Errata and comments for the book *Special functions*
by G. E. Andrews, R. Askey and R. Roy

collected by Tom Koornwinder, T.H.Koornwinder@uva.nl

Thanks to Michael Schlosser for many contributions. Thanks also to Gaurav Bhatnagar.

last modified: May 23, 2022

These are errata and comments for the (very slightly corrected) 2000 softcover version of the book

p.ix, 7.4: Replace “Bieberback” by “Bieberbach”.

p.39, fourth line from below: Replace $x(1-x)$ by $x(1-x)^{-1}$.

p.40: It is confusing to write $\chi \eta \neq e$ in line 4 and write $\chi \eta \neq id$ in line 8.

p.53, Exercise 34: Replace $a^{p-1/2}$ by $a^{(p-1)/2}$.

p.53, Exercise 36(a): Replace $(-\frac{1}{p})$ by (the Legendre symbol) $(\frac{-1}{p})$.

p.94, Section 2.5: Better call this Section “Contiguous relations and Jacobi polynomials”.

p.99, (2.5.13): Replace $\frac{d^n}{dx^n}$ by $\frac{d^n}{dy^n}$.

p.99, Remark 2.5.1: $(5.13) \rightarrow (2.5.13)$

p.101, three lines below (2.5.17): $T_n(x) \Rightarrow T_n(x)$

p.108, 7th line: Replace $(k - m + n)$ by $(k + m - n)$.

p.110, Proof of Theorem 2.8.1: In the formula on the second line of the proof insert a minus sign at the beginning of the right-hand side.

p.111, fourth line from below: Replace $\int_{a}^{t_{n-1}}$ by $\int_{a}^{t_{n-2}}$.

p.115, Exercise 4(a): $\frac{1}{2}((1+x)^n + (1-x)^n) \Rightarrow \frac{1}{2}((1+x)^{n+1} + (1-x)^{n+1})$

p.121, Exercise 39(b): On the third line replace $\frac{x(1-y)}{y(1-x)}$ by $+ \text{Li}_2 \left[\frac{x(1-y)}{y(1-x)} \right]$.

Also replace on that line $\log 2y$ by $\log^2 y$.

p.145, Corollary 3.4.3: This is also a terminating case of (2.2.10).

p.169, 6th line from below: Replace $\frac{ab(1-n)}{c(2-n+a+b-c)}$ by $\frac{ab(-n)}{c(1-n+a+b-c)}$.

p.169, 5th line from below: Replace $\frac{(2-n)ab}{c(3-n+a+b-c)}$ by $\frac{(1-n)ab}{c(2-n+a+b-c)}$.
p.177, Exercise 3(b): The Gamma quotient on the right-hand side should be
\[
\frac{\Gamma(a + \frac{3}{4})\Gamma(1/2)}{\Gamma((2a + 3)/4)\Gamma((a + 1)/2)}
\]

p.201, line after (4.5.9): Replace \(x = 1/2\) by \(a = 1/2\), and replace \(\alpha^2 = 1/a\) by \(\alpha = 1/3\).

p.253, Theorem 5.4.1: Even better, the Theorem holds with on l.3 \([a, b]\) being replaced by \((a, b)\). Then also make this replacement on l.1 of the Proof.

p.300, Remark 6.4.1: Write that the expression with the \(n\)-th derivative is equal to \(P_n^{(\alpha, \beta)}(x)\) and observe that this is the Rodrigues formula (2.5.13’) for Jacobi polynomials.

p.306, (6.4.26): Replace \(x/\lambda\) by \(x/\lambda^\frac{1}{2}\).

p.344, Exercise 27: Refer for the Rodrigues formula to (2.5.13’).

p.362, (7.1.14): The ratio of shifted factorials \(\frac{(\beta+1)_n}{(\alpha+\beta+2)_n}\) right after the equation mark should be deleted.

p.484, third line after (10.0.8): Replace \(y(xy) = (yx)y = q(xy)y\) by \((xy)x = x(yx) = qx(xy)\).

p.495, Proof of Theorem 3.3.3: This is essentially the proof given in Appendix B of Koornwinder [1990].

p.500, (10.4.8) and p.501, l.6: In the denominator after the product sign replace \((1 - q)^{2n+1}\) by \((1 - q)^{2n-1}\).

p.527, (10.11.1): In the first line replace \((\beta; q)_n\) by \((\beta; q)_k\).

p.589, line 7: This math equation should be labelled by equation number (12.3.8). Reference to (12.3.8) is later made on p.591, Exercise 6.

p.627, Exercise 2, l.3: \(\frac{B_i}{j} \rightarrow \frac{B_i}{j^2}\)

p.646, reference to Gegenbauer: Replace 1875 by 1874.

p.660: Add the subject index item:
Legendre symbol, 53

p.663: Insert after \((a; q)_n\) the symbol index item:
\((\frac{a}{b})_n\), 53