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By induction with respect to m (in fact by telescoping) we see that
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Hence, for n ∈ Z≥0 we have
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Note that (3) can be rewritten as an evaluation for Charlier polynomials in a special case:

Cn(−2;n + 1) = n + 1. (5)

Rewrite (2) as
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Note that (n−1)!
(n−k)!nk−1 is the chance that in a row of objects of n possible types, each type with

equal probability, the first k objects have different types. Furthermore, the term (n−1)!
(n−k)!nk−1

k
n is

the chance that the first k objects have different types but among the first k + 1 objects there
are two of equal type. Therefore, the sum in the right-hand side of (6) must be equal to 1.
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