+ µ)(δ)n

}

=

∞∑
n=0

(γ)qnc
n

Γ(ηn+ µ)(δ)n
P

(ρ,α,a)
0+ {zβn+λ−1}
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Here, using (1.4.7) with β replaced by βn+ λ to the pathway integral and after
a simplification, we get

∆2 =
∞∑
n=0

(γ)qnc
nΓ(1 + ρ

1−α)Γ(βn+ λ)

Γ(ηn+ µ)Γ(βn+ λ+ ρ
1−α + 1)(δ)n

zβn+ρ+λ

[a(1− α)]βn+λ

=
zρ+λΓ(1 + ρ

1−α)Γ(δ)

[a(1− α)]λΓ(γ)

∞∑
n=0

Γ(γ + qn)Γ(λ+ βn)Γ(n+ 1)

Γ(µ+ ηn)Γ(βn+ λ+ ρ
1−α + 1)Γ(δ + n)n!

(czβ)n

[a(1− α)]βn

Now in view of the result (1.3.1) therein, we at once arrive at the desired result
in (2.2.1).

Theorem 2.3: Let η, µ, γ, δ, ρ, λ ∈ C, a > 0, C ∈ R, ρ > 0, Re(η) > 0, Re(µ) >
0, Re(γ) > 0, Re(δ), Re(λ) > 0, β > 0 andα < 1, q ∈ (0, 1)∪N. Then we have the
following relation:

P
(ρ,α,a)
0+ {zλ−1Eτ,ζ,γ,qη,µ,ν,σ,δp(cz

β)}

=
zρ+λΓ(1 + ρ

1−α)Γ(ν)Γ(δ)

[a(1− α)]λΓ(γ)Γ(τ)
4Ψ4

[
(τ, ζ)(γ, q), (λ, β), (1, 1);

(µ, η), (ν, σ)(δ, p)
(
1 + λ+ ρ

1+α , β
)
;
c

(
z

a(1− α)

)β]
(2.3.1)

Proof of theorem (2.3) To prove the relation in (2.3.1), we follow the same
technique, which we used to prove the relation (2.2.1) in view of the definition in
(1.4.6).
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