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By induction with respect to m (in fact by telescoping) we see that
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Hence, for n € Z>o we have
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Note that (3) can be rewritten as an evaluation for Charlier polynomials in a special case:
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Rewrite (2) as
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Note that % is the chance that in a row of objects of n possible types, each type with
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equal probability, the first k£ objects have different types. Furthermore, the term (=Dl kg
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the chance that the first k objects have different types but among the first £ + 1 objects there
are two of equal type. Therefore, the sum in the right-hand side of (6) must be equal to 1.



