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Warning In the first 1982 edition of the book there are many more errata, not listed below
because they were corrected in the 1999 second printing.

Chapter 1

p.9, Proof of Theorem 1.3.2, l.5: Add φ 6= 0.

p.9, Proof of Theorem 1.3.2, l.7: Add φN 6= 0.

p.9, Proof of Theorem 1.3.2, l.10: Replace right-hand side by φN (x)/
(
N

∑
|α|≤N

sup |∂αφN |
)
.

p.9, Definition 1.3.2′: One may add:
“A sequence (φj)1≤j<∞ ∈ Cm

c (X) is said to converge in Cm
c (X) to a function φ ∈ Cm

c (X) if the
sequence φj − φ converges to zero in Cm

c (X).”

p.11, l.12 of Proof: Replace “tha” by “that”.

p.12, Theorem 1.4.3, l.2: After “index set” insert “and Xλ ⊂ X”.

p.12, Proof of Theorem 1.4.3, l.8: Replace ψ′n by ψ′1.

p.12, l.−1: Replace ψ′n by ψ′1
p.13, Note on partitions of unity, l.2: Replace 1.4.4 by 1.4.1.

p.16, Exercise 1.7: Replace last line by:
Show also that, if fε satisfies (a) and (c) and if fε → δ in D′(Rn) as ε ↓ 0, then
limε↓0

∫
fε(x) dx = 1.

p.16, Exercise 1.9, l.4: Replace Ck by ck.

Chapter 2

p.18, first line after (2.2.2): Replace R by R.

p.19, l.1: Insert minus sign after last equality sign.

p.19, second line after (2.2.8): Insert between minus sign and ∂φ(x):
∫∞
−∞.

p.21, l.2: Replace 8.2.1 by 8.1.2.

p.22, l.−9: Replace “chose” by “choose”.

p.23, Proof of Theorem 2.4.1, lines 4 and 8: Twice replace “supp φ0” by “hull of supp φ0”.

p.23, Proof of Theorem 2.4.1, l.5: Replace sup |φ0| by
∫∞
−∞ |φ0(t)| dt.

p.24, l.5: Theorem 2.5.1 can be proved without using (2.5.1).

p.24, (2.5.4): Insert u after (∂if).
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p.25, second line after (2.6.1): Replace aα ≡ 0 by aα 6≡ 0.

p.25, (2.6.3): Replace (−1)α by (−1)|α|.

p.26, (2.6.6): On the right-hand side move
∂αu

α!
to the right of f .

p.26, l.−7: Insert “linear” before “differential”.

p.27, Theorem 2.7.1 (i): The converse implication also holds.

p.28, bottom: We need that the linear map µ is continuous in the sense of Definition 2.8.1.

p.31, last formula in Exercise 2.5: On the left-hand side replace v by vi.

p.31, Exercise 2.6, l.4: Replace an by a1.

p.31, Exercise 2.7, l.3: Replace “if β > α” by “otherwise”.

p.31, Exercise 2.9: This Exercise can better be moved to Chapter 3.

p.31, Exercise 2.11: Replace u sinπx by (sinπx)u.

p.32, l.2: Here 0(εRe λ+k−1) means o(εRe λ+k−1) (small oh).

p.32, l.3: Replace j = 1 by j = 0.

p.32, Exercise 2.14, last formula: This should read: |x|λ−1signx = xλ−1
+ − xλ−1

− .

p.32, Exercise 2.15, l.3: Replace exp(λ− 1) by exp((λ− 1).

p.32, Exercise 2.15, l.5: Replace xλ−1 by xλ−1
− .

Chapter 3

p.34, (3.1.2): Put “sup |∂αφ| : x ∈ K” in brackets.

p.35, l.3: The increasing sequence of compact subsets K1,K2, . . . must also satisfy that
Ki ⊂ K0

i+1 for all i, where A0 denotes the interior of A ⊂ Rn.

p.35, Theorem 3.1.2: One may add:
If u ∈ D′(X) has compact support then (3.1.1) holds for any compact K ⊂ X such that
supp(u) ⊂ K0.

p.37, l.8: This formula should read:

|∂βφ(x)| ≤ εN−|β|+1
∑

|γ|=N+1−|β|

sup{|∂γ+βφ(x)| : |x| ≤ ε}/γ! if |x| ≤ ε.

p.37, lines 14,15: This should read:

|∂α(φ(x)ψ(x/ε))| ≤ Cα

∑
β+γ=α

εN−|β|+1ε−|γ| = C ′
αε

N+1−|α|,

where Cα, C
′
α are constants independent of ε.

p.37, Proof of Theorem 3.2.1, l.4: Insert “= 0” after ∂αφ′(0).

p.38, l.2: Replace Rn by X.
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p.38, l.6: Replace 1
4ε by 4ε.

p.38, l.7: One may insert after Kε: “and suppψε ⊂ K3ε”.

p.38, l.8: After the equality sign replace 1 by |.

p.38, l.14: Replace (3.2.1) by (3.1.1).

p.39, (3.2.8): Replace left-hand side by its absolute value.
On the right-hand side insert a factor N before the summation sign.

p.39, Exercise 3.1, l.2: Replace C∞(x) by C∞(X).

Chapter 4

p.40, Theorem 4.1.1, l.1: Replace Rn by Rm.

p.40, Theorem 4.1.1, l.4: One may insert “⊂ X” after “K(y′)”.

p.41, l.16, 21: Replace ∂(∂yj by ∂/∂yj .

p.41, l.19: Replace χ by χε.

p.41, l.24: Replace n by m.

p.41, Corollary 4.1.2, l.1: Replace ψ by ψ(y).

p.43, two lines above Theorem 4.2.2: Replace “function” by “mapping”.

p.45, Lemma 4.3.1: One may add:
“and such that for all α we have

∑∞
j=1 sup |∂α ψj1 ⊗ · · · ⊗ ψjN | <∞.”

p.46, l.−9: Replace 〈u(x), φ(x, y)〉 = g(y) by g(y) = 〈u(x), φ(x, y)〉.

p.47, (4.3.8): Replace by: ∂α
x ∂

β
y (u(x)⊗ v(y)) = ∂αu⊗ ∂βv.

p.47, Proof of Theorem 4.3.3, part (ii), l.5,6:
Replace supp y by supp v.
Replace part of sentence between “can find” and “such that” by:
“for each open neighbourhood U of x in X and each neighbourhood V of y in Y functions
φ ∈ C∞

c (U) and ψ ∈ C∞
c (V )”

p.48, l.10: Replace “,〉” by “〉, ”.

p.49, Exercise 4.2, l.2: Replace u by A∗u.

p.49, Exercise 4.3 part (ii): One may extend this to:
“Show that Euler’s equation

∑n
i=1 xi∂iu = λu holds if and only if u is homogeneous of degree λ.”

p.49, Exercise 4.4: Replace 〉〉 by 〉.

Chapter 5

p.50, formula (∗∗): Insert after the equality sign a second integral sign.

p.51, (5.11): Replace = by ⊂.

p.52, (5.1.5): Replace ∂i by ∂j .

p.52, 3 lines above Theorem 5.1.3: Replace C∞
c (Rn) by D′(Rn).
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p.53, Proof of Theorem 5.2.1, l.3: Replace φ(x− y) by ρ(x− y).

p.54, l.4: Assume moreover about ψ that its support is convex and contains 0.

p.54, 5 lines above Theorem 5.2.3: Assume moreover that Kj ⊂ (Kj+1)0.

p.54, (5.2.4): Replace Kj ⊂ Kj+1 by Kj ⊂ (Kj+1)0.

p.54, (5.2.6): Replace ψ(x(εj) by ψ(x/εj).

p.55, l.−3: Replace Aε
1, . . . , A

ε
m by Aε

1 × · · · ×Aε
m.

p.56, l.2: Replace A by Aε, B by Bε.

p.56, l.7: Replace |x− x′| by |x− x′ + x′|.

p.56, l.8: Replace A by Aε, B by Bε.

p.56, l.13: Replace C∞
c (R) by C∞

c (Rn).

p.56, l.14: Skip “is supported in Kε(φ)”.

p.56, l.20: After m = 2 insert “and when u2 ∈ E ′(Rn)”

p.56, l.22: Replace u1*. . .*um by u1 ∗ . . . ∗ um.

p.56, second line of Theorem 5.3.2(i): Here one has to use the definition of 〈u, φ〉 for u ∈ D′(Rn),
φ ∈ C∞(Rn) and supp(u) ∩ supp(φ) compact, see Exercise 3.1.

p.56, Theorem 5.3.2(ii): Add that convolution is commutative.

p.56, third line of Theorem 5.3.2(ii): Replace i ∈ J by i ∈ I.

p.57, first line after (5.3.3): Replace δ ≥ 0 by δ > 0.

p.58, (5.3.9): Replace ∂E+ by ∂nE
+, ∂E− by ∂nE

−.

p.60, l.14: Insert ρ after ε−n.

p.60, l.17: Insert at the end of the line: “(see Exercise 5.4)”.

p.60, l.21: Insert after “ε → 0.” the sentence: “Here limj→∞ φj = φ in CN (Rn) means that
for all compact K ⊂ Rn and for all α, |α| ≤ N , we have limj→∞ ∂αφj = ∂αφ, uniform on K.”

p.61, l.1: Twice replace N + 1 by N + 2.

p.61, second line of Corollary 5.4.1: After “functions” insert “of compact support”.

p.61, l.13: Replace h by n.

p.61, l.−8: Replace α ≥ 0 by |α| ≥ 0.

p.61, l.−4: Twice replace α ≥ 0 by |α| ≥ 0.

p.62, l.5: Replace π1/2n by π(1/2)n.

p.62, (5.4.7): Replace by 1/
(
(n− 2)ωn−1|x|n−2

)
.

p.62, l.10: Replace 1/4π|x| by 1/(4π|x|).

p.62, l.−2: In the middle part omit the integral sign.

p.62, l.−1: On the right-hand side insert the factor 1
2 before the integral.

4



p.63, l.3: On the right-hand side insert a factor π.

p.63, l.10: Replace the exponent −1/2n by −1
2n, and replace −|x|2/4t by −|x|2/(4t).

p.65, l.13: Replace φ(0, 0) by φ(0).

p.65, Exercise 5.1(ii), l.2: Replace “to A+B” by “to A×B”.

p.65, Exercise 5.2, l.4: Replace x = suppu by x ∈ suppu.

p.66, l.1: Replace D′(R) by D′+(R).

p.66, Exercise 5.4, l.2: Replace U ∗ ψ by u ∗ ψ(x).

p.66, Exercise 5.4, l.3: Replace “if u is” by “if u ∈ E ′(Rn) is”.

p.66, Exercise 5.5, l.5: Replace “u1 . . . um is” by “u1 ∗ . . . ∗ um is”.

p.66, Exercise 5.5, l.7: Replace u1 . . . um ∗ v by u1 ∗ . . . ∗ um ∗ v,

p.67, l.1: Replace 2k+1 by 2k−1.

p.67, l.4: Replace “≤ φk” by “≤ µk”.

Chapter 6

p.71, l.−5: Insert (1 + |h|)N after (1 + |g|)N .

p.71, l.−2: Replace χ̂ by χ̂g,h.

p.78, l.4: Replace “right” by “left”.

p.78, (6.3.12): Replace 〈E,χ〉 by 〈tE,χ〉.

p.78, Exercise 6.3: Here a differential operator is meant of the form in p.25, §2.6 with coefficients
aα in D′(X).
There is also an extension of Peetre’s theorem stating that if k : C∞

c (X) → C∞(X) is a linear
(a priori not necessarily continuous) map with supp(k(u)) ⊂ supp(u) for all u ∈ C∞

c (X) then
k is a differential operator with C∞ coefficients. See J. Peetre, Rectification à l’article “Une
caractérisation abstraite des opérateurs différentiels” Math. Scand. 8 (1960), 116–120.

Chapter 8

p.91, Theorem 8.1.2, l.2: Insert “measurable” before “function”.

p.91, Theorem 8.1.2, l.3: Insert “in t” after “function”.

p.91, Proof of Theorem 8.1.2, l.1: Insert “(i) and” after “By”.

p.92, l.−2: Omit the integral sign on the left-hand side.

p.93, l.2: Replace e−ix·ξ by e−iz·ξ.

p.93, (8.1.8): Replace the last part by “(i =
√
−1)”.

p.93, l.−3: Add: “for a linear map from a Fréchet space to a topological space”.

p.95, l.3: Replace Dαφ by Dαφ̂.

p.95, l.6: Replace ‖(−1)|β|(Dα(xβφ))̂ ‖ by sup |(−1)|β|(Dα(xβφ))̂ |
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p.96, l.11: Replace φ̂(e) by φ̂(ξ).

p.98, l.7: Insert “and by Exercise 5.4” after “Theorem 5.4.1”.

p.98, l.12: Take the sup of the absolute value of the given expression.

p.99, Corollary 8.3.1, l.2: Replace (8.3.1) by (8.1.1).

p.99, l.−6: Replace φ(ξ + h) by φ̂(ξ + h).

p.101, l.−4: Replace 4.3.6 by 4.3.3.

p.102, Lemma 8.4.1: After “then” replace v by v̂.

p.102, Proof of Lema 8.4.1, l.3: The fact that xαv is in E ′(Rn) is true, but it is not used.

p.103, Lemma 8.4.2: This is essentially the Remark after Definition 8.3.2.

p.103, l.−5: Replace Cc(Rn) by C∞
c (Rn).

p.104, Lemma 8.5.1, l.4: Replace “(τgψ)g ∈ Zn ” by “(τgψ)g∈Zn”.

p.105, l.−10: Replace h by n.

p.107, l.1: Replace “u ∈ E ′(Rn)” by “ψu ∈ E ′(Rn)”.

p.107, (8.5.12): On the right-hand side insert a factor (2π)n.

p.108, Definition 8.6.1, l.1: Replace S ′ by D′.

p.108, Lemma 8.6.1, l.1: Replace D′ by E ′.

p.108, Proof of Lemma 8.6.1, l.1: Replace ρ ∈ C∞(Rn) by ρ ∈ C∞
c (Rn). Also replace ψ ∈

C∞
c (Rn) by ψ ∈ C∞(Rn).

p.108, (8.6.3): Replace |α| ≤ m by |α| = m,

p.109, Proof of Theorem 8.6.1, l.6: Insert “and m is the order of P” after “c > 0”.

p.109, (8.6.10): Replace “= {0}” by “⊂ {0}”.

p.110, (8.6.11): Replace DE by PE.

p.110, l.3: Insert “Let u ∈ D′(X).” at beginning of line.

p.110, l.5, 8, 10, 12: At five places replace Pψu by P (ψu).

p.110, last line before Exercises: Theorem 8.6.1 (also the generaliztion with C∞ coefficients)
was first proved by K. O. Friedrichs, On the differentiability of the solutions of linear elliptic
differential equations, Comm. Pure Appl. Math. 6 (1953), 299–326.

p.110, Exercise 8.6, l.2: Replace (uψ)̂ by (ψu)̂ .

p.110, Exercise 8.7, l.3: Replace C\0,−1, . . . by C\{0,−1, . . .}.

p.111, l.1: On the right-hand side replace 2πi by −2πi.

p.111, l.4: Replace R by R\{0}.

Chapter 9

p.117, l.−10: If indeed the authors prefer to take the statement that C0
c (Rn) is dense in L2(Rn)
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from the literature instead of proving it here, then the density of C∞
c (Rn) can be proved quicker

from this statement together with Theorem 1.2.1.

p.120, l.−1: Replace the exponent 1
2 by 1

2s.

p.121, (9.3.2): Replace exponent 1
2s by s.

p.121, Proof of Theorem 9.3.1, l.14: Replace (1 + |ξ|2)
1
2 by (1 + |ξ|2)

1
2
s.

p.122, Proof of Theorem 9.3.2, l.3: Replace û by û(ξ).

p.123, l.6: Replace ξαu by ξαû. Also insert “for |α| ≤ m” after “L2(Rn)”.

p.123, l.17: Replace uα by u.

p.124, Proof of Corollary 9.3.3, l.1: Replace 9.3.1 by 9.3.2.
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