
Comment on the paper “Macdonald polynomials and algebraic integrability”
by O. A. Chalykh

Note by Tom H. Koornwinder, T.H.Koornwinder@uva.nl, December 6, 2010

Chalykh computed in [1, §4.1] a Baker-Akhiezer (BA) function for root system A1. It is given
by his formulas (4.1), (4.4) and (4.6). Let me write his resulting BA function ψ = ψ(x, z;m),
depending on a parameter m ∈ Z≥0, as a 2φ1 :

ψ(x, z;m) = (−1)m q−
3
2
m2− 1

2
m q(x−m)(z−m) (q2x+2; q2)m 2φ1

(
q−2m, q−2m+2x

q2x+2
; q2, q2(m+z+1)

)
.

(1)
Observe the following properties of ψ.

• We have
ψ(x, z;m) = ψ(−x,−z;m). (2)

Indeed, for generic x the 2φ1 in (1) can be written as

m∑
j=0

(q−2m; q2)j (q−2m+2x; q2)j
(q2x+2; q2)j (q2; q2)j

(q2(m+z+1))j =
m∑
j=0

cj =
m∑
j=0

cm−j ,

and then the right-hand side can again be written as a 2φ1, see [3, (1.8)] (or more generally
[2, Exercise 1.4(ii)]). Then the resulting identity can be rewritten as (2).

• We have
ψ(x, z;m) = ψ(x,−z;m) (x = 1, . . . ,m). (3)

Indeed, now write the 2φ1 in (1) as

m−x∑
j=0

cj =
m−x∑
j=0

cm−x−j ,

and write the right-hand side again as a 2φ1. Then the resulting identity can be rewritten
as (3).

• We have
ψ(x, z;m) = ψ(z, x;m). (4)

Indeed, (4) is a rewritten version of the transformation formula [2, (III.2)].

• We have
ψ(x, z;m) = ψ(x,−z;m) (z = 1, . . . ,m). (5)

Indeed, combine (3), (2) and (5).
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• Note that we can use (1) as a definition of ψ(x, z;m) for general integerm by the convention

(q2x+2; q2)m =
(q2x+2; q2)∞

(q2x+2m+2; q2)∞
.

We have

ψ(x, z;−m) = − q(2m−1)(x+z)

(q2x−2m+2; q2)2m−1 (q2z−2m+2; q2)2m−1
ψ(x, z;m− 1) (m ∈ Z>0). (6)

Indeed, (6) is a rewritten version of [2, (III.3)]. Note that ψ(x, z;−m) (m ∈ Z>0) has poles
for x ∈ {1, 2, . . . ,m − 1} and for z ∈ {1, 2, . . . ,m − 1}, by which there are no immediate
analogues of (3) and (5) for ψ(x, z;−m). However, (2) and (4) remain valid for negative
integer m.

With ψ given by (1) we can now review [1, Proposition 4.2, formula (4.10) and Lemma 5.4]:

1. ψ is a normalized BA function. Indeed, (1) has the form [1, (4.1)]:

ψ(x, z;m) = qxz
m∑
j=0

ψ−m+2j(x;m) q(−m+2j)z,

and it satisfies the normalization condition [1, (4.10)]:

ψm(x;m) =
m∏
j=1

(qj−x − q−j+x).

The function ψ also satisfies condition [1, (4.2)], since this condition can be rewritten
as (5).

2. ψ is symmetric in x and z, see (4).

3. ψ satisfies the difference equation

qx−m − q−x+m

qx − q−x
ψ(x+ 1, z;m) +

qx+m − q−x−m

qx − q−x
ψ(x− 1, z;m) = (qz + q−z)ψ(x, z;m). (7)

Indeed, (7) combined with (4) is a rewritten version of [2, Exercise 1.13], see also [3, p.15
below].

4. ψ satisfies [1, Lemma 5.4]:

ψ(wx,wz;m) = ψ(x, z;m) (w ∈W ).

Indeed, this turns down to (2).
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Next I will discuss [1, Theorem 5.11] for root system A1. First we identify Macdonald
polynomials for that root system with continuous q-ultraspherical polynomials. Following (2.10),
(2.11), (2.1) and (2.13) in [1] the Macdonald polynomial then has the form

Pn(x; q, t) =

n∑
j=0

fn−2j q
(n−2j)x,

where fn−2j = f2j−n and fn = 1, and it satisfies

DPn = (qnt+ q−nt−1)Pn,

where D is the difference operator given by

(Df)(x) :=
tqx − t−1q−x

qx − q−x
f(x+ 1) +

tq−x − t−1qx

qx − q−x
f(x− 1).

By the reasoning in [4, (9.10) and following] we obtain

Pn(x; q, t) =
(q2; q2)n
(t2; q2)n

Cn(12(qx + q−x); t2 | q2), (8)

where Cn is a continuous q-ultraspherical polynomial, see [2, (7.4.2)]:

Cn(cos θ; t | q) :=

n∑
j=0

(t; q)j(t; q)n−j
(q; q)j(q; q)n−j

ei(n−2j)θ.

Now observe [2, (7.4.5)]:

Cn(cos θ; t | q) =
(t; q)∞
(t2; q)∞

(t2; q)n
(q; q)n

(
D̃n(eiθ; t | q) + D̃n(e−iθ; t | q)

)
, (9)

where

D̃n(eiθ; t | q) := einθ
(te−2iθ; q)∞
(e−2iθ; q)∞

2φ1

(
t, te2iθ

qe2iθ
; q, qn+1

)
. (10)

(Note that, by [2, (III.1)], the 2φ1 in (10) coincides with the 2φ1 for Sn(eiθ; t1/2, (qt)1/2,−t1/2,−(qt)1/2)
in [5, (3.4)].) Observe that

D̃n+m(qx; q−2m | q2) = qmnq−
1
2
m(m+1)ψ(x, n;m). (11)

After replacing in (9) q, t, eiθ, n by q2, q−2m, qx, n+m, respectively, we arrive at the first identity
in [1, Theorem 5.11] for A1:

ψ(x, n;m) + ψ(−x, n;m) =

m∏
j=1

(qj−n − q−j+n)Pn+m(x; q, q−m). (12)
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For the derivation of the second identitity in [1, Theorem 5.11] for A1 we apply [2, (III.3)]
to (10). Then we obtain in particular the identity

D̃n−m−1(q
x; q2m+2 | q2) =

1

(q2n−2m; q2)2m+1

D̃n+m(qx; q−2m | q2)∏m
j=−m(qj−x − q−j+x)

.

Substitution in (9) yields

(q2; q2)m

m∏
j=−m

(qj−x − q−j+x)Cn−m−1(
1
2(qx + q−x); q2m+2 | q2)

= D̃n+m(qx; q−2m | q2)− D̃n+m(q−x; q−2m | q2).

By substitution of (8) and (11) we arrive at [1, Theorem 5.11] for A1:

ψ(x, n;m)− ψ(x,−n;m) =
m∏
j=1

(qj−n − q−j+n)
m∏

j=−m
(qj−x − q−j+x)Pn−m−1(x; q, qm+1). (13)
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