Additions to the formula lists in "Hypergeometric orthogonal polynomials and their q-analogues" by Koekoek, Lesky and Swarttouw

Tom H. Koornwinder

February 4, 2022

Abstract

This report gives a rather arbitrary choice of formulas for (q -)hypergeometric orthogonal polynomials which the author missed while consulting Chapters 9 and 14 in the book "Hypergeometric orthogonal polynomials and their q-analogues" by Koekoek, Lesky and Swarttouw. The systematics of these chapters will be followed here, in particular for the numbering of subsections and of references.

Introduction

This report contains some formulas about (q-)hypergeometric orthogonal polynomials which I missed but wanted to use while consulting Chapters 9 and 14 in the book [KLS]:
R. Koekoek, P. A. Lesky and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer-Verlag, 2010.
These chapters form together the (slightly extended) successor of the report
R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998; http://aw.twi.tudelft.nl/~koekoek/askey/.

Certainly these chapters give complete lists of formulas of special type, for instance orthogonality relations and three-term recurrence relations. But outside these narrow categories there are many other formulas for (q-)orthogonal polynomials which one wants to have available. Often one can find the desired formula in one of the standard references listed at the end of this report. Sometimes it is only available in a journal or a less common monograph. Just for my own comfort, I have brought together some of these formulas. This will possibly also be helpful for some other users.

Usually, any type of formula I give for a special class of polynomials, will suggest a similar formula for many other classes, but I have not aimed at completeness by filling in a formula of such type at all places. The resulting choice of formulas is rather arbitrary, just depending on the formulas which I happened to need or which raised my interest. For each formula I give a suitable reference or I sketch a proof. It is my intention to gradually extend this collection of formulas.

Conventions

The (x.y) and (x.y.z) type subsection numbers, the (x.y.z) type formula numbers, and the [x] type citation numbers refer to [KLS]. The (x) type formula numbers refer to this manuscript and the $[\mathrm{Kx}]$ type citation numbers refer to citations which are not in [KLS]. Some standard references like [DLMF] are given by special acronyms.
N is always a positive integer. Always assume n to be a nonnegative integer or, if N is present, to be in $\{0,1, \ldots, N\}$. Throughout assume $0<q<1$.

For each family the coefficient of the term of highest degree of the orthogonal polynomial of degree n can be found in [KLS] as the coefficient of $p_{n}(x)$ in the formula after the main formula under the heading "Normalized Recurrence Relation". If that main formula is numbered as (x.y.z) then I will refer to the second formula as (x.y.zb).

In the notation of q-hypergeometric orthogonal polynomials we will follow the convention that the parameter list and q are separated by ' \mid ' in the case of a q-quadratic lattice (for instance Askey-Wilson) and by ';' in the case of a q-linear lattice (for instance big q-Jacobi). This convention is mostly followed in [KLS], but not everywhere, see for instance little q-Laguerre / Wall.

Acknowledgement

Many thanks to Howard Cohl for having called my attention so often to typos and inconsistencies. Thanks also to Roberto Costas Santos for observing an error and to Gregory Natanson for historical information about Routh.

Contents

Introduction
Conventions
Generalities
9.1 Wilson
9.2 Racah
9.3 Continuous dual Hahn
9.4 Continuous Hahn
9.5 Hahn
9.6 Dual Hahn
9.7 Meixner-Pollaczek
9.8 Jacobi
9.8.1 Gegenbauer / Ultraspherical 9.8.2 Chebyshev
9.9 Pseudo Jacobi (or Romanovski-Routh)
9.10 Meixner
9.11 Krawtchouk
9.12 Laguerre
9.13 Bessel
9.14 Charlier
9.15 Hermite
14.1 Askey-Wilson
14.2 -Racah
14.3 Continuous dual q-Hahn
14.4 Continuous q-Hahn
14.5 Big q-Jacobi
14.7 Dual q-Hahn
14.8 Al-Salam-Chihara
$14.9 q$-Meixner-Pollaczek
14.10 Continuous q-Jacobi
14.10.1 Continuous q-ultraspherical / Rogers
14.11 Big q-Laguerre
14.12 Little q-Jacobi
14.14 Quantum q-Krawtchouk
14.16 Affine q-Krawtchouk
14.17 Dual q-Krawtchouk
14.20 Little q-Laguerre / Wall
$14.21 q$-Laguerre
14.27 Stieltjes-Wigert
14.28 Discrete q-Hermite I
14.29 Discrete q-Hermite II

Standard references
References from [KLS]

Other references

Generalities

Criteria for uniqueness of orthogonality measure According to Shohat \& Tamarkin [K30, p.50] orthonormal polynomials p_{n} have a unique orthogonality measure (up to positive constant factor) if for some $z \in \mathbb{C}$ we have

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|p_{n}(z)\right|^{2}=\infty \tag{1}
\end{equation*}
$$

Also (see Shohat \& Tamarkin [K30, p.59]), monic orthogonal polynomials p_{n} with three-term recurrence relation $x p_{n}(x)=p_{n+1}(x)+B_{n} p_{n}(x)+C_{n} p_{n-1}(x)\left(C_{n}\right.$ necessarily positive) have a unique orthogonality measure if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(C_{n}\right)^{-1 / 2}=\infty \tag{2}
\end{equation*}
$$

Furthermore, if orthogonal polynomials have an orthogonality measure with bounded support, then this is unique (see Chihara [146]).

Kernel polynomials and the three-term recurrence relation

For given monic orthogonal polynomials $\left\{p_{n}\right\}$ with respect to orthogonality measure μ and with

$$
h_{n}:=\int_{\mathbb{R}} p_{n}(x)^{2} \mathrm{~d} \mu(x),
$$

there is the Christoffel-Darboux formula

$$
\begin{equation*}
K_{n}(x, y):=\sum_{k=0}^{n} \frac{p_{k}(x) p_{k}(y)}{h_{k}}=\frac{1}{h_{n}} \frac{p_{n+1}(x) p_{n}(y)-p_{n}(x) p_{n+1}(y)}{x-y} \quad(x \neq y) . \tag{3}
\end{equation*}
$$

Fix $y \in \mathbb{R}$ and suppose that $\operatorname{supp}(\mu) \subseteq(-\infty, y]$. Then $p_{n}(y) \neq 0$ for all n and the monic polynomials

$$
\begin{equation*}
q_{n}(x):=\frac{h_{n}}{p_{n}(y)} K_{n}(x, y) \tag{4}
\end{equation*}
$$

are orthogonal with respect to $(y-x) \mathrm{d} \mu(x)$. They are called kernel polynomials (see Chihara [146, Ch. $1, \S 7]$). There is a pair of contiguous relations relating the polynomialsd p_{n} and q_{n} :

$$
\begin{align*}
(x-y) q_{n}(x) & =p_{n+1}(x)-A_{n} p_{n}(x), \tag{5}\\
p_{n}(x) & =q_{n}(x)-C_{n} q_{n-1}(x), \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
A_{n}=\frac{p_{n+1}(y)}{p_{n}(y)}, \quad C_{n}=\frac{h_{n}}{h_{n-1}} \frac{p_{n-1}(y)}{p_{n}(y)} . \tag{7}
\end{equation*}
$$

Then the three-term recurrence relations for the orthogonal polynomials p_{n} and q_{n} can be written in the form (see [K32, §5, Lemma 1])

$$
\begin{align*}
& x p_{n}(x)=p_{n+1}(x)+\left(y-A_{n}-C_{n}\right) p_{n}(x)+A_{n-1} C_{n} p_{n-1}(x), \tag{8}\\
& x q_{n}(x)=q_{n+1}(x)+\left(y-A_{n}-C_{n+1}\right) q_{n}(x)+A_{n} C_{n} q_{n-1}(x) . \tag{9}
\end{align*}
$$

In the above formulas put terms containing the factor C_{0} equal to 0 .
In many cases in [KLS, Chapters 9,14$]$ the normalized three-term recurrence relation is given in the form (8), already in the Askey-Wilson case (14.1.5), and where it is not written in this way, it can be done so. See for instance (54) for Jacobi.

If we write the normalized recurrence relation for the p_{n} as

$$
\begin{equation*}
x p_{n}(x)=p_{n+1}(x)+b_{n} p_{n}(x)+c_{n} p_{n-1}(x), \tag{10}
\end{equation*}
$$

and compare it with (8) then

$$
\begin{equation*}
b_{0}=y-A_{0}, \quad b_{n}=y-A_{n}-C_{n}, \quad c_{n}=A_{n-1} C_{n} \quad(n \geq 1) . \tag{11}
\end{equation*}
$$

This can be recursively solved for the A_{n}, C_{n} in terms of the b_{n}, c_{n} by

$$
\begin{equation*}
A_{0}=y-b_{0}, \quad C_{n}=\frac{c_{n}}{A_{n-1}}, \quad A_{n}=y-b_{n}-C_{n} \quad(n \geq 1) . \tag{12}
\end{equation*}
$$

Even orthogonality measure If $\left\{p_{n}\right\}$ is a system of orthogonal polynomials with respect to an even orthogonality measure which satisfies the three-term recurrence relation

$$
x p_{n}(x)=a_{n} p_{n+1}(x)+c_{n} p_{n-1}(x)
$$

then

$$
\begin{equation*}
\frac{p_{2 n}(0)}{p_{2 n-2}(0)}=-\frac{c_{2 n-1}}{a_{2 n-1}} . \tag{13}
\end{equation*}
$$

Appell's bivariate hypergeometric function F_{4} This is defined by

$$
\begin{equation*}
F_{4}\left(a, b ; c, c^{\prime} ; x, y\right):=\sum_{m, n=0}^{\infty} \frac{(a)_{m+n}(b)_{m+n}}{(c)_{m}\left(c^{\prime}\right)_{n} m!n!} x^{m} y^{n} \quad\left(|x|^{\frac{1}{2}}+|y|^{\frac{1}{2}}<1\right), \tag{14}
\end{equation*}
$$

see $[$ HTF1, $5.7(9), 5.7(44)]$ or $[D L M F,(16.13 .4)]$. There is the reduction formula

$$
F_{4}\left(a, b ; b, b ; \frac{-x}{(1-x)(1-y)}, \frac{-y}{(1-x)(1-y)}\right)=(1-x)^{a}(1-y)^{a}{ }_{2} F_{1}\left(\begin{array}{c}
a, 1+a-b \\
b
\end{array} ; x y\right),
$$

see [HTF1, 5.10(7)]. When combined with the quadratic transformation [HTF1, 2.11(34)] (here $a-b-1$ should be replaced by $a-b+1$), see also [DLMF, (15.8.15)], this yields

$$
\begin{aligned}
& F_{4}\left(a, b ; b, b ; \frac{-x}{(1-x)(1-y)}, \frac{-y}{(1-x)(1-y)}\right) \\
&=\left(\frac{(1-x)(1-y)}{1+x y}\right)^{a}{ }_{2} F_{1}\left(\begin{array}{c}
\frac{1}{2} a, \frac{1}{2}(a+1) \\
b
\end{array} ; \frac{4 x y}{(1+x y)^{2}}\right) .
\end{aligned}
$$

This can be rewritten as

$$
F_{4}(a, b ; b, b ; x, y)=(1-x-y)^{-a}{ }_{2} F_{1}\left(\begin{array}{c}
\frac{1}{2} a, \frac{1}{2}(a+1) \tag{15}\\
b
\end{array} ; \frac{4 x y}{(1-x-y)^{2}}\right) .
$$

Note that, if $x, y \geq 0$ and $x^{\frac{1}{2}}+y^{\frac{1}{2}}<1$, then $1-x-y>0$ and $0 \leq \frac{4 x y}{(1-x-y)^{2}}<1$.
q-Hypergeometric series of base $q^{-1} \quad$ By [GR, Exercise 1.4(i)]:

$$
{ }_{r} \phi_{s}\left(\begin{array}{c}
a_{1}, \ldots, a_{r} \tag{16}\\
b_{1}, \ldots b_{s}
\end{array} ; q^{-1}, z\right)={ }_{s+1} \phi_{s}\left(\begin{array}{c}
a_{1}^{-1}, \ldots a_{r}^{-1}, 0, \ldots, 0 \\
b_{1}^{-1}, \ldots, b_{s}^{-1}
\end{array} q, \frac{q a_{1} \ldots a_{r} z}{b_{1} \ldots b_{s}}\right)
$$

for $r \leq s+1, a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s} \neq 0$. In the non-terminating case, for $0<q<1$, there is convergence if $|z|<b_{1} \ldots b_{s} /\left(q a_{1} \ldots a_{r}\right)$.

A transformation of a terminating ${ }_{2} \phi_{1}$ By [GR, Exercise 1.15(i)] we have

$$
{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n}, b \tag{17}\\
c
\end{array} ; q, z\right)=\left(b z /(c q) ; q^{-1}\right)_{n 3} \phi_{2}\left(\begin{array}{l}
q^{-n}, c / b, 0 \\
c, c q /(b z)
\end{array} ; q, q\right) .
$$

Very-well-poised q-hypergeometric series The notation of [GR, (2.1.11)] will be followed:

$$
{ }_{r+1} W_{r}\left(a_{1} ; a_{4}, a_{5}, \ldots, a_{r+1} ; q, z\right):={ }_{r+1} \phi_{r}\left(\begin{array}{c}
a_{1}, q a_{1}^{\frac{1}{2}},-q a_{1}^{\frac{1}{2}}, a_{4}, \ldots, a_{r+1} \tag{18}\\
a_{1}^{\frac{1}{2}},-a_{1}^{\frac{1}{2}}, q a_{1} / a_{4}, \ldots, q a_{1} / a_{r+1}
\end{array} ; q, z\right) .
$$

Theta function The notation of [GR, (11.2.1)] will be followed:

$$
\begin{equation*}
\theta(x ; q):=(x, q / x ; q)_{\infty}, \quad \theta\left(x_{1}, \ldots, x_{m} ; q\right):=\theta\left(x_{1} ; q\right) \ldots \theta\left(x_{m} ; q\right) . \tag{19}
\end{equation*}
$$

9.1 Wilson

Symmetry The Wilson polynomial $W_{n}(y ; a, b, c, d)$ is symmetric in a, b, c, d.
This follows from the orthogonality relation (9.1.2) together with the value of its coefficient of y^{n} given in (9.1.5b). Alternatively, combine (9.1.1) with [AAR, Theorem 3.1.1].
As a consequence, it is sufficient to give generating function (9.1.12). Then the generating functions (9.1.13), (9.1.14) will follow by symmetry in the parameters.

Hypergeometric representation In addition to (9.1.1) we have (see [513, (2.2)]):

$$
\begin{align*}
& W_{n}\left(x^{2} ; a, b, c, d\right)=\frac{(a-\mathrm{i} x)_{n}(b-\mathrm{i} x)_{n}(c-\mathrm{i} x)_{n}(d-\mathrm{i} x)_{n}}{(-2 \mathrm{i} x)_{n}} \\
& \times{ }_{7} F_{6}\left(\begin{array}{c}
2 \mathrm{i} x-n, \mathrm{i} x-\frac{1}{2} n+1, a+\mathrm{i} x, b+\mathrm{i} x, c+\mathrm{i} x, d+\mathrm{i} x,-n \\
\mathrm{i} x-\frac{1}{2} n, 1-n-a+\mathrm{i} x, 1-n-b+\mathrm{i} x, 1-n-c+\mathrm{i} x, 1-n-d+\mathrm{i} x, 1+2 \mathrm{i} x
\end{array} ; 1\right) . \tag{20}
\end{align*}
$$

The symmetry in a, b, c, d is clear from (20).

Special value

$$
\begin{equation*}
W_{n}\left(-a^{2} ; a, b, c, d\right)=(a+b)_{n}(a+c)_{n}(a+d)_{n}, \tag{21}
\end{equation*}
$$

and similarly for arguments $-b^{2},-c^{2}$ and $-d^{2}$ by symmetry of W_{n} in a, b, c, d.

Uniqueness of orthogonality measure Under the assumptions on a, b, c, d for (9.1.2) or (9.1.3) the orthogonality measure is unique up to constant factor.

For the proof assume without loss of generality (by the symmetry in a, b, c, d) that $\operatorname{Re} a \geq 0$. Write the right-hand side of (9.1.2) or (9.1.3) as $h_{n} \delta_{m, n}$. Observe from (9.1.2) and (21) that

$$
\frac{\left|W_{n}\left(-a^{2} ; a, b, c, d\right)\right|^{2}}{h_{n}}=O\left(n^{4 \operatorname{Re} a-1}\right) \quad \text { as } n \rightarrow \infty .
$$

Therefore (1) holds, from which the uniqueness of the orthogonality measure follows.
By a similar, but necessarily more complicated argument Ismail et al. [281, Section 3] proved the uniqueness of orthogonality measure for associated Wilson polynomials.

9.2 Racah

Racah in terms of Wilson In the Remark on p. 196 Racah polynomials are expressed in terms of Wilson polynomials. This can be equivalently written as

$$
\begin{align*}
& R_{n}(x(x-N+\delta) ; \alpha, \beta,-N-1, \delta) \\
& =\frac{W_{n}\left(-\left(x+\frac{1}{2}(\delta-N)\right)^{2} ; \frac{1}{2}(\delta-N), \alpha+1-\frac{1}{2}(\delta-N), \beta+\frac{1}{2}(\delta+N)+1,-\frac{1}{2}(\delta+N)\right)}{(\alpha+1)_{n}(\beta+\delta+1)_{n}(-N)_{n}} . \tag{22}
\end{align*}
$$

9.3 Continuous dual Hahn

Symmetry The continuous dual Hahn polynomial $S_{n}(y ; a, b, c)$ is symmetric in a, b, c.
This follows from the orthogonality relation (9.3.2) together with the value of its coefficient of y^{n} given in (9.3.5b). Alternatively, combine (9.3.1) with [AAR, Corollary 3.3.5].
As a consequence, it is sufficient to give generating function (9.3.12). Then the generating functions (9.3.13), (9.3.14) will follow by symmetry in the parameters.

Special value

$$
\begin{equation*}
S_{n}\left(-a^{2} ; a, b, c\right)=(a+b)_{n}(a+c)_{n}, \tag{23}
\end{equation*}
$$

and similarly for arguments $-b^{2}$ and $-c^{2}$ by symmetry of S_{n} in a, b, c.

Uniqueness of orthogonality measure Under the assumptions on a, b, c for (9.3.2) or (9.3.3) the orthogonality measure is unique up to constant factor.

For the proof assume without loss of generality (by the symmetry in a, b, c) that $\operatorname{Re} a \geq 0$. Write the right-hand side of (9.3.2) or (9.3.3) as $h_{n} \delta_{m, n}$. Observe from (9.3.2) and (23) that

$$
\frac{\left|S_{n}\left(-a^{2} ; a, b, c\right)\right|^{2}}{h_{n}}=O\left(n^{2 \operatorname{Re} a-1}\right) \quad \text { as } n \rightarrow \infty .
$$

Therefore (1) holds, from which the uniqueness of the orthogonality measure follows.

Special continuous dual Hahn in terms of Wilson

$$
\begin{equation*}
S_{n}\left(x ; a, b, \frac{1}{2}\right)=\frac{2^{2 n}}{(a+b+n)_{n}} W_{n}\left(\frac{1}{4} x ; \frac{1}{2} a, \frac{1}{2}(a+1), \frac{1}{2} b, \frac{1}{2}(b+1)\right) . \tag{24}
\end{equation*}
$$

For the proof compare the weight functions and the values for $x=-a^{2}$.

Generating functions By (9.3.17) the generating function (9.3.16) has the generating function (9.7.13) for Meixner-Pollaczek polynomials as a limit case.

9.4 Continuous Hahn

Orthogonality relation and parameter symmetry The orthogonality relation (9.4.2) holds under the more general assumption that $\operatorname{Re}(a, b, c, d)>0$ and $(c, d)=(\bar{a}, \bar{b})$ or (\bar{b}, \bar{a}).
Thus, under these assumptions, the continuous Hahn polynomial $p_{n}(x ; a, b, c, d)$ is symmetric in a, b and in c, d. This follows from the orthogonality relation (9.4.2) together with the value of its coefficient of x^{n} given in (9.4.4b).
As a consequence, it is sufficient to give generating function (9.4.11). Then the generating function (9.4.12) will follow by symmetry in the parameters.

Symmetry

$$
\begin{equation*}
p_{n}(-x ; a, b, \bar{a}, \bar{b})=(-1)^{n} p_{n}(x ; \bar{a}, \bar{b}, a, b) . \tag{25}
\end{equation*}
$$

Special value

$$
\begin{equation*}
p_{n}(\mathrm{i} a ; a, b, \bar{a}, \bar{b})=\frac{\mathrm{i}^{n}(a+\bar{a})_{n}(a+\bar{b})_{n}}{n!} . \tag{26}
\end{equation*}
$$

Similarly, $p_{n}(x ; a, b, \bar{a}, \bar{b})$ has special values for $x=-\mathrm{i} \bar{a}, \mathrm{i} b$ and $-\mathrm{i} \bar{b}$.

Quadratic transformation For $a, b \in \mathbb{R}$ or $b=\bar{a}$ we have [K20, (2.29), (2.30)]

$$
\begin{equation*}
\frac{p_{2 n}(x ; a, b, \bar{a}, \bar{b})}{p_{2 n}(\mathrm{i} a ; a, b, \bar{a}, \bar{b})}=\frac{W_{n}\left(x^{2} ; a, b, \frac{1}{2}, 0\right)}{W_{n}\left(-a^{2} ; a, b, \frac{1}{2}, 0\right)}, \quad \frac{p_{2 n+1}(x ; a, b, \bar{a}, \bar{b})}{p_{2 n+1}(\mathrm{i} a ; a, b, \bar{a}, \bar{b})}=\frac{x W_{n}\left(x^{2} ; a, b, \frac{1}{2}, 1\right)}{\mathrm{i} a W_{n}\left(-a^{2} ; a, b, \frac{1}{2}, 1\right)} . \tag{27}
\end{equation*}
$$

Explicit expression For $a, b \in \mathbb{R}$ or $b=\bar{a}$ we have by (27), (9.1.1) and reversion of direction of summation that

$$
\begin{array}{r}
p_{n}(x ; a, b, \bar{a}, \bar{b})=\frac{(n+a+b+\bar{a}+\bar{b}-1)_{n}}{n!} x^{n-2\left[\frac{1}{2} n\right]}\left(-\frac{1}{2} n+\mathrm{i} x+1\right)_{\left[\frac{1}{2} n\right]}\left(-\frac{1}{2} n-\mathrm{i} x+1\right)_{\left[\frac{1}{2} n\right]} \\
\times{ }_{4} F_{3}\binom{-\frac{1}{2} n,-\frac{1}{2} n+\frac{1}{2},-\frac{1}{2} n-a+1,-\frac{1}{2} n-b+1}{-n-a-b+\frac{3}{2},-\frac{1}{2} n+\mathrm{i} x+1,-\frac{1}{2} n-\mathrm{i} x+1} . \tag{28}
\end{array}
$$

Special cases In the following special case there is a reduction to Meixner-Pollaczek:

$$
\begin{equation*}
p_{n}\left(x ; a, a+\frac{1}{2}, a, a+\frac{1}{2}\right)=\frac{(2 a)_{n}\left(2 a+\frac{1}{2}\right)_{n}}{(4 a)_{n}} P_{n}^{(2 a)}\left(2 x ; \frac{1}{2} \pi\right) . \tag{29}
\end{equation*}
$$

See [342, (2.6)] (note that in [342, (2.3)] the Meixner-Pollaczek polyonmials are defined different from (9.7.1), without a constant factor in front).

For $0<a<1$ the continuous Hahn polynomials $p_{n}(x ; a, 1-a, a, 1-a)$ are orthogonal on $(-\infty, \infty)$ with respect to the weight function $(\cosh (2 \pi x)-\cos (2 \pi a))^{-1}$ (by straightforward computation from (9.4.2)). For $a=\frac{1}{4}$ the two special cases coincide: Meixner-Pollaczek with weight function $(\cosh (2 \pi x))^{-1}$.

Uniqueness of orthogonality measure The coefficient of $p_{n-1}(x)$ in (9.4.4) behaves as $O\left(n^{2}\right)$ as $n \rightarrow \infty$. Hence (2) holds, by which the orthogonality measure is unique.

9.5 Hahn

Special values

$$
\begin{equation*}
Q_{n}(0 ; \alpha, \beta, N)=1, \quad Q_{n}(N ; \alpha, \beta, N)=\frac{(-1)^{n}(\beta+1)_{n}}{(\alpha+1)_{n}} . \tag{30}
\end{equation*}
$$

Use (9.5.1) and compare with (9.8.1) and (53).
From (9.5.3) and (13) it follows that

$$
\begin{equation*}
Q_{2 n}(N ; \alpha, \alpha, 2 N)=\frac{\left(\frac{1}{2}\right)_{n}(N+\alpha+1)_{n}}{\left(-N+\frac{1}{2}\right)_{n}(\alpha+1)_{n}} \tag{31}
\end{equation*}
$$

From (9.5.1) and [DLMF, (15.4.24)] it follows that

$$
\begin{equation*}
Q_{N}(x ; \alpha, \beta, N)=\frac{(-N-\beta)_{x}}{(\alpha+1)_{x}} \quad(x=0,1, \ldots, N) \tag{32}
\end{equation*}
$$

Symmetries By the orthogonality relation (9.5.2):

$$
\begin{equation*}
\frac{Q_{n}(N-x ; \alpha, \beta, N)}{Q_{n}(N ; \alpha, \beta, N)}=Q_{n}(x ; \beta, \alpha, N), \tag{33}
\end{equation*}
$$

It follows from (40) and (35) that

$$
\begin{equation*}
\frac{Q_{N-n}(x ; \alpha, \beta, N)}{Q_{N}(x ; \alpha, \beta, N)}=Q_{n}(x ;-N-\beta-1,-N-\alpha-1, N) \quad(x=0,1, \ldots, N) . \tag{34}
\end{equation*}
$$

Duality The Remark on p. 208 gives the duality between Hahn and dual Hahn polynomials:

$$
\begin{equation*}
Q_{n}(x ; \alpha, \beta, N)=R_{x}(n(n+\alpha+\beta+1) ; \alpha, \beta, N) \quad(n, x \in\{0,1, \ldots N\}) . \tag{35}
\end{equation*}
$$

9.6 Dual Hahn

Special values $B y$ (32) and (35) we have

$$
\begin{equation*}
R_{n}(N(N+\gamma+\delta+1) ; \gamma, \delta, N)=\frac{(-N-\delta)_{n}}{(\gamma+1)_{n}} . \tag{36}
\end{equation*}
$$

It follows from (30) and (35) that

$$
\begin{equation*}
R_{N}(x(x+\gamma+\delta+1) ; \gamma, \delta, N)=\frac{(-1)^{x}(\delta+1)_{x}}{(\gamma+1)_{x}} \quad(x=0,1, \ldots, N) \tag{37}
\end{equation*}
$$

Symmetries Write the weight in (9.6.2) as

$$
\begin{equation*}
w_{x}(\alpha, \beta, N):=N!\frac{2 x+\gamma+\delta+1}{(x+\gamma+\delta+1)_{N+1}} \frac{(\gamma+1)_{x}}{(\delta+1)_{x}}\binom{N}{x} . \tag{38}
\end{equation*}
$$

Then

$$
\begin{equation*}
(\delta+1)_{N} w_{N-x}(\gamma, \delta, N)=(-\gamma-N)_{N} w_{x}(-\delta-N-1,-\gamma-N-1, N) . \tag{39}
\end{equation*}
$$

Hence, by (9.6.2),

$$
\begin{equation*}
\frac{R_{n}((N-x)(N-x+\gamma+\delta+1) ; \gamma, \delta, N)}{R_{n}(N(N+\gamma+\delta+1) ; \gamma, \delta, N)}=R_{n}(x(x-2 N-\gamma-\delta-1) ;-N-\delta-1,-N-\gamma-1, N) . \tag{40}
\end{equation*}
$$

Alternatively, (40) follows from (9.6.1) and [DLMF, (16.4.11)].
It follows from (33) and (35) that

$$
\begin{equation*}
\frac{R_{N-n}(x(x+\gamma+\delta+1) ; \gamma, \delta, N)}{R_{N}(x(x+\gamma+\delta+1) ; \gamma, \delta, N)}=R_{n}(x(x+\gamma+\delta+1) ; \delta, \gamma, N) \quad(x=0,1, \ldots, N) \tag{41}
\end{equation*}
$$

Re: (9.6.11). The generating function (9.6.11) can be written in a more conceptual way as

$$
(1-t)^{x}{ }_{2} F_{1}\left(\begin{array}{c}
x-N, x+\gamma+1 \tag{42}\\
-\delta-N
\end{array} ; t\right)=\frac{N!}{(\delta+1)_{N}} \sum_{n=0}^{N} \omega_{n} R_{n}(\lambda(x) ; \gamma, \delta, N) t^{n},
$$

where

$$
\begin{equation*}
\omega_{n}:=\binom{\gamma+n}{n}\binom{\delta+N-n}{N-n}, \tag{43}
\end{equation*}
$$

i.e., the denominator on the right-hand side of (9.6.2). By the duality between Hahn polynomials and dual Hahn polynomials (see (35)) the above generating function can be rewritten in terms of Hahn polynomials:

$$
(1-t)^{n}{ }_{2} F_{1}\left(\begin{array}{c}
n-N, n+\alpha+1 \tag{44}\\
-\beta-N
\end{array} ; t\right)=\frac{N!}{(\beta+1)_{N}} \sum_{x=0}^{N} w_{x} Q_{n}(x ; \alpha, \beta, N) t^{x},
$$

where

$$
\begin{equation*}
w_{x}:=\binom{\alpha+x}{x}\binom{\beta+N-x}{N-x} \tag{45}
\end{equation*}
$$

i.e., the weight occurring in the orthogonality relation (9.5.2) for Hahn polynomials.

Re: (9.6.15). There should be a closing bracket before the equality sign.

9.7 Meixner-Pollaczek

Re: (9.7.1) In addition to the hypergeometric representation (9.7.1) we have, by the Pfaff transformation [HTF1, 2.9(3)], that

$$
P_{n}^{(\lambda)}(x ; \phi)=\frac{(2 \lambda)_{n}}{n!} \mathrm{e}^{-\mathrm{i} n \phi}{ }_{2} F_{1}\left(\begin{array}{c}
-n, \lambda-\mathrm{i} x \tag{46}\\
2 \lambda
\end{array} ; 1-\mathrm{e}^{2 \mathrm{i} \phi}\right) .
$$

Special values By (9.7.1) and (46) we have:

$$
\begin{equation*}
P_{n}^{(\lambda)}(\mathrm{i} \lambda ; \phi)=\frac{(2 \lambda)_{n}}{n!} \mathrm{e}^{\mathrm{i} n \phi}, \quad P_{n}^{(\lambda)}(-\mathrm{i} \lambda ; \phi)=\frac{(2 \lambda)_{n}}{n!} \mathrm{e}^{-\mathrm{i} n \phi} . \tag{47}
\end{equation*}
$$

Symmetry

$$
\begin{equation*}
P_{n}^{(\lambda)}(x ; \phi)=(-1)^{n} P_{n}^{(\lambda)}(-x ; \pi-\phi) . \tag{48}
\end{equation*}
$$

Quadratic transformations $[\mathrm{K} 20,(2.33),(2.34)]$

$$
\begin{equation*}
\frac{P_{2 n}^{(a)}\left(x ; \frac{1}{2} \pi\right)}{P_{2 n}^{(a)}\left(\mathrm{i} a ; \frac{1}{2} \pi\right)}=\frac{S_{n}\left(x^{2} ; a, \frac{1}{2}, 0\right)}{S_{n}\left(-a^{2} ; a, \frac{1}{2}, 0\right)}, \quad \frac{P_{2 n+1}^{(a)}\left(x ; \frac{1}{2} \pi\right)}{P_{2 n+1}^{(a)}\left(\mathrm{i} a ; \frac{1}{2} \pi\right)}=\frac{x S_{n}\left(x^{2} ; a, \frac{1}{2}, 1\right)}{\mathrm{i} a S_{n}\left(-a^{2} ; a, \frac{1}{2}, 1\right)} . \tag{49}
\end{equation*}
$$

These are limit cases of (27) by the limits (9.1.16), (9.4.14).

Uniqueness of orthogonality measure The coefficient of $p_{n-1}(x)$ in (9.7.4) behaves as $O\left(n^{2}\right)$ as $n \rightarrow \infty$. Hence (2) holds, by which the orthogonality measure is unique.

Generating functions By (9.3.17) the generating function (9.3.16) for continuous dual Hahn polynomials has the generating function (9.7.13) as a limit case. By (9.7.14) formula (9.7.13) has the generating function (9.12.12) for Laguerre polynomials as a limit case.

9.8 Jacobi

Orthogonality relation Write the right-hand side of (9.8.2) as $h_{n} \delta_{m, n}$. Then

$$
\begin{align*}
& \frac{h_{n}}{h_{0}}=\frac{n+\alpha+\beta+1}{2 n+\alpha+\beta+1} \frac{(\alpha+1)_{n}(\beta+1)_{n}}{(\alpha+\beta+2)_{n} n!}, \quad h_{0}=\frac{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)}, \\
& \frac{h_{n}}{h_{0}\left(P_{n}^{(\alpha, \beta)}(1)\right)^{2}}=\frac{n+\alpha+\beta+1}{2 n+\alpha+\beta+1} \frac{(\beta+1)_{n} n!}{(\alpha+1)_{n}(\alpha+\beta+2)_{n}} . \tag{50}
\end{align*}
$$

In (9.8.3) the numerator factor $\Gamma(n+\alpha+\beta+1)$ in the last line should be $\Gamma(\beta+1)$. When thus corrected, (9.8.3) can be rewritten as:

$$
\begin{align*}
& \int_{1}^{\infty} P_{m}^{(\alpha, \beta)}(x) P_{n}^{(\alpha, \beta)}(x)(x-1)^{\alpha}(x+1)^{\beta} \mathrm{d} x=h_{n} \delta_{m, n}, \\
& -1-\beta>\alpha>-1, \quad m, n<-\frac{1}{2}(\alpha+\beta+1), \tag{51}\\
& \frac{h_{n}}{h_{0}}=\frac{n+\alpha+\beta+1}{2 n+\alpha+\beta+1} \frac{(\alpha+1)_{n}(\beta+1)_{n}}{(\alpha+\beta+2)_{n} n!}, \quad h_{0}=\frac{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(-\alpha-\beta-1)}{\Gamma(-\beta)} .
\end{align*}
$$

Following Lesky [382] the Jacobi polynomials in case of orthogonality relation (51) may be called Romanovski-Jacobi polynomials.

Symmetry

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(-x)=(-1)^{n} P_{n}^{(\beta, \alpha)}(x) . \tag{52}
\end{equation*}
$$

Use (9.8.2) and (9.8.5b) or see [DLMF, Table 18.6.1].

Special values

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(1)=\frac{(\alpha+1)_{n}}{n!}, \quad P_{n}^{(\alpha, \beta)}(-1)=\frac{(-1)^{n}(\beta+1)_{n}}{n!}, \quad \frac{P_{n}^{(\alpha, \beta)}(-1)}{P_{n}^{(\alpha, \beta)}(1)}=\frac{(-1)^{n}(\beta+1)_{n}}{(\alpha+1)_{n}} . \tag{53}
\end{equation*}
$$

Use (9.8.1) and (52) or see [DLMF, Table 18.6.1].
Normalized recurrence relation Formula (9.8.5) can be rewritten as

$$
\begin{equation*}
x p_{n}(x)=p_{n+1}(x)+\left(1-A_{n}-C_{n}\right) p_{n}(x)+A_{n-1} C_{n} p_{n-1}(x), \tag{54}
\end{equation*}
$$

where $p_{n}(x)=2^{n} n!P_{n}^{(\alpha, \beta)}(x) /(n+\alpha+\beta+1)_{n}$ and

$$
A_{n}=\frac{2(n+\alpha+1)(n+\alpha+\beta+1)}{(2 n+\alpha+\beta+1)(2 n+\alpha+\beta+2)}, \quad C_{n}=\frac{2 n(n+\beta)}{(2 n+\alpha+\beta)(2 n+\alpha+\beta+1)} .
$$

Contiguous relations

$$
\begin{align*}
& \left(n+\frac{1}{2} \alpha+\frac{1}{2} \beta+1\right)(1-x) P_{n}^{(\alpha+1, \beta)}(x)=-(n+1) P_{n+1}^{(\alpha, \beta)}(x)+(n+\alpha+1) P_{n}^{(\alpha, \beta)}(x), \tag{55}\\
& (2 n+\alpha+\beta+1) P_{n}^{(\alpha, \beta)}(x)=(n+\alpha+\beta+1) P_{n}^{(\alpha+1, \beta)}(x)-(n+\beta) P_{n-1}^{(\alpha+1, \beta)}(x) . \tag{56}
\end{align*}
$$

See [HTF2, 10.8(32) and (35)]. These can be rewritten as

$$
\begin{align*}
(x-1) q_{n}(x) & =p_{n+1}(x)-A_{n} p_{n}(x), \tag{57}\\
p_{n}(x) & =q_{n}(x)-C_{n} q_{n-1}(x), \tag{58}
\end{align*}
$$

where $q_{n}(x)=2^{n} n!P_{n}^{(\alpha+1, \beta)}(x) /(n+\alpha+\beta+2)_{n}$ and $p_{n}(x), A_{n}$ and C_{n} are as above.
Formula (54) can be derived from (57), (58) by substituting these last two formulas in the following rewritten form of (54) (compare with (5)-(8)):

$$
(x-1) p_{n}(x)=\left(p_{n+1}(x)-A_{n} p_{n}(x)\right)-C_{n}\left(p_{n}(x)-A_{n-1} p_{n-1}(x)\right) .
$$

Generating functions Formula (9.8.15) was first obtained by Brafman [109, (12)]. Alternatively (see [109, (9)] or use [DLMF, (16.16.6)]), the left-hand side of (9.8.15) can be written as Appell's hypergeometric function F_{4} :

$$
\begin{equation*}
F_{4}\left(\gamma, \alpha+\beta+1-\gamma ; \alpha+1, \beta+1 ; \frac{1}{2} t(x-1), \frac{1}{2} t(x+1)\right)=\sum_{k=0}^{\infty} \frac{(\gamma)_{k}(\alpha+\beta+1-\gamma)_{k}}{(\alpha+1)_{k}(\beta+1)_{k}} P_{k}^{(\alpha, \beta)}(x) t^{k} \tag{59}
\end{equation*}
$$

The generating function (9.12.12) for Laguerre polynomials is a limit case of (59) by (9.8.16). Formula (9.8.15) with t, x replaced by $\frac{1}{2}(x+y), \frac{1+x y}{x+y}$, respectively, takes the form

$$
\left.\begin{array}{rl}
{ }_{2} F_{1}\left(\begin{array}{c}
\gamma, \alpha+\beta+1-\gamma \\
\alpha+1
\end{array} \frac{1}{2}(1-x)\right) & { }_{2} F_{1}\left(\begin{array}{c}
\gamma, \alpha+\beta+1-\gamma \\
\beta+1
\end{array} ; \frac{1}{2}(1+y)\right.
\end{array}\right) .
$$

In [109, (14)] the case γ nonpositive integer of (9.8.15) is given. When we do this for (60) with $\gamma=-n \in \mathbb{Z}_{\leq 0}$ this yields the inverse of Bateman's bilinear sum, as is given in [331, (2.19), (2.20)], [DLMF, (18.18.25), (18.18.26)].

Bilinear generating functions For $0 \leq r<1$ and $x, y \in[-1,1]$ we have in terms of F_{4} (see (14)):

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\alpha+\beta+1)_{n} n!}{(\alpha+1)_{n}(\beta+1)_{n}} r^{n} P_{n}^{(\alpha, \beta)}(x) P_{n}^{(\alpha, \beta)}(y)=\frac{1}{(1+r)^{\alpha+\beta+1}} \\
& \quad \times F_{4}\left(\frac{1}{2}(\alpha+\beta+1), \frac{1}{2}(\alpha+\beta+2) ; \alpha+1, \beta+1 ; \frac{r(1-x)(1-y)}{(1+r)^{2}}, \frac{r(1+x)(1+y)}{(1+r)^{2}}\right), \tag{61}\\
& \sum_{n=0}^{\infty} \frac{2 n+\alpha+\beta+1}{n+\alpha+\beta+1} \frac{(\alpha+\beta+2)_{n} n!}{(\alpha+1)_{n}(\beta+1)_{n}} r^{n} P_{n}^{(\alpha, \beta)}(x) P_{n}^{(\alpha, \beta)}(y)=\frac{1-r}{(1+r)^{\alpha+\beta+2}} \\
& \quad \quad \times F_{4}\left(\frac{1}{2}(\alpha+\beta+2), \frac{1}{2}(\alpha+\beta+3) ; \alpha+1, \beta+1 ; \frac{r(1-x)(1-y)}{(1+r)^{2}}, \frac{r(1+x)(1+y)}{(1+r)^{2}}\right) . \tag{62}
\end{align*}
$$

Formulas (61) and (62) were first given by Bailey [91, (2.1), (2.3)]. See Stanton [485] for a shorter proof. (However, in the second line of $[485,(1)] z$ and Z should be interchanged.) As observed in Bailey [91, p.10], (62) follows from (61) by applying the operator $r^{-\frac{1}{2}(\alpha+\beta-1)} \frac{\mathrm{d}}{\mathrm{d} r} \circ r^{\frac{1}{2}(\alpha+\beta+1)}$ to both sides of (61). In view of (50), formula (62) is the Poisson kernel for Jacobi polynomials. The right-hand side of (62) makes clear that this kernel is positive. See also the discussion in Askey [46, following (2.32)].

Quadratic transformations

$$
\begin{align*}
& \frac{C_{2 n}^{\left(\alpha+\frac{1}{2}\right)}(x)}{C_{2 n}^{\left(\alpha+\frac{1}{2}\right)}(1)}=\frac{P_{2 n}^{(\alpha, \alpha)}(x)}{P_{2 n}^{(\alpha, \alpha)}(1)}=\frac{P_{n}^{\left(\alpha,-\frac{1}{2}\right)}\left(2 x^{2}-1\right)}{P_{n}^{\left(\alpha,-\frac{1}{2}\right)}(1)}, \tag{63}\\
& \frac{C_{2 n+1}^{\left(\alpha+\frac{1}{2}\right)}(x)}{C_{2 n+1}^{\left(\alpha+\frac{1}{2}\right)}(1)}=\frac{P_{2 n+1}^{(\alpha, \alpha)}(x)}{P_{2 n+1}^{(\alpha, \alpha)}(1)}=\frac{x P_{n}^{\left(\alpha, \frac{1}{2}\right)}\left(2 x^{2}-1\right)}{P_{n}^{\left(\alpha, \frac{1}{2}\right)}(1)} . \tag{64}
\end{align*}
$$

See p.221, Remarks, last two formulas together with (53) and (75). Or see [DLMF, (18.7.13), (18.7.14)].

Differentiation formulas Each differentiation formula is given in two equivalent forms.

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left((1-x)^{\alpha} P_{n}^{(\alpha, \beta)}(x)\right) & =-(n+\alpha)(1-x)^{\alpha-1} P_{n}^{(\alpha-1, \beta+1)}(x), \\
\left((1-x) \frac{\mathrm{d}}{\mathrm{~d} x}-\alpha\right) P_{n}^{(\alpha, \beta)}(x) & =-(n+\alpha) P_{n}^{(\alpha-1, \beta+1)}(x) . \tag{65}\\
\frac{\mathrm{d}}{\mathrm{~d} x}\left((1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x)\right) & =(n+\beta)(1+x)^{\beta-1} P_{n}^{(\alpha+1, \beta-1)}(x), \\
\left((1+x) \frac{\mathrm{d}}{\mathrm{~d} x}+\beta\right) P_{n}^{(\alpha, \beta)}(x) & =(n+\beta) P_{n}^{(\alpha+1, \beta-1)}(x) . \tag{66}
\end{align*}
$$

Formulas (65) and (66) follow from [DLMF, (15.5.4), (15.5.6)] together with (9.8.1). They also follow from each other by (52).

Generalized Gegenbauer polynomials These are defined by

$$
\begin{equation*}
S_{2 m}^{(\alpha, \beta)}(x):=\text { const. } P_{m}^{(\alpha, \beta)}\left(2 x^{2}-1\right), \quad S_{2 m+1}^{(\alpha, \beta)}(x):=\text { const. } x P_{m}^{(\alpha, \beta+1)}\left(2 x^{2}-1\right) \tag{67}
\end{equation*}
$$

in the notation of [146, p.156] (see also [K5]), while [K9, Section 1.5.2] has $C_{n}^{(\lambda, \mu)}(x)=$ const. $\times S_{n}^{\left(\lambda-\frac{1}{2}, \mu-\frac{1}{2}\right)}(x)$. For $\alpha, \beta>-1$ we have the orthogonality relation

$$
\begin{equation*}
\int_{-1}^{1} S_{m}^{(\alpha, \beta)}(x) S_{n}^{(\alpha, \beta)}(x)|x|^{2 \beta+1}\left(1-x^{2}\right)^{\alpha} \mathrm{d} x=0 \quad(m \neq n) \tag{68}
\end{equation*}
$$

For $\beta=\alpha-1$ generalized Gegenbauer polynomials are limit cases of continuous q-ultraspherical polynomials, see (190).

If we define the Dunkl operator T_{μ} by

$$
\begin{equation*}
\left(T_{\mu} f\right)(x):=f^{\prime}(x)+\mu \frac{f(x)-f(-x)}{x} \tag{69}
\end{equation*}
$$

and if we choose the constants in (67) as

$$
\begin{equation*}
S_{2 m}^{(\alpha, \beta)}(x)=\frac{(\alpha+\beta+1)_{m}}{(\beta+1)_{m}} P_{m}^{(\alpha, \beta)}\left(2 x^{2}-1\right), \quad S_{2 m+1}^{(\alpha, \beta)}(x)=\frac{(\alpha+\beta+1)_{m+1}}{(\beta+1)_{m+1}} x P_{m}^{(\alpha, \beta+1)}\left(2 x^{2}-1\right) \tag{70}
\end{equation*}
$$

then (see $[\mathrm{K} 6,(1.6)])$

$$
\begin{equation*}
T_{\beta+\frac{1}{2}} S_{n}^{(\alpha, \beta)}=2(\alpha+\beta+1) S_{n-1}^{(\alpha+1, \beta)} . \tag{71}
\end{equation*}
$$

Formula (71) with (70) substituted gives rise to two differentiation formulas involving Jacobi polynomials which are equivalent to (9.8.7) and (66).

Composition of (71) with itself gives

$$
T_{\beta+\frac{1}{2}}^{2} S_{n}^{(\alpha, \beta)}=4(\alpha+\beta+1)(\alpha+\beta+2) S_{n-2}^{(\alpha+2, \beta)},
$$

which is equivalent to the composition of (9.8.7) and (66):

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\frac{2 \beta+1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right) P_{n}^{(\alpha, \beta)}\left(2 x^{2}-1\right)=4(n+\alpha+\beta+1)(n+\beta) P_{n-1}^{(\alpha+2, \beta)}\left(2 x^{2}-1\right) . \tag{72}
\end{equation*}
$$

Formula (72) was also given in [332, (2.4)].

9.8.1 Gegenbauer / Ultraspherical

Notation Here the Gegenbauer polynomial is denoted by C_{n}^{λ} instead of $C_{n}^{(\lambda)}$.

Orthogonality relation Write the right-hand side of (9.8.20) as $h_{n} \delta_{m, n}$. Then

$$
\begin{equation*}
\frac{h_{n}}{h_{0}}=\frac{\lambda}{\lambda+n} \frac{(2 \lambda)_{n}}{n!}, \quad h_{0}=\frac{\pi^{\frac{1}{2}} \Gamma\left(\lambda+\frac{1}{2}\right)}{\Gamma(\lambda+1)}, \quad \frac{h_{n}}{h_{0}\left(C_{n}^{\lambda}(1)\right)^{2}}=\frac{\lambda}{\lambda+n} \frac{n!}{(2 \lambda)_{n}} . \tag{73}
\end{equation*}
$$

Hypergeometric representation Beside (9.8.19) we have also

$$
C_{n}^{\lambda}(x)=\sum_{\ell=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{\ell}(\lambda)_{n-\ell}}{\ell!(n-2 \ell)!}(2 x)^{n-2 \ell}=(2 x)^{n} \frac{(\lambda)_{n}}{n!}{ }_{2} F_{1}\left(\begin{array}{c}
-\frac{1}{2} n,-\frac{1}{2} n+\frac{1}{2} \tag{74}\\
1-\lambda-n
\end{array} ; \frac{1}{x^{2}}\right) .
$$

See [DLMF, (18.5.10)].

Special value

$$
\begin{equation*}
C_{n}^{\lambda}(1)=\frac{(2 \lambda)_{n}}{n!} . \tag{75}
\end{equation*}
$$

Use (9.8.19) or see [DLMF, Table 18.6.1].

Expression in terms of Jacobi

$$
\begin{equation*}
\frac{C_{n}^{\lambda}(x)}{C_{n}^{\lambda}(1)}=\frac{P_{n}^{\left(\lambda-\frac{1}{2}, \lambda-\frac{1}{2}\right)}(x)}{P_{n}^{\left(\lambda-\frac{1}{2}, \lambda-\frac{1}{2}\right)}(1)}, \quad C_{n}^{\lambda}(x)=\frac{(2 \lambda)_{n}}{\left(\lambda+\frac{1}{2}\right)_{n}} P_{n}^{\left(\lambda-\frac{1}{2}, \lambda-\frac{1}{2}\right)}(x) \tag{76}
\end{equation*}
$$

Re: (9.8.21) By iteration of recurrence relation (9.8.21):

$$
\begin{align*}
x^{2} C_{n}^{\lambda}(x)=\frac{(n+1)(n+2)}{4(n+\lambda)(n+\lambda+1)} C_{n+2}^{\lambda}(x)+\frac{n^{2}+2 n \lambda+\lambda-1}{2(n+\lambda-1)(n+\lambda+1)} C_{n}^{\lambda}(x) \\
\quad+\frac{(n+2 \lambda-1)(n+2 \lambda-2)}{4(n+\lambda)(n+\lambda-1)} C_{n-2}^{\lambda}(x) . \tag{77}
\end{align*}
$$

Bilinear generating functions

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \frac{n!}{(2 \lambda)_{n}} r^{n} C_{n}^{\lambda}(x) C_{n}^{\lambda}(y)=\frac{1}{\left(1-2 r x y+r^{2}\right)^{\lambda}}{ }_{2} F_{1}\left(\begin{array}{c}
\frac{1}{2} \lambda, \frac{1}{2}(\lambda+1) \\
\lambda+\frac{1}{2}
\end{array} ; \frac{4 r^{2}\left(1-x^{2}\right)\left(1-y^{2}\right)}{\left(1-2 r x y+r^{2}\right)^{2}}\right) \\
(r \in(-1,1), x, y \in[-1,1]) . \tag{78}
\end{array}
$$

For the proof put $\beta:=\alpha$ in (61), then use (15) and (76). The Poisson kernel for Gegenbauer polynomials can be derived in a similar way from (62), or alternatively by applying the operator $r^{-\lambda+1} \frac{d}{d r} \circ r^{\lambda}$ to both sides of (78):

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{\lambda+n}{\lambda} \frac{n!}{(2 \lambda)_{n}} r^{n} C_{n}^{\lambda}(x) C_{n}^{\lambda}(y)=\frac{1-r^{2}}{\left(1-2 r x y+r^{2}\right)^{\lambda+1}} \\
& \quad \times{ }_{2} F_{1}\left(\begin{array}{c}
\frac{1}{2}(\lambda+1), \frac{1}{2}(\lambda+2) \\
\lambda+\frac{1}{2}
\end{array} ; \frac{4 r^{2}\left(1-x^{2}\right)\left(1-y^{2}\right)}{\left(1-2 r x y+r^{2}\right)^{2}}\right) \quad(r \in(-1,1), x, y \in[-1,1]) . \tag{79}
\end{align*}
$$

Formula (79) was obtained by Gasper \& Rahman [234, (4.4)] as a limit case of their formula for the Poisson kernel for continuous q-ultraspherical polynomials.

Trigonometric expansions By [DLMF, (18.5.11), (15.8.1)]:

$$
\begin{align*}
C_{n}^{\lambda}(\cos \theta) & =\sum_{k=0}^{n} \frac{(\lambda)_{k}(\lambda)_{n-k}}{k!(n-k)!} \mathrm{e}^{\mathrm{i}(n-2 k) \theta}=\mathrm{e}^{\mathrm{i} n \theta} \frac{(\lambda)_{n}}{n!}{ }_{2} F_{1}\left(\begin{array}{c}
-n, \lambda \\
1-\lambda-n
\end{array} ; \mathrm{e}^{-2 \mathrm{i} \theta}\right) \tag{80}\\
& =\frac{(\lambda)_{n}}{2^{\lambda} n!} \mathrm{e}^{-\frac{1}{2} \mathrm{i} \lambda \pi} \mathrm{e}^{\mathrm{i}(n+\lambda) \theta}(\sin \theta)^{-\lambda}{ }_{2} F_{1}\left(\begin{array}{c}
\lambda, 1-\lambda \\
1-\lambda-n
\end{array} ; \frac{\mathrm{i} \mathrm{e}^{-\mathrm{i} \theta}}{2 \sin \theta}\right) \tag{81}\\
& =\frac{(\lambda)_{n}}{n!} \sum_{k=0}^{\infty} \frac{(\lambda)_{k}(1-\lambda)_{k}}{(1-\lambda-n)_{k} k!} \frac{\cos \left((n-k+\lambda) \theta+\frac{1}{2}(k-\lambda) \pi\right)}{(2 \sin \theta)^{k+\lambda}} . \tag{82}
\end{align*}
$$

In (81) and (82) we require that $\frac{1}{6} \pi<\theta<\frac{5}{6} \pi$. Then the convergence is absolute for $\lambda>\frac{1}{2}$ and conditional for $0<\lambda \leq \frac{1}{2}$.

By [DLMF, (14.13.1), (14.3.21), (15.8.1)]]:

$$
\begin{align*}
C_{n}^{\lambda}(\cos \theta) & =\frac{2 \Gamma\left(\lambda+\frac{1}{2}\right)}{\pi^{\frac{1}{2}} \Gamma(\lambda+1)} \frac{(2 \lambda)_{n}}{(\lambda+1)_{n}}(\sin \theta)^{1-2 \lambda} \sum_{k=0}^{\infty} \frac{(1-\lambda)_{k}(n+1)_{k}}{(n+\lambda+1)_{k} k!} \sin ((2 k+n+1) \theta) \tag{83}\\
& =\frac{2 \Gamma\left(\lambda+\frac{1}{2}\right)}{\pi^{\frac{1}{2}} \Gamma(\lambda+1)} \frac{(2 \lambda)_{n}}{(\lambda+1)_{n}}(\sin \theta)^{1-2 \lambda} \operatorname{Im}\left(\mathrm{e}^{\mathrm{i}(n+1) \theta}{ }_{2} F_{1}\left(\begin{array}{c}
1-\lambda, n+1 \\
n+\lambda+1
\end{array} \mathrm{e}^{2 \mathrm{i} \theta}\right)\right) \\
& =\frac{2^{\lambda} \Gamma\left(\lambda+\frac{1}{2}\right)}{\pi^{\frac{1}{2}} \Gamma(\lambda+1)} \frac{(2 \lambda)_{n}}{(\lambda+1)_{n}}(\sin \theta)^{-\lambda} \operatorname{Re}\left(\mathrm{e}^{-\frac{1}{2} \mathrm{i} \lambda \pi} e^{\mathrm{i}(n+\lambda) \theta}{ }_{2} F_{1}\left(\begin{array}{c}
\lambda, 1-\lambda \\
1+\lambda+n
\end{array} ; \frac{\mathrm{e}^{i \theta}}{2 i \sin \theta}\right)\right) \\
& =\frac{2^{2 \lambda} \Gamma\left(\lambda+\frac{1}{2}\right)}{\pi^{\frac{1}{2}} \Gamma(\lambda+1)} \frac{(2 \lambda)_{n}}{(\lambda+1)_{n}} \sum_{k=0}^{\infty} \frac{(\lambda)_{k}(1-\lambda)_{k}}{(1+\lambda+n)_{k} k!} \frac{\cos \left((n+k+\lambda) \theta-\frac{1}{2}(k+\lambda) \pi\right)}{(2 \sin \theta)^{k+\lambda}} . \tag{84}
\end{align*}
$$

We require that $0<\theta<\pi$ in (83) and $\frac{1}{6} \pi<\theta<\frac{5}{6} \pi$ in (84) The convergence is absolute for $\lambda>\frac{1}{2}$ and conditional for $0<\lambda \leq \frac{1}{2}$. For $\lambda \in \mathbb{Z}_{>0}$ the above series terminate after the term with $k=\lambda-1$. Formulas (83) and (84) are also given in [Sz, (4.9.22), (4.9.25)].

Fourier transform

$$
\begin{equation*}
\frac{\Gamma(\lambda+1)}{\Gamma\left(\lambda+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)} \int_{-1}^{1} \frac{C_{n}^{\lambda}(y)}{C_{n}^{\lambda}(1)}\left(1-y^{2}\right)^{\lambda-\frac{1}{2}} \mathrm{e}^{\mathrm{i} x y} \mathrm{~d} y=i^{n} 2^{\lambda} \Gamma(\lambda+1) x^{-\lambda} J_{\lambda+n}(x) . \tag{85}
\end{equation*}
$$

See [DLMF, (18.17.17) and (18.17.18)].

Laplace transforms

$$
\begin{equation*}
\frac{2}{n!\Gamma(\lambda)} \int_{0}^{\infty} H_{n}(t x) t^{n+2 \lambda-1} \mathrm{e}^{-t^{2}} \mathrm{~d} t=C_{n}^{\lambda}(x) . \tag{86}
\end{equation*}
$$

See Nielsen [K26, p.48, (4) with p.47, (1) and p.28, (10)] (1918) or Feldheim [K10, (28)] (1942).

$$
\begin{equation*}
\frac{2}{\Gamma\left(\lambda+\frac{1}{2}\right)} \int_{0}^{1} \frac{C_{n}^{\lambda}(t)}{C_{n}^{\lambda}(1)}\left(1-t^{2}\right)^{\lambda-\frac{1}{2}} t^{-1}(x / t)^{n+2 \lambda+1} \mathrm{e}^{-x^{2} / t^{2}} \mathrm{~d} t=2^{-n} H_{n}(x) \mathrm{e}^{-x^{2}} \quad\left(\lambda>-\frac{1}{2}\right) \tag{87}
\end{equation*}
$$

Use Askey \& Fitch [K2, (3.29)] for $\alpha= \pm \frac{1}{2}$ together with (52), (63), (64), (112) and (113).
Addition formula (see [AAR, (9.8.5')]])

$$
\begin{align*}
& R_{n}^{(\alpha, \alpha)}\left(x y+\left(1-x^{2}\right)^{\frac{1}{2}}\left(1-y^{2}\right)^{\frac{1}{2}} t\right)=\sum_{k=0}^{n} \frac{(-1)^{k}(-n)_{k}(n+2 \alpha+1)_{k}}{2^{2 k}\left((\alpha+1)_{k}\right)^{2}} \\
& \quad \times\left(1-x^{2}\right)^{k / 2} R_{n-k}^{(\alpha+k, \alpha+k)}(x)\left(1-y^{2}\right)^{k / 2} R_{n-k}^{(\alpha+k, \alpha+k)}(y) \omega_{k}^{\left(\alpha-\frac{1}{2}, \alpha-\frac{1}{2}\right)} R_{k}^{\left(\alpha-\frac{1}{2}, \alpha-\frac{1}{2}\right)}(t), \tag{88}
\end{align*}
$$

where

$$
R_{n}^{(\alpha, \beta)}(x):=P_{n}^{(\alpha, \beta)}(x) / P_{n}^{(\alpha, \beta)}(1), \quad \omega_{n}^{(\alpha, \beta)}:=\frac{\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} \mathrm{d} x}{\int_{-1}^{1}\left(R_{n}^{(\alpha, \beta)}(x)\right)^{2}(1-x)^{\alpha}(1+x)^{\beta} \mathrm{d} x} .
$$

9.8.2 Chebyshev

In addition to the Chebyshev polynomials T_{n} of the first kind (9.8.35) and U_{n} of the second kind (9.8.36),

$$
\begin{align*}
& T_{n}(x):=\frac{P_{n}^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(x)}{P_{n}^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(1)}=\cos (n \theta), \quad x=\cos \theta, \tag{89}\\
& U_{n}(x):=(n+1) \frac{P_{n}^{\left(\frac{1}{2}, \frac{1}{2}\right)}(x)}{P_{n}^{\left(\frac{1}{2}, \frac{1}{2}\right)}(1)}=\frac{\sin ((n+1) \theta)}{\sin \theta}, \quad x=\cos \theta, \tag{90}
\end{align*}
$$

we have Chebyshev polynomials V_{n} of the third kind and W_{n} of the fourth kind,

$$
\begin{align*}
V_{n}(x) & :=\frac{P_{n}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x)}{P_{n}^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(1)}=\frac{\cos \left(\left(n+\frac{1}{2}\right) \theta\right)}{\cos \left(\frac{1}{2} \theta\right)}, \quad x=\cos \theta, \tag{91}\\
W_{n}(x) & :=(2 n+1) \frac{P_{n}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(x)}{P_{n}^{\left(\frac{1}{2},-\frac{1}{2}\right)}(1)}=\frac{\sin \left(\left(n+\frac{1}{2}\right) \theta\right)}{\sin \left(\frac{1}{2} \theta\right)}, \quad x=\cos \theta, \tag{92}
\end{align*}
$$

see [K23, Section 1.2.3]. Then there is the symmetry

$$
\begin{equation*}
V_{n}(-x)=(-1)^{n} W_{n}(x) \tag{93}
\end{equation*}
$$

The names of Chebyshev polynomials of the third and fourth kind and the notation $V_{n}(x)$ are due to Gautschi [K11]. The notation $W_{n}(x)$ was first used by Mason [K22]. Names and notations for Chebyshev polynomials of the third and fourth kind are interchanged in [AAR, Remark 2.5.3] and [DLMF, Table 18.3.1].

9.9 Pseudo Jacobi (or Romanovski-Routh)

In this section in [KLS] the pseudo Jacobi polynomial $P_{n}(x ; \nu, N)$ in (9.9.1) is considered for $N \in \mathbb{Z}_{\geq 0}$ and $n=0,1, \ldots, n$. However, we can more generally take $-\frac{1}{2}<N \in \mathbb{R}$ (so here I overrule my convention formulated in the beginning of this paper), N_{0} integer such that $N-\frac{1}{2} \leq N_{0}<N+\frac{1}{2}$, and $n=0,1, \ldots, N_{0}$ (see [382, $\S 5$, case A.4]). The orthogonality relation (9.9.2) is valid for $m, n=0,1, \ldots, N_{0}$.

History These polynomials were first observed by Routh [K29] in 1885, but not as orthogonal polynomials (see Natanson [K25] about the history). Romanovski [463] (see also Lesky [382]) independently obtained them in 1929 as orthogonal polynomials.

Limit relation: Pseudo big q-Jacobi \longrightarrow Pseudo Jacobi

See also (173).
References See also [Ism, §20.1], [51], [384], [K17], [K21], [K27].

9.10 Meixner

History In 1934 Meixner [406] (see (1.1) and case IV on pp. 10, 11 and 12) gave the orthogonality measure for the polynomials P_{n} given by the generating function

$$
e^{x u(t)} f(t)=\sum_{n=0}^{\infty} P_{n}(x) \frac{t^{n}}{n!},
$$

where

$$
e^{u(t)}=\left(\frac{1-\beta t}{1-\alpha t}\right)^{\frac{1}{\alpha-\beta}}, \quad f(t)=\frac{(1-\beta t)^{\frac{k_{2}}{\beta(\alpha-\beta)}}}{(1-\alpha t)^{\frac{k_{2}}{\alpha(\alpha-\beta)}}} \quad\left(k_{2}<0 ; \alpha>\beta>0 \text { or } \alpha<\beta<0\right) .
$$

Then P_{n} can be expressed as a Meixner polynomial:

$$
P_{n}(x)=\left(-k_{2}(\alpha \beta)^{-1}\right)_{n} \beta^{n} M_{n}\left(-\frac{x+k_{2} \alpha^{-1}}{\alpha-\beta},-k_{2}(\alpha \beta)^{-1}, \beta \alpha^{-1}\right) .
$$

In 1938 Gottlieb $[\mathrm{K} 15, \S 2]$ introduces polynomials l_{n} "of Laguerre type" which turn out to be special Meixner polynomials: $l_{n}(x)=e^{-n \lambda} M_{n}\left(x ; 1, e^{-\lambda}\right)$.

Uniqueness of orthogonality measure The coefficient of $p_{n-1}(x)$ in (9.10.4) behaves as $O\left(n^{2}\right)$ as $n \rightarrow \infty$. Hence (2) holds, by which the orthogonality measure is unique.

9.11 Krawtchouk

Special values By (9.11.1) and the binomial formula:

$$
\begin{equation*}
K_{n}(0 ; p, N)=1, \quad K_{n}(N ; p, N)=\left(1-p^{-1}\right)^{n} . \tag{94}
\end{equation*}
$$

The self-duality (p.240, Remarks, first formula)

$$
\begin{equation*}
K_{n}(x ; p, N)=K_{x}(n ; p, N) \quad(n, x \in\{0,1, \ldots, N\}) \tag{95}
\end{equation*}
$$

combined with (94) yields:

$$
\begin{equation*}
K_{N}(x ; p, N)=\left(1-p^{-1}\right)^{x} \quad(x \in\{0,1, \ldots, N\}) . \tag{96}
\end{equation*}
$$

Symmetry By the orthogonality relation (9.11.2):

$$
\begin{equation*}
\frac{K_{n}(N-x ; p, N)}{K_{n}(N ; p, N)}=K_{n}(x ; 1-p, N) . \tag{97}
\end{equation*}
$$

By (97) and (95) we have also

$$
\begin{equation*}
\frac{K_{N-n}(x ; p, N)}{K_{N}(x ; p, N)}=K_{n}(x ; 1-p, N) \quad(n, x \in\{0,1, \ldots, N\}), \tag{98}
\end{equation*}
$$

and, by (98), (97) and (94),

$$
\begin{equation*}
K_{N-n}(N-x ; p, N)=\left(\frac{p}{p-1}\right)^{n+x-N} K_{n}(x ; p, N) \quad(n, x \in\{0,1, \ldots, N\}) . \tag{99}
\end{equation*}
$$

A particular case of (97) is:

$$
\begin{equation*}
K_{n}\left(N-x ; \frac{1}{2}, N\right)=(-1)^{n} K_{n}\left(x ; \frac{1}{2}, N\right) . \tag{100}
\end{equation*}
$$

Hence

$$
\begin{equation*}
K_{2 m+1}\left(N ; \frac{1}{2}, 2 N\right)=0 . \tag{101}
\end{equation*}
$$

From (9.11.11):

$$
\begin{equation*}
K_{2 m}\left(N ; \frac{1}{2}, 2 N\right)=\frac{\left(\frac{1}{2}\right)_{m}}{\left(-N+\frac{1}{2}\right)_{m}} \tag{102}
\end{equation*}
$$

Quadratic transformations

$$
\begin{align*}
K_{2 m}\left(x+N ; \frac{1}{2}, 2 N\right) & =\frac{\left(\frac{1}{2}\right)_{m}}{\left(-N+\frac{1}{2}\right)_{m}} R_{m}\left(x^{2} ;-\frac{1}{2},-\frac{1}{2}, N\right), \tag{103}\\
K_{2 m+1}\left(x+N ; \frac{1}{2}, 2 N\right) & =-\frac{\left(\frac{3}{2}\right)_{m}}{N\left(-N+\frac{1}{2}\right)_{m}} x R_{m}\left(x^{2}-1 ; \frac{1}{2}, \frac{1}{2}, N-1\right), \tag{104}\\
K_{2 m}\left(x+N+1 ; \frac{1}{2}, 2 N+1\right) & =\frac{\left(\frac{1}{2}\right)_{m}}{\left(-N-\frac{1}{2}\right)_{m}} R_{m}\left(x(x+1) ;-\frac{1}{2}, \frac{1}{2}, N\right), \tag{105}\\
K_{2 m+1}\left(x+N+1 ; \frac{1}{2}, 2 N+1\right) & =\frac{\left(\frac{3}{2}\right)_{m}}{\left(-N-\frac{1}{2}\right)_{m+1}}\left(x+\frac{1}{2}\right) R_{m}\left(x(x+1) ; \frac{1}{2},-\frac{1}{2}, N\right), \tag{106}
\end{align*}
$$

where R_{m} is a dual Hahn polynomial (9.6.1). For the proofs use (9.6.2), (9.11.2), (9.6.4) and (9.11.4).

Generating functions

$$
\begin{align*}
& \sum_{x=0}^{N}\binom{N}{x} K_{m}(x ; p, N) K_{n}(x ; q, N) z^{x} \\
& \quad=\left(\frac{p-z+p z}{p}\right)^{m}\left(\frac{q-z+q z}{q}\right)^{n}(1+z)^{N-m-n} K_{m}\left(n ;-\frac{(p-z+p z)(q-z+q z)}{z}, N\right) . \tag{107}
\end{align*}
$$

This follows immediately from Rosengren [K28, (3.5)], which goes back to Meixner [K24].

9.12 Laguerre

Notation Here the Laguerre polynomial is denoted by L_{n}^{α} instead of $L_{n}^{(\alpha)}$.

Hypergeometric representation

$$
\begin{align*}
L_{n}^{\alpha}(x) & =\frac{(\alpha+1)_{n}}{n!}{ }_{1} F_{1}\left(\begin{array}{c}
-n \\
\alpha+1
\end{array} ; x\right) \tag{108}\\
& =\frac{(-x)^{n}}{n!}{ }_{2} F_{0}\left(\begin{array}{c}
-n,-n-\alpha \\
-
\end{array}-\frac{1}{x}\right) \tag{109}\\
& =\frac{(-x)^{n}}{n!} C_{n}(n+\alpha ; x) \tag{110}
\end{align*}
$$

where C_{n} in (110) is a Charlier polynomial. Formula (108) is (9.12.1). Then (109) follows by reversal of summation. Finally (110) follows by (109) and (122). It is also the remark on top of p. 244 in [KLS], and it is essentially [416, (2.7.10)].

Uniqueness of orthogonality measure The coefficient of $p_{n-1}(x)$ in (9.12.4) behaves as $O\left(n^{2}\right)$ as $n \rightarrow \infty$. Hence (2) holds, by which the orthogonality measure is unique.

Special value

$$
\begin{equation*}
L_{n}^{\alpha}(0)=\frac{(\alpha+1)_{n}}{n!} \tag{111}
\end{equation*}
$$

Use (9.12.1) or see [DLMF, 18.6.1)].

Quadratic transformations

$$
\begin{align*}
H_{2 n}(x) & =(-1)^{n} 2^{2 n} n!L_{n}^{-1 / 2}\left(x^{2}\right) \tag{112}\\
H_{2 n+1}(x) & =(-1)^{n} 2^{2 n+1} n!x L_{n}^{1 / 2}\left(x^{2}\right) \tag{113}
\end{align*}
$$

See p.244, Remarks, last two formulas. Or see $[\mathrm{DLMF},(18.7 .19),(18.7 .20)]$.

Fourier transform

$$
\begin{equation*}
\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} \frac{L_{n}^{\alpha}(y)}{L_{n}^{\alpha}(0)} e^{-y} y^{\alpha} e^{i x y} d y=i^{n} \frac{y^{n}}{(i y+1)^{n+\alpha+1}} \tag{114}
\end{equation*}
$$

see $[\mathrm{DLMF},(18.17 .34)]$.

Differentiation formulas Each differentiation formula is given in two equivalent forms.

$$
\begin{gather*}
\frac{d}{d x}\left(x^{\alpha} L_{n}^{\alpha}(x)\right)=(n+\alpha) x^{\alpha-1} L_{n}^{\alpha-1}(x), \quad\left(x \frac{d}{d x}+\alpha\right) L_{n}^{\alpha}(x)=(n+\alpha) L_{n}^{\alpha-1}(x) \tag{115}\\
\frac{d}{d x}\left(e^{-x} L_{n}^{\alpha}(x)\right)=-e^{-x} L_{n}^{\alpha+1}(x), \quad\left(\frac{d}{d x}-1\right) L_{n}^{\alpha}(x)=-L_{n}^{\alpha+1}(x) \tag{116}
\end{gather*}
$$

Formulas (115) and (116) follow from [DLMF, (13.3.18), (13.3.20)] together with (9.12.1).

Generating functions The generating function (9.12.12) is a limit case of the generating function (59) for Jacobi polynomials by (9.8.16). By (9.7.14) the generating function (9.12.12) is also a limit case of the generating function (9.7.13) for Meixner-Pollaczek polynomials.

Generalized Hermite polynomials See [146, p.156], [K9, Section 1.5.1]. These are defined by

$$
\begin{equation*}
H_{2 m}^{\mu}(x):=\text { const. } L_{m}^{\mu-\frac{1}{2}}\left(x^{2}\right), \quad H_{2 m+1}^{\mu}(x):=\text { const. } x L_{m}^{\mu+\frac{1}{2}}\left(x^{2}\right) \tag{117}
\end{equation*}
$$

Then for $\mu>-\frac{1}{2}$ we have orthogonality relation

$$
\begin{equation*}
\int_{-\infty}^{\infty} H_{m}^{\mu}(x) H_{n}^{\mu}(x)|x|^{2 \mu} e^{-x^{2}} d x=0 \quad(m \neq n) \tag{118}
\end{equation*}
$$

Let the Dunkl operator T_{μ} be defined by (69). If we choose the constants in (117) as

$$
\begin{equation*}
H_{2 m}^{\mu}(x)=\frac{(-1)^{m}(2 m)!}{\left(\mu+\frac{1}{2}\right)_{m}} L_{m}^{\mu-\frac{1}{2}}\left(x^{2}\right), \quad H_{2 m+1}^{\mu}(x)=\frac{(-1)^{m}(2 m+1)!}{\left(\mu+\frac{1}{2}\right)_{m+1}} x L_{m}^{\mu+\frac{1}{2}}\left(x^{2}\right) \tag{119}
\end{equation*}
$$

then (see [K6, (1.6)])

$$
\begin{equation*}
T_{\mu} H_{n}^{\mu}=2 n H_{n-1}^{\mu} . \tag{120}
\end{equation*}
$$

Formula (120) with (119) substituted gives rise to two differentiation formulas involving Laguerre polynomials which are equivalent to (9.12.6) and (115).

Composition of (120) with itself gives

$$
T_{\mu}^{2} H_{n}^{\mu}=4 n(n-1) H_{n-2}^{\mu}
$$

which is equivalent to the composition of (9.12.6) and (115):

$$
\begin{equation*}
\left(\frac{d^{2}}{d x^{2}}+\frac{2 \alpha+1}{x} \frac{d}{d x}\right) L_{n}^{\alpha}\left(x^{2}\right)=-4(n+\alpha) L_{n-1}^{\alpha}\left(x^{2}\right) . \tag{121}
\end{equation*}
$$

9.13 Bessel

Hypergeometric representation The constraint $n=0,1,2, \ldots, N$ can be omitted. All formulas in $\S 9.13$ except (9.13.2) remain valid for all integer $n \geq 0$. These more general values of n are even needed in the generating function (9.13.10).

Notation In the notation of Grosswald [255] the left-hand side of (9.13.1) has to be replaced by $y_{n}(x ; a+2)$.

Orthogonality relation

Replace the constraint $a<-2 N-1$ in (9.13.2) by $m, n=0,1, \ldots, N=\lceil-(3+a) / 2\rceil$.
Following Lesky [382] the Bessel polynomials in case of orthogonality relation (9.13.2) may be called Romanovski-Bessel polynomials.

9.14 Charlier

Hypergeometric representation

$$
\begin{align*}
C_{n}(x ; a) & ={ }_{2} F_{0}\left(\begin{array}{c}
-n,-x \\
-
\end{array}-\frac{1}{a}\right) \tag{122}\\
& =\frac{(-x)_{n}}{a^{n}}{ }_{1} F_{1}\left(\begin{array}{c}
-n \\
x-n+1
\end{array} ; a\right) \tag{123}\\
& =\frac{n!}{(-a)^{n}} L_{n}^{x-n}(a), \tag{124}
\end{align*}
$$

where $L_{n}^{\alpha}(x)$ is a Laguerre polynomial. Formula (122) is (9.14.1). Then (123) follows by reversal of the summation. Finally (124) follows by (123) and (9.12.1). It is also the Remark on p. 249 of [KLS], and it was earlier given in [416, (2.7.10)].

Uniqueness of orthogonality measure The coefficient of $p_{n-1}(x)$ in (9.14.4) behaves as $O(n)$ as $n \rightarrow \infty$. Hence (2) holds, by which the orthogonality measure is unique.

9.15 Hermite

Uniqueness of orthogonality measure The coefficient of $p_{n-1}(x)$ in (9.15.4) behaves as $O(n)$ as $n \rightarrow \infty$. Hence (2) holds, by which the orthogonality measure is unique.

Fourier transforms

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} H_{n}(y) e^{-\frac{1}{2} y^{2}} e^{i x y} d y=i^{n} H_{n}(x) e^{-\frac{1}{2} x^{2}} \tag{125}
\end{equation*}
$$

see [AAR, (6.1.15) and Exercise 6.11].

$$
\begin{equation*}
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} H_{n}(y) e^{-y^{2}} e^{i x y} d y=i^{n} x^{n} e^{-\frac{1}{4} x^{2}} \tag{126}
\end{equation*}
$$

see [DLMF, (18.17.35)].

$$
\begin{equation*}
\frac{i^{n}}{2 \sqrt{\pi}} \int_{-\infty}^{\infty} y^{n} e^{-\frac{1}{4} y^{2}} e^{-i x y} d y=H_{n}(x) e^{-x^{2}} \tag{127}
\end{equation*}
$$

see [AAR, (6.1.4)].

14.1 Askey-Wilson

Symmetry The Askey-Wilson polynomials $p_{n}(x ; a, b, c, d \mid q)$ are symmetric in a, b, c, d.
This follows from the orthogonality relation (14.1.2) together with the value of its coefficient of x^{n} given in (14.1.5b). Alternatively, combine (14.1.1) with [GR, (III.15)].
As a consequence, it is sufficient to give generating function (14.1.13). Then the generating functions (14.1.14), (14.1.15) will follow by symmetry in the parameters.

Basic hypergeometric representation In addition to (14.1.1) we have (in notation (18)):

$$
\begin{align*}
& p_{n}(\cos \theta ; a, b, c, d \mid q)=\frac{\left(a e^{-i \theta}, b e^{-i \theta}, c e^{-i \theta}, d e^{-i \theta} ; q\right)_{n}}{}{ }^{\left(e^{-2 i \theta} ; q\right)_{n}} e^{i n \theta} \\
& \times{ }_{8} W_{7}\left(q^{-n} e^{2 i \theta} ; a e^{i \theta}, b e^{i \theta}, c e^{i \theta}, d e^{i \theta}, q^{-n} ; q, q^{2-n} /(a b c d)\right) . \tag{128}
\end{align*}
$$

This follows from (14.1.1) by combining (III.15) and (III.19) in [GR]. It is also given in [513, (4.2)], but be aware for some slight errors. The symmetry in a, b, c, d is evident from (128).

Special value and different notation

$$
\begin{equation*}
p_{n}\left(\frac{1}{2}\left(a+a^{-1}\right) ; a, b, c, d \mid q\right)=a^{-n}(a b, a c, a d ; q)_{n}, \tag{129}
\end{equation*}
$$

and similarly for arguments $\frac{1}{2}\left(b+b^{-1}\right), \frac{1}{2}\left(c+c^{-1}\right)$ and $\frac{1}{2}\left(d+d^{-1}\right)$ by symmetry of p_{n} in a, b, c, d. Formula (129) is an immediate consequence of (14.1.1).

We will also write

$$
R_{n}(z ; a, b, c, d \mid q):=\frac{p_{n}\left(\frac{1}{2}\left(z+z^{-1}\right) ; a, b, c, d \mid q\right)}{p_{n}\left(\frac{1}{2}\left(a+a^{-1}\right) ; a, b, c, d \mid q\right)}={ }_{4} \phi_{3}\left(\begin{array}{c}
q^{-n}, q^{n-1} a b c d, a z, a z^{-1} \tag{130}\\
a b, a c, a d
\end{array} ; q, q\right) .
$$

Here there is no longer full symmetry in a, b, c, d, only in b, c, d.

Trivial symmetry From (14.1.1) we see [72, (1.34)]

$$
\begin{align*}
p_{n}(x ; a, b, c, d \mid q) & =(-1)^{n} p_{n}(-x ;-a,-b,-c,-d \mid q), \tag{131}\\
R_{n}(z ; a, b, c, d \mid q) & =R_{n}(-z ;-a,-b,-c,-d \mid q) .
\end{align*}
$$

Duality Define parameters $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}$ in terms of a, b, c, d by

$$
\begin{equation*}
\tilde{a}=\left(q^{-1} a b c d\right)^{\frac{1}{2}}, \quad \tilde{b}=a b / \tilde{a}, \quad \tilde{c}=a c / \tilde{a}, \quad \tilde{d}=a d / \tilde{a} \tag{132}
\end{equation*}
$$

Jumping from one branch to the other branch in the square root in the formula for \tilde{a} implies that $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}$ move to $-\tilde{a},-\tilde{b},-\tilde{c},-\tilde{d}$. Repetition of the parameter transformation recovers the original parameters up to a possible common multiplication of a, b, c, d by -1 , while the branch choice for \tilde{a} is irrelevant:

$$
\begin{equation*}
a=\left(q^{-1} \tilde{a} \tilde{b} \tilde{c} \tilde{d}\right)^{\frac{1}{2}}, \quad b=\tilde{a} \tilde{b} / a, \quad c=\tilde{a} \tilde{c} / a, \quad d=\tilde{a} \tilde{d} / a \tag{133}
\end{equation*}
$$

From (130) we have the duality relation

$$
\begin{equation*}
R_{n}\left(a q^{m} ; a, b, c, d \mid q\right)=R_{m}\left(\tilde{a} q^{n} ; \tilde{a}, \tilde{b}, \tilde{c}, \tilde{d} \mid q\right) \quad\left(m, n \in \mathbb{Z}_{\geq 0}\right) \tag{134}
\end{equation*}
$$

By (131) both sides of (134) are invariant under common multiplication by -1 of a, b, c, d, respectively $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}$.

Orthogonality relation The conditions on the parameters in (14.1.2) can be slightly relaxed: Let $|a|,|b|,|c|,|d| \leq 1$ such that pairwise products of a, b, c, d are not equal to 1 and such that non-real parameters occur in complex conjugate pairs.

In fact, the only possible cases which then offend the condition $|a|,|b|,|c|,|d|<1$ are that either precisely one parameter has absolute value 1 and equals 1 or -1 , or precisely two parameter values have absolute value 1 , one equal to 1 and the other equal to -1 . Then the weight fucntion will not cause a singularity by its factors $1 \pm e^{i \theta}$ and $1 \pm e^{-i \theta}$ in the denominator, since these are compensated by the factors $1-e^{2 i \theta}$ and $1-e^{-2 i \theta}$ in the numerator.

The orthogonality (14.1.3) involving discrete terms can be given for more general parameter values as in [72, Theorem 2.5]. There a, b, c, d are real or occur in complex conjugate pairs if non-real, and pairwise products have absolute value ≤ 1 but are not equal to 1 .

Re: (14.1.5) Let

$$
\begin{equation*}
p_{n}(x):=\frac{p_{n}(x ; a, b, c, d \mid q)}{2^{n}\left(a b c d q^{n-1} ; q\right)_{n}}=x^{n}+\widetilde{k}_{n} x^{n-1}+\cdots . \tag{135}
\end{equation*}
$$

Then

$$
\begin{equation*}
\widetilde{k}_{n}=-\frac{\left(1-q^{n}\right)\left(a+b+c+d-(a b c+a b d+a c d+b c d) q^{n-1}\right)}{2(1-q)\left(1-a b c d q^{2 n-2}\right)} . \tag{136}
\end{equation*}
$$

This follows because $\tilde{k}_{n}-\tilde{k}_{n+1}$ equals the coefficient $\frac{1}{2}\left(a+a^{-1}-\left(A_{n}+C_{n}\right)\right)$ of $p_{n}(x)$ in (14.1.5).
q-Difference equation The q-difference operator acting on $P_{n}(z)$ on the right-hand side of (14.1.7), gives, when acting on $Q_{n}(z):=\left(a z, a z^{-1} ; q\right)_{\infty}$, the result

$$
\begin{align*}
q^{-n}\left(1-q^{n}\right)\left(1-a b c d q^{n-1}\right) & Q_{n}(z)-q^{-n}\left(1-a b q^{n-1}\right)\left(1-a c q^{n-1}\right)\left(1-a d q^{n-1}\right)\left(1-q^{n}\right) Q_{n-1}(z) \\
= & A(z) Q_{n}(q z)-\left(A(z)+A\left(z^{-1}\right)\right) Q_{n}(z)+A\left(z^{-1}\right) Q_{n}\left(q^{-1} z\right) . \tag{137}
\end{align*}
$$

This formula is implicit in [K33]. Use there (3.1) with the Askey-Wilson parameters (7.15) and (7.8), and combine it with (14.1.7).

Generating functions Rahman [449, (4.1), (4.9)] gives:

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{\left(a b c d q^{-1} ; q\right)_{n} a^{n}}{(a b, a c, a d, q ; q)_{n}} t^{n} p_{n}(\cos \theta ; a, b, c, d \mid q) \\
& =\frac{\left(a b c d t q^{-1} ; q\right)_{\infty}}{(t ; q)_{\infty}}{ }_{6} \phi_{5}\left(\begin{array}{c}
\left(a b c d q^{-1}\right)^{\frac{1}{2}},-\left(a b c d q^{-1}\right)^{\frac{1}{2}},(a b c d)^{\frac{1}{2}},-(a b c d)^{\frac{1}{2}}, a e^{i \theta}, a e^{-i \theta} \\
a b, a c, a d, a b c d t q^{-1}, q t^{-1}
\end{array}\right. \\
& +\frac{\left(a b c d q^{-1}, a b t, a c t, a d t, a e^{i \theta}, a e^{-i \theta} ; q\right)_{\infty}}{\left(a b, a c, a d, t^{-1}, a t e^{i \theta}, a t e^{-i \theta} ; q\right)_{\infty}} \\
& \times{ }_{6} \phi_{5}\left(\begin{array}{c}
\left.t\left(a b c d q^{-1}\right)^{\frac{1}{2}},-t\left(a b c d q^{-1}\right)^{\frac{1}{2}}, t(a b c d)^{\frac{1}{2}},-t(a b c d)^{\frac{1}{2}}, a t e^{i \theta}, a t e^{-i \theta} ; q, q\right) \quad(|t|<1) . \\
a b t, a c t, a d t, a b c d t^{2} q^{-1}, q t
\end{array}\right. \tag{138}
\end{align*}
$$

In the limit (139) the first term on the right-hand side of (138) tends to the left-hand side of (9.1.15), while the second term tends formally to 0 . The special case $a d=b c$ of (138) was earlier given in [236, (4.1), (4.6)].

Limit relations

Askey-Wilson \longrightarrow Wilson
Instead of (14.1.21) we can keep a polynomial of degree n while the limit is approached:

$$
\begin{equation*}
\lim _{q \rightarrow 1} \frac{p_{n}\left(1-\frac{1}{2} x(1-q)^{2} ; q^{a}, q^{b}, q^{c}, q^{d} \mid q\right)}{(1-q)^{3 n}}=W_{n}(x ; a, b, c, d) . \tag{139}
\end{equation*}
$$

For the proof first derive the corresponding limit for the monic polynomials by comparing (14.1.5) with (9.4.4).

Askey-Wilson \longrightarrow Continuous Hahn

Instead of (14.4.15) we can keep a polynomial of degree n while the limit is approached:

$$
\begin{align*}
& \lim _{q \uparrow 1} \frac{p_{n}\left(\cos \phi-x(1-q) \sin \phi ; q^{a} e^{i \phi}, q^{b} e^{i \phi}, q^{\bar{a}} e^{-i \phi}, q^{\bar{b}} e^{-i \phi} \mid q\right)}{(1-q)^{2 n}} \\
&=(-2 \sin \phi)^{n} n!p_{n}(x ; a, b, \bar{a}, \bar{b}) \quad(0<\phi<\pi) . \tag{140}
\end{align*}
$$

Here the right-hand side has a continuous Hahn polynomial (9.4.1). For the proof first derive the corresponding limit for the monic polynomials by comparing (14.1.5) with (9.1.5). In fact, define the monic polynomial

$$
\widetilde{p}_{n}(x):=\frac{p_{n}\left(\cos \phi-x(1-q) \sin \phi ; q^{a} e^{i \phi}, q^{b} e^{i \phi}, q^{\bar{a}} e^{-i \phi}, q^{\bar{b}} e^{-i \phi} \mid q\right)}{(-2(1-q) \sin \phi)^{n}\left(a b c d q^{n-1} ; q\right)_{n}} .
$$

Then it follows from (14.1.5) that

$$
x \widetilde{p}_{n}(x)=\widetilde{p}_{n+1}(x)+\frac{\left(1-q^{a}\right) e^{i \phi}+\left(1-q^{-a}\right) e^{-i \phi}+\widetilde{A}_{n}+\widetilde{C}_{n}}{2(1-q) \sin \phi} \widetilde{p}_{n}(x)+\frac{\widetilde{A}_{n-1} \widetilde{C}_{n}}{(1-q)^{2} \sin ^{2} \phi} \widetilde{p}_{n-1}(x),
$$

where \widetilde{A}_{n} and \widetilde{C}_{n} are as given after (14.1.3) with a, b, c, d replaced by $q^{a} e^{i \phi}, q^{b} e^{i \phi}, q^{\bar{a}} e^{-i \phi}, q^{\bar{b}} e^{-i \phi}$. Then the recurrence equation for $\widetilde{p}_{n}(x)$ tends for $q \uparrow 1$ to the recurrence equation (9.4.4) with $c=\bar{a}, d=\bar{b}$.

Askey-Wilson \longrightarrow Meixner-Pollaczek

Instead of (14.9.15) we can keep a polynomial of degree n while the limit is approached:

$$
\begin{equation*}
\lim _{q \Uparrow 1} \frac{p_{n}\left(\cos \phi-x(1-q) \sin \phi ; q^{\lambda} e^{i \phi}, 0, q^{\lambda} e^{-i \phi}, 0 \mid q\right)}{(1-q)^{n}}=n!P_{n}^{(\lambda)}(x ; \pi-\phi) \quad(0<\phi<\pi) . \tag{141}
\end{equation*}
$$

Here the right-hand side has a Meixner-Pollaczek polynomial (9.7.1). For the proof first derive the corresponding limit for the monic polynomials by comparing (14.1.5) with (9.7.4). In fact, define the monic polynomial

$$
\widetilde{p}_{n}(x):=\frac{p_{n}\left(\cos \phi-x(1-q) \sin \phi ; q^{\lambda} e^{i \phi}, 0, q^{\lambda} e^{-i \phi}, 0 \mid q\right)}{(-2(1-q) \sin \phi)^{n}} .
$$

Then it follows from (14.1.5) that

$$
x \widetilde{p}_{n}(x)=\widetilde{p}_{n+1}(x)+\frac{\left(1-q^{\lambda}\right) e^{i \phi}+\left(1-q^{-\lambda}\right) e^{-i \phi}+\widetilde{A}_{n}+\widetilde{C}_{n}}{2(1-q) \sin \phi} \widetilde{p}_{n}(x)+\frac{\widetilde{A}_{n-1} \widetilde{C}_{n}}{(1-q)^{2} \sin ^{2} \phi} \widetilde{p}_{n-1}(x)
$$

where \widetilde{A}_{n} and \widetilde{C}_{n} are as given after (14.1.3) with a, b, c, d replaced by $q^{\lambda} e^{i \phi}, 0, q^{\lambda} e^{-i \phi}, 0$. Then the recurrence equation for $\widetilde{p}_{n}(x)$ tends for $q \uparrow 1$ to the recurrence equation (9.7.4).

References See also Koornwinder [K18].

$14.2 q$-Racah

Symmetry

$$
\begin{equation*}
R_{n}\left(x ; \alpha, \beta, q^{-N-1}, \delta \mid q\right)=\frac{\left(\beta q, \alpha \delta^{-1} q ; q\right)_{n}}{(\alpha q, \beta \delta q ; q)_{n}} \delta^{n} R_{n}\left(\delta^{-1} x ; \beta, \alpha, q^{-N-1}, \delta^{-1} \mid q\right) \tag{142}
\end{equation*}
$$

This follows from (14.2.1) combined with [GR, (III.15)].
In particular,

$$
\begin{equation*}
R_{n}\left(x ; \alpha, \beta, q^{-N-1},-1 \mid q\right)=\frac{(\beta q,-\alpha q ; q)_{n}}{(\alpha q,-\beta q ; q)_{n}}(-1)^{n} R_{n}\left(-x ; \beta, \alpha, q^{-N-1},-1 \mid q\right) \tag{143}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{n}\left(x ; \alpha, \alpha, q^{-N-1},-1 \mid q\right)=(-1)^{n} R_{n}\left(-x ; \alpha, \alpha, q^{-N-1},-1 \mid q\right), \tag{144}
\end{equation*}
$$

Trivial symmetry Clearly from (14.2.1):

$$
\begin{equation*}
R_{n}(x ; \alpha, \beta, \gamma, \delta \mid q)=R_{n}\left(x ; \beta \delta, \alpha \delta^{-1}, \gamma, \delta \mid q\right)=R_{n}\left(x ; \gamma, \alpha \beta \gamma^{-1}, \alpha, \gamma \delta \alpha^{-1} \mid q\right) . \tag{145}
\end{equation*}
$$

For $\alpha=q^{-N-1}$ this shows that the three cases $\alpha q=q^{-N}$ or $\beta \delta q=q^{-N}$ or $\gamma q=q^{-N}$ of (14.2.1) are not essentially different.

Duality It follows from (14.2.1) that

$$
\begin{equation*}
R_{n}\left(q^{-y}+\gamma \delta q^{y+1} ; q^{-N-1}, \beta, \gamma, \delta \mid q\right)=R_{y}\left(q^{-n}+\beta q^{n-N} ; \gamma, \delta, q^{-N-1}, \beta \mid q\right) \quad(n, y=0,1, \ldots, N) . \tag{146}
\end{equation*}
$$

14.3 Continuous dual q-Hahn

The continuous dual q-Hahn polynomials are the special case $d=0$ of the Askey-Wilson polynomials:

$$
p_{n}(x ; a, b, c \mid q):=p_{n}(x ; a, b, c, 0 \mid q) .
$$

Hence all formulas in $\S 14.3$ are specializations for $d=0$ of formulas in $\S 14.1$.

14.4 Continuous q-Hahn

The continuous q-Hahn polynomials are the special case of Askey-Wilson polynomials with parameters $a e^{i \phi}, b e^{i \phi}, a e^{-i \phi}, b e^{-i \phi}$:

$$
p_{n}(x ; a, b, \phi \mid q):=p_{n}\left(x ; a e^{i \phi}, b e^{i \phi}, a e^{-i \phi}, b e^{-i \phi} \mid q\right) .
$$

In $[72,(4.29)]$ and $[G R,(7.5 .43)]$ (who write $p_{n}(x ; a, b \mid q), x=\cos (\theta+\phi)$) and in [KLS, §14.4] (who writes $p_{n}(x ; a, b, c, d ; q), x=\cos (\theta+\phi)$) the parameter dependence on ϕ is incorrectly omitted.

Since all formulas in $\S 14.4$ are specializations of formulas in $\S 14.1$, there is no real need to give these specializations explicitly. In particular, the limit (14.4.15) is in fact a limit from Askey-Wilson to continuous Hahn. See also (140).

14.5 Big q-Jacobi

Different notation See p.442, Remarks:

$$
P_{n}(x ; a, b, c, d ; q):=P_{n}\left(q a c^{-1} x ; a, b,-a c^{-1} d ; q\right)={ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-n}, q^{n+1} a b, q a c^{-1} x \tag{147}\\
q a,-q a c^{-1} d
\end{array} \quad ; q, q\right) .
$$

Furthermore,

$$
\begin{gather*}
P_{n}(x ; a, b, c, d ; q)=P_{n}(\lambda x ; a, b, \lambda c, \lambda d ; q), \tag{148}\\
P_{n}(x ; a, b, c ; q)=P_{n}\left(-q^{-1} c^{-1} x ; a, b,-a c^{-1}, 1 ; q\right) \tag{149}
\end{gather*}
$$

Orthogonality relation (equivalent to (14.5.2), see also [K19, (2.42), (2.41), (2.36), (2.35)]). Let $c, d>0$ and either $a \in(-c /(q d), 1 / q), b \in(-d /(c q), 1 / q)$ or $a / c=-\bar{b} / d \notin \mathbb{R}$. Then

$$
\begin{equation*}
\int_{-d}^{c} P_{m}(x ; a, b, c, d ; q) P_{n}(x ; a, b, c, d ; q) \frac{(q x / c,-q x / d ; q)_{\infty}}{(q a x / c,-q b x / d ; q)_{\infty}} d_{q} x=h_{n} \delta_{m, n} \tag{150}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{h_{n}}{h_{0}}=q^{\frac{1}{2} n(n-1)}\left(\frac{q^{2} a^{2} d}{c}\right)^{n} \frac{1-q a b}{1-q^{2 n+1} a b} \frac{(q, q b,-q b c / d ; q)_{n}}{(q a, q a b,-q a d / c ; q)_{n}} \tag{151}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{0}=(1-q) c \frac{\left(q,-d / c,-q c / d, q^{2} a b ; q\right)_{\infty}}{(q a, q b,-q b c / d,-q a d / c ; q)_{\infty}} . \tag{152}
\end{equation*}
$$

Other hypergeometric representation and asymptotics

$$
\begin{align*}
& P_{n}(x ; a, b, c, d ; q)=\frac{\left(-q b d^{-1} x ; q\right)_{n}}{\left(-q^{-n} a^{-1} c d^{-1} ; q\right)_{n}}{ }_{3} \phi_{2}\binom{q^{-n}, q^{-n} b^{-1}, c x^{-1}}{q a,-q^{-n} b^{-1} d x^{-1} ; q, q} \tag{153}\\
& \quad=\left(q a c^{-1} x\right)^{n} \frac{\left(q b, c x^{-1} ; q\right)_{n}}{\left(q a,-q a c^{-1} d ; q\right)_{n}} 3_{2} \phi_{2}\left(\begin{array}{c}
q^{-n}, q^{-n} a^{-1},-q b d^{-1} x \\
q b, q^{1-n} c^{-1} x
\end{array} ; q,-q^{n+1} a c^{-1} d\right) \tag{154}\\
& \quad=\left(q a c^{-1} x\right)^{n} \frac{(q b, q ; q)_{n}}{\left(-q a c^{-1} d ; q\right)_{n}} \sum_{k=0}^{n} \frac{\left(c x^{-1} ; q\right)_{n-k}}{(q, q a ; q)_{n-k}} \frac{\left(-q b d^{-1} x ; q\right)_{k}}{(q b, q ; q)_{k}}(-1)^{k} q^{\frac{1}{2} k(k-1)}\left(-d x^{-1}\right)^{k} . \tag{155}
\end{align*}
$$

Formula (153) follows from (147) by [GR, (III.11)] and next (154) follows by series inversion [GR, Exercise 1.4(ii)]. Formulas (153) and (155) are also given in [Ism, (18.4.28), (18.4.29)]. It follows from (154) or (155) that (see [298, (1.17)] or [Ism, (18.4.31)])

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(q a c^{-1} x\right)^{-n} P_{n}(x ; a, b, c, d ; q)=\frac{\left(c x^{-1},-d x^{-1} ; q\right)_{\infty}}{\left(-q a c^{-1} d, q a ; q\right)_{\infty}} \tag{156}
\end{equation*}
$$

uniformly for x in compact subsets of $\mathbb{C} \backslash\{0\}$. (Exclusion of the spectral points $x=c q^{m}, d q^{m}$ ($m=0,1,2, \ldots$), as was done in [298] and [Ism], is not necessary. However, while (156) yields 0 at these points, a more refined asymptotics at these points is given in [298] and [Ism].) For the proof of (156) use that

$$
\lim _{n \rightarrow \infty}\left(q a c^{-1} x\right)^{-n} P_{n}(x ; a, b, c, d ; q)=\frac{\left(q b, c x^{-1} ; q\right)_{n}}{\left(q a,-q a c^{-1} d ; q\right)_{n}} 1 \phi_{1}\left(\begin{array}{c}
-q b d^{-1} x \tag{157}\\
q b
\end{array} ; q,-d x^{-1}\right),
$$

which can be evaluated by [GR, (II.5)]. Formula (157) follows formally from (154), and it follows rigorously, by dominated convergence, from (155).

Symmetry (see [K19, §2.5]).

$$
\begin{equation*}
\frac{P_{n}(-x ; a, b, c, d ; q)}{P_{n}(-d /(q b) ; a, b, c, d ; q)}=P_{n}(x ; b, a, d, c ; q) . \tag{158}
\end{equation*}
$$

Special values

$$
\begin{align*}
P_{n}(c /(q a) ; a, b, c, d ; q) & =1, \tag{159}\\
P_{n}(-d /(q b) ; a, b, c, d ; q) & =\left(-\frac{a d}{b c}\right)^{n} \frac{(q b,-q b c / d ; q)_{n}}{(q a,-q a d / c ; q)_{n}}, \tag{160}\\
P_{n}(c ; a, b, c, d ; q) & =q^{\frac{1}{2} n(n+1)}\left(\frac{a d}{c}\right)^{n} \frac{(-q b c / d ; q)_{n}}{(-q a d / c ; q)_{n}}, \tag{161}\\
P_{n}(-d ; a, b, c, d ; q) & =q^{\frac{1}{2} n(n+1)}(-a)^{n} \frac{(q b ; q)_{n}}{(q a ; q)_{n}} . \tag{162}
\end{align*}
$$

Quadratic transformations (see [K19, (2.48), (2.49)] and (193)).
These express big q-Jacobi polynomials $P_{m}(x ; a, a, 1,1 ; q)$ in terms of little q-Jacobi polynomials (see §14.12).

$$
\begin{align*}
P_{2 n}(x ; a, a, 1,1 ; q) & =\frac{p_{n}\left(x^{2} ; q^{-1}, a^{2} ; q^{2}\right)}{p_{n}\left((q a)^{-2} ; q^{-1}, a^{2} ; q^{2}\right)}, \tag{163}\\
P_{2 n+1}(x ; a, a, 1,1 ; q) & =\frac{q a x p_{n}\left(x^{2} ; q, a^{2} ; q^{2}\right)}{p_{n}\left((q a)^{-2} ; q, a^{2} ; q^{2}\right)} . \tag{164}
\end{align*}
$$

Hence, by (14.12.1), [GR, Exercise 1.4(ii)] and (193),

$$
\begin{align*}
P_{n}(x ; a, a, 1,1 ; q) & =\frac{\left(q a^{2} ; q^{2}\right)_{n}}{\left(q a^{2} ; q\right)_{n}}(q a x)^{n}{ }_{2} \phi_{1}\binom{q^{-n}, q^{-n+1}}{q^{-2 n+1} a^{-2} ; q^{2},(a x)^{-2}} \tag{165}\\
& =\frac{(q ; q)_{n}}{\left(q a^{2} ; q\right)_{n}}(q a)^{n} \sum_{k=0}^{\left[\frac{1}{2} n\right]}(-1)^{k} q^{k(k-1)} \frac{\left(q a^{2} ; q^{2}\right)_{n-k}}{\left(q^{2} ; q^{2}\right)_{k}(q ; q)_{n-2 k}} x^{n-2 k} . \tag{166}
\end{align*}
$$

q-Chebyshev polynomials In (147), with $c=d=1$, the cases $a=b=q^{-\frac{1}{2}}$ and $a=b=q^{\frac{1}{2}}$ can be considered as q-analogues of the Chebyshev polynomials of the first and second kind, respectively (§9.8.2) because of the limit (14.5.17). The quadratic relations (163), (164) can also be specialized to these cases. The definition of the q-Chebyshev polynomials may vary by normalization and by dilation of argument. They were considered in [K4]. By [24, p.279] and (163), (164), the Al-Salam-Ismail polynomials $U_{n}(x ; a, b)$ (q-dependence suppressed) in the case $a=q$ can be expressed as q-Chebyshev polynomials of the second kind:

$$
U_{n}(x, q, b)=\left(q^{-3} b\right)^{\frac{1}{2} n} \frac{1-q^{n+1}}{1-q} P_{n}\left(b^{-\frac{1}{2}} x ; q^{\frac{1}{2}}, q^{\frac{1}{2}}, 1,1 ; q\right) .
$$

Similarly, by $[\mathrm{K} 7,(5.4),(5.1),(5.3)]$ and (163), (164), Cigler's q-Chebyshev polynomials $T_{n}(x, s, q)$ and $U_{n}(x, s, q)$ can be expressed in terms of the q-Chebyshev cases of (147):

$$
\begin{aligned}
& T_{n}(x, s, q)=(-s)^{\frac{1}{2} n} P_{n}\left((-q s)^{-\frac{1}{2}} x ; q^{-\frac{1}{2}}, q^{-\frac{1}{2}}, 1,1 ; q\right), \\
& U_{n}(x, s, q)=\left(-q^{-2} s\right)^{\frac{1}{2} n} \frac{1-q^{n+1}}{1-q} P_{n}\left((-q s)^{-\frac{1}{2}} x ; q^{\frac{1}{2}}, q^{\frac{1}{2}}, 1,1 ; q\right) .
\end{aligned}
$$

Limit to Discrete q-Hermite I

$$
\begin{equation*}
\lim _{a \rightarrow 0} a^{-n} P_{n}(x ; a, a, 1,1 ; q)=q^{n} h_{n}(x ; q) . \tag{167}
\end{equation*}
$$

Here $h_{n}(x ; q)$ is given by (14.28.1). For the proof of (167) use (153).
Pseudo big q-Jacobi polynomials Let $a, b, c, d \in \mathbb{C}, z_{+}>0, z_{-}<0$ such that $\frac{(a x, b x ; q)_{\infty}}{(c x, d x ; q)_{\infty}}>0$ for $x \in z_{-} q^{\mathbb{Z}} \cup z_{+} q^{\mathbb{Z}}$. Then $(a b) /(q c d)>0$. Assume that $(a b) /(q c d)<1$. Let N be the largest nonnegative integer such that $q^{2 N}>(a b) /(q c d)$. Then

$$
\begin{align*}
\int_{z_{-} q^{\mathbb{Z}} \cup z_{+} q^{Z}} P_{m}(c x ; c / b, d / a, c / a ; q) P_{n}(c x ; c / b, d / a, c / a ; q) \frac{(a x, b x ; q)_{\infty}}{(c x, d x ; q)_{\infty}} d_{q} x & =h_{n} \delta_{m, n} \\
(m, n & =0,1, \ldots, N), \tag{168}
\end{align*}
$$

where

$$
\begin{equation*}
\frac{h_{n}}{h_{0}}=(-1)^{n}\left(\frac{c^{2}}{a b}\right)^{n} q^{\frac{1}{2} n(n-1)} q^{2 n} \frac{(q, q d / a, q d / b ; q)_{n}}{(q c d /(a b), q c / a, q c / b ; q)_{n}} \frac{1-q c d /(a b)}{1-q^{2 n+1} c d /(a b)} \tag{169}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{0}=\int_{z_{-} q^{\mathbb{Z}} \cup z_{+} q^{\bar{z}}} \frac{(a x, b x ; q)_{\infty}}{(c x, d x ; q)_{\infty}} d_{q} x=(1-q) z_{+} \frac{(q, a / c, a / d, b / c, b / d ; q)_{\infty}}{(a b /(q c d) ; q)_{\infty}} \frac{\theta\left(z_{-} / z_{+}, c d z_{-} z_{+} ; q\right)}{\theta\left(c z_{-}, d z_{-}, c z_{+}, d z_{+} ; q\right)} . \tag{170}
\end{equation*}
$$

See Groenevelt \& Koelink [K16, Prop. 2.2]. Formula (170) was first given by Slater [K31, (5)] as an evaluation of a sum of two ${ }_{2} \psi_{2}$ series. The same formula is given in Slater [471, (7.2.6)] and in [GR, Exercise 5.10], but in both cases with the same slight error, see [K16, 2nd paragraph after Lemma 2.1] for correction. The theta function is given by (19). Note that

$$
\begin{equation*}
P_{n}(c x ; c / b, d / a, c / a ; q)=P_{n}\left(-q^{-1} a x ; c / b, d / a,-a / b, 1 ; q\right) \tag{171}
\end{equation*}
$$

In [K14] the weights of the pseudo big q-Jacobi polynomials occur in certain measures on the space of N-point configurations on the so-called extended Gelfand-Tsetlin graph.

Limit relations

Pseudo big q-Jacobi \longrightarrow Discrete Hermite II

$$
\begin{equation*}
\lim _{a \rightarrow \infty} i^{n} q^{\frac{1}{2} n(n-1)} P_{n}\left(q^{-1} a^{-1} i x ; a, a, 1,1 ; q\right)=\widetilde{h}_{n}(x ; q) \tag{172}
\end{equation*}
$$

For the proof use (166) and (228). Note that $P_{n}\left(q^{-1} a^{-1} i x ; a, a, 1,1 ; q\right)$ is obtained from the right-hand side of (171) by replacing a, b, c, d by $-i a^{-1}, i a^{-1}, i,-i$.

Pseudo big q-Jacobi \longrightarrow Pseudo Jacobi

$$
\begin{equation*}
\lim _{q \uparrow 1} P_{n}\left(i q^{\frac{1}{2}(-N-1+i \nu)} x ;-q^{-N-1},-q^{-N-1}, q^{-N+i \nu-1} ; q\right)=\frac{P_{n}(x ; \nu, N)}{P_{n}(-i ; \nu, N)} . \tag{173}
\end{equation*}
$$

Here the big q-Jacobi polynomial on the left-hand side equals $P_{n}(c x ; c / b, d / a, c / a ; q)$ with $a=i q^{\frac{1}{2}(N+1-i \nu)}, b=-i q^{\frac{1}{2}(N+1+i \nu)}, c=i q^{\frac{1}{2}(-N-1+i \nu)}, d=-i q^{\frac{1}{2}(-N-1-i \nu)}$.

14.7 Dual q-Hahn

Orthogonality relation More generally we have (14.7.2) with positive weights in any of the following cases: (i) $0<\gamma q<1,0<\delta q<1$; (ii) $0<\gamma q<1, \delta<0$; (iii) $\gamma<0, \delta>q^{-N}$; (iv) $\gamma>q^{-N}, \delta>q^{-N} ;$ (v) $0<q \gamma<1, \delta=0$. This also follows by inspection of the positivity of the coefficient of $p_{n-1}(x)$ in (14.7.4). Case (v) yields Affine q-Krawtchouk in view of (14.7.13).

Symmetry

$$
\begin{equation*}
R_{n}(x ; \gamma, \delta, N \mid q)=\frac{\left(\delta^{-1} q^{-N} ; q\right)_{n}}{(\gamma q ; q)_{n}}\left(\gamma \delta q^{N+1}\right)^{n} R_{n}\left(\gamma^{-1} \delta^{-1} q^{-1-N} x ; \delta^{-1} q^{-N-1}, \gamma^{-1} q^{-N-1}, N \mid q\right) \tag{174}
\end{equation*}
$$

This follows from (14.7.1) combined with [GR, (III.11)].

14.8 Al-Salam-Chihara

Standardization and notation The definition (14.8.1) by q-hypergeometric representation follows the convention of $[72, \mathrm{p} .25]$ that $Q_{n}(x ; a, b \mid q)=p_{n}(x ; a, b, 0,0 \mid q)$, where $p_{n}(x ; a, b, c, d \mid q)$ is the Askey-Wilson polynomial (14.1.1). In [Ism, (15.1.6)] these polynomials are notated $p_{n}(x ; a, b \mid q)$, equal to $a^{n} /(a b ; q)_{n}$ times $Q_{n}(x ; a, b \mid q)$ as in (14.8.1).

Symmetry The Al-Salam-Chihara polynomials $Q_{n}(x ; a, b \mid q)$ are symmetric in a, b.
This follows from the orthogonality relation (14.8.2) together with the value of its coefficient of x^{n} given in (14.8.5b).

Orthogonality relation Just as in Section 14.1 the condition $|a|,|b|<1$ on the parameters in (14.8.2) can be slightly relaxed into $|a|,|b| \leq 1, a b \neq 1$.

q^{-1}-Al-Salam-Chihara

Re: (14.8.1) For $x \in \mathbb{Z}_{\geq 0}$:

$$
\begin{align*}
& Q_{n}\left(\frac{1}{2}\left(a q^{-x}+a^{-1} q^{x}\right) ; a, b \mid q^{-1}\right)=(-1)^{n} b^{n} q^{-\frac{1}{2} n(n-1)}\left((a b)^{-1} ; q\right)_{n} \\
& \times{ }_{3} \phi_{1}\left(\begin{array}{c}
q^{-n}, q^{-x}, a^{-2} q^{x} \\
(a b)^{-1}
\end{array} q, q^{n} a b^{-1}\right) \tag{175}\\
& =\left(-a b^{-1}\right)^{x} q^{-\frac{1}{2} x(x+1)} \frac{\left(q b a^{-1} ; q\right)_{x}}{\left(a^{-1} b^{-1} ; q\right)_{x}}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-x}, a^{-2} q^{x} \\
q b a^{-1}
\end{array} ; q, q^{n+1}\right) \tag{176}\\
& =\left(-a b^{-1}\right)^{x} q^{-\frac{1}{2} x(x+1)} \frac{\left(q b a^{-1} ; q\right)_{x}}{\left(a^{-1} b^{-1} ; q\right)_{x}} p_{x}\left(q^{n} ; b a^{-1},(q a b)^{-1} ; q\right) . \tag{177}
\end{align*}
$$

Formula (175) follows from the first identity in (14.8.1). Next (176) follows from [GR, (III.8)]. Finally (177) gives the little q-Jacobi polynomials (14.12.1). See also [79, §3].

Orthogonality

$$
\begin{align*}
& \sum_{x=0}^{\infty} \frac{\left(1-q^{2 x} a^{-2}\right)\left(a^{-2},(a b)^{-1} ; q\right)_{x}}{\left(1-a^{-2}\right)\left(q, b q a^{-1} ; q\right)_{x}}\left(b a^{-1}\right)^{x} q^{x^{2}}\left(Q_{m} Q_{n}\right)\left(\frac{1}{2}\left(a q^{-x}+a^{-1} q^{x}\right) ; a, b \mid q^{-1}\right) \\
& =\frac{\left(q a^{-2} ; q\right)_{\infty}}{\left(b a^{-1} q ; q\right)_{\infty}}\left(q,(a b)^{-1} ; q\right)_{n}(a b)^{n} q^{-n^{2}} \delta_{m, n} \quad(a b>1, q b<a) . \tag{178}
\end{align*}
$$

This follows from (177) together with (14.12.2) and the completeness of the orthogonal system of the little q-Jacobi polynomials, See also [79, §3]. An alternative proof is given in [64]. There combine (3.82) with (3.81), (3.67), (3.40).

Normalized recurrence relation

$$
\begin{equation*}
x p_{n}(x)=p_{n+1}(x)+\frac{1}{2}(a+b) q^{-n} p_{n}(x)+\frac{1}{4}\left(q^{-n}-1\right)\left(a b q^{-n+1}-1\right) p_{n-1}(x), \tag{179}
\end{equation*}
$$

where

$$
Q_{n}\left(x ; a, b \mid q^{-1}\right)=2^{n} p_{n}(x) .
$$

14.9 -Meixner-Pollaczek

The q-Meixner-Pollaczek polynomials are the special case of Askey-Wilson polynomials with parameters $a e^{i \phi}, 0, a e^{-i \phi}, 0$:

$$
P_{n}(x ; a, \phi \mid q):=\frac{1}{(q ; q)_{n}} p_{n}\left(x ; a e^{i \phi}, 0, a e^{-i \phi}, 0 \mid q\right) \quad(x=\cos (\theta+\phi)) .
$$

In [KLS, §14.9] the parameter dependence on ϕ is incorrectly omitted.
Since all formulas in $\S 14.9$ are specializations of formulas in $\S 14.1$, there is no real need to give these specializations explicitly. See also (141).

There is an error in [KLS, (14.9.6), (14.9.8)]. Read $x=\cos (\theta+\phi)$ instead of $x=\cos \theta$.

14.10 Continuous q-Jacobi

Symmetry

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(-x \mid q)=(-1)^{n} q^{\frac{1}{2}(\alpha-\beta) n} P_{n}^{(\beta, \alpha)}(x \mid q) . \tag{180}
\end{equation*}
$$

This follows from (131) and (14.1.19).

14.10.1 Continuous q-ultraspherical / Rogers

Re: (14.10.17)

$$
C_{n}(\cos \theta ; \beta \mid q)=\frac{\left(\beta^{2} ; q\right)_{n}}{(q ; q)_{n}} \beta^{-\frac{1}{2} n}{ }_{4} \phi_{3}\left(\begin{array}{c}
q^{-\frac{1}{2} n}, \beta q^{\frac{1}{2} n}, \beta^{\frac{1}{2}} e^{i \theta}, \beta^{\frac{1}{2}} e^{-i \theta} \tag{181}\\
-\beta, \beta^{\frac{1}{2}} q^{\frac{1}{4}},-\beta^{\frac{1}{2}} q^{\frac{1}{4}}
\end{array} ; q^{\frac{1}{2}}, q^{\frac{1}{2}}\right),
$$

see [GR, (7.4.13), (7.4.14)].

Special value (see [63, (3.23)])

$$
\begin{equation*}
C_{n}\left(\frac{1}{2}\left(\beta^{\frac{1}{2}}+\beta^{-\frac{1}{2}}\right) ; \beta \mid q\right)=\frac{\left(\beta^{2} ; q\right)_{n}}{(q ; q)_{n}} \beta^{-\frac{1}{2} n} \tag{182}
\end{equation*}
$$

Re: (14.10.21) (another q-difference equation). Let $C_{n}\left[e^{i \theta} ; \beta \mid q\right]:=C_{n}(\cos \theta ; \beta \mid q)$.

$$
\begin{equation*}
\frac{1-\beta z^{2}}{1-z^{2}} C_{n}\left[q^{\frac{1}{2}} z ; \beta \mid q\right]+\frac{1-\beta z^{-2}}{1-z^{-2}} C_{n}\left[q^{-\frac{1}{2}} z ; \beta \mid q\right]=\left(q^{-\frac{1}{2} n}+q^{\frac{1}{2} n} \beta\right) C_{n}[z ; \beta \mid q] \tag{183}
\end{equation*}
$$

see $[351,(6.10)]$.

Re: (14.10.23) This can also be written as

$$
\begin{equation*}
C_{n}\left[q^{\frac{1}{2}} z ; \beta \mid q\right]-C_{n}\left[q^{-\frac{1}{2}} z ; \beta \mid q\right]=q^{-\frac{1}{2} n}(\beta-1)\left(z-z^{-1}\right) C_{n-1}[z ; q \beta \mid q] . \tag{184}
\end{equation*}
$$

Two other shift relations follow from the previous two equations:

$$
\begin{gather*}
(\beta+1) C_{n}\left[q^{\frac{1}{2}} z ; \beta \mid q\right]=\left(q^{-\frac{1}{2} n}+q^{\frac{1}{2} n} \beta\right) C_{n}[z ; \beta \mid q]+q^{-\frac{1}{2} n}(\beta-1)\left(z-\beta z^{-1}\right) C_{n-1}[z ; q \beta \mid q], \tag{185}\\
(\beta+1) C_{n}\left[q^{-\frac{1}{2}} z ; \beta \mid q\right]=\left(q^{-\frac{1}{2} n}+q^{\frac{1}{2} n} \beta\right) C_{n}[z ; \beta \mid q]+q^{-\frac{1}{2} n}(\beta-1)\left(z^{-1}-\beta z\right) C_{n-1}[z ; q \beta \mid q] . \tag{186}
\end{gather*}
$$

Trigonometric representation (see p.473, Remarks, first formula)

$$
\begin{equation*}
C_{n}(\cos \theta ; \beta \mid q)=\sum_{k=0}^{n} \frac{(\beta ; q)_{k}(\beta ; q)_{n-k}}{(q ; q)_{k}(q ; q)_{n-k}} e^{i(n-2 k) \theta} . \tag{187}
\end{equation*}
$$

Limit for $q \downarrow-1 \quad$ (see [63, pp. 74-75]). By (187) and (80) we obtain

$$
\begin{aligned}
\lim _{q \uparrow 1} C_{2 m}\left(x ;-q^{\lambda} \mid-q\right) & =C_{m}^{\frac{1}{2}(\lambda+1)}\left(2 x^{2}-1\right)+C_{m-1}^{\frac{1}{2}(\lambda+1)}\left(2 x^{2}-1\right), \\
\lim _{q \uparrow 1} C_{2 m+1}\left(x ;-q^{\lambda} \mid-q\right) & =2 x C_{m}^{\frac{1}{2}(\lambda+1)}\left(2 x^{2}-1\right) .
\end{aligned}
$$

By (76) and [HTF2, 10.6(36)] this can be rewritten as

$$
\begin{align*}
\lim _{q \uparrow 1} C_{2 m}\left(x ;-q^{\lambda} \mid-q\right) & =\frac{(\lambda)_{m}}{\left(\frac{1}{2} \lambda\right)_{m}} P_{m}^{\left(\frac{1}{2} \lambda, \frac{1}{2} \lambda-1\right)}\left(2 x^{2}-1\right), \tag{188}\\
\lim _{q \uparrow 1} C_{2 m+1}\left(x ;-q^{\lambda} \mid-q\right) & =2 \frac{(\lambda+1)_{m}}{\left(\frac{1}{2} \lambda+1\right)_{m}} x P_{m}^{\left(\frac{1}{2} \lambda, \frac{1}{2} \lambda\right)}\left(2 x^{2}-1\right) . \tag{189}
\end{align*}
$$

By (67) the limits (188), (189) imply that

$$
\begin{equation*}
\lim _{q \uparrow 1} C_{n}\left(x ;-q^{\lambda} \mid-q\right)=\text { const. } S_{n}^{\left(\frac{1}{2} \lambda, \frac{1}{2} \lambda-1\right)}(x), \tag{190}
\end{equation*}
$$

where the right-hand side gives a one-parameter subclass of the generalized Gegenbauer polynomial. Note that in [K13, Section 7.1] the generalized Gegenbauer polynomials are also observed as fitting in the $q=-1$ Askey scheme, but the limit (190) is not observed there.

14.11 Big q-Laguerre

Symmetry The big q-Laguerre polynomials $P_{n}(x ; a, b ; q)$ are symmetric in a, b.
This follows from (14.11.1). As a consequence, it is sufficient to give generating function (14.11.11). Then the generating function (14.1.12) will follow by symmetry in the parameters.

14.12 Little q-Jacobi

Notation Here the little q-Jacobi polynomial is denoted by $p_{n}(x ; a, b ; q)$ instead of $p_{n}(x ; a, b \mid q)$.

Basic Hypergeometric Representation In addition to (14.12.1) we have (see [K19, (2.46)])

$$
p_{n}(x ; a, b ; q)=(-q b)^{-n} q^{-\frac{1}{2} n(n-1)} \frac{(q b ; q)_{n}}{(q a ; q)_{n}}{ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-n}, q^{n+1} a b, q b x \tag{191}\\
q b, 0
\end{array} q, q\right) .
$$

Special values (see [K19, §2.4]).

$$
\begin{align*}
p_{n}(0 ; a, b ; q) & =1, \tag{192}\\
p_{n}\left(q^{-1} b^{-1} ; a, b ; q\right) & =(-q b)^{-n} q^{-\frac{1}{2} n(n-1)} \frac{(q b ; q)_{n}}{(q a ; q)_{n}}, \tag{193}\\
p_{n}(1 ; a, b ; q) & =(-a)^{n} q^{\frac{1}{2} n(n+1)} \frac{(q b ; q)_{n}}{(q a ; q)_{n}} . \tag{194}
\end{align*}
$$

14.14 Quantum q-Krawtchouk

q-Hypergeometric representation For $n=0,1, \ldots, N$ (see (14.14.1) and use (17)):

$$
\left.\begin{array}{rl}
K_{n}^{\mathrm{qtm}}(y ; p, N ; q) & ={ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n}, y \\
q^{-N}
\end{array} ; q, p q^{n+1}\right.
\end{array}\right) .
$$

Special values By (195) and [GR, (II.4)]:

$$
\begin{equation*}
K_{n}^{\mathrm{qtm}}(1 ; p, N ; q)=1, \quad K_{n}^{\mathrm{qtm}}\left(q^{-N} ; p, N ; q\right)=(p q ; q)_{n} . \tag{197}
\end{equation*}
$$

By (196) and (197) we have the self-duality

$$
\begin{equation*}
\frac{K_{n}^{\mathrm{qtm}}\left(q^{x-N} ; p, N ; q\right)}{K_{n}^{\mathrm{qtm}}\left(q^{-N} ; p, N ; q\right)}=\frac{K_{x}^{\mathrm{qtm}}\left(q^{n-N} ; p, N ; q\right)}{K_{x}^{\mathrm{qtm}}\left(q^{-N} ; p, N ; q\right)} \quad(n, x \in\{0,1, \ldots, N\}) \tag{198}
\end{equation*}
$$

By (197) and (198) we have also

$$
\begin{equation*}
K_{N}^{\mathrm{qtm}}\left(q^{-x} ; p, N ; q\right)=\left(p q^{N} ; q^{-1}\right)_{x} \quad(x \in\{0,1, \ldots, N\}) . \tag{199}
\end{equation*}
$$

Limit for $q \rightarrow 1$ to Krawtchouk (see (14.14.14) and Section 9.11):

$$
\begin{align*}
\lim _{q \rightarrow 1} K_{n}^{\mathrm{qtm}}(1+(1-q) x ; p, N ; q) & =K_{n}\left(x ; p^{-1}, N\right), \tag{200}\\
\lim _{q \rightarrow 1} K_{n}^{\mathrm{qtm}}\left(q^{-x} ; p, N ; q\right) & =K_{n}\left(x ; p^{-1}, N\right) . \tag{201}
\end{align*}
$$

Quantum q^{-1}-Krawtchouk By (195), (197), (16) and (204) (see also p.496, second formula):

$$
\left.\begin{array}{rl}
\frac{K_{n}^{\mathrm{qtm}}\left(y ; p, N ; q^{-1}\right)}{K_{n}^{\mathrm{qtm}}\left(q^{N} ; p, N ; q^{-1}\right)} & =\frac{1}{\left(p q^{-1} ; q^{-1}\right)_{n}}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n}, y^{-1} \\
q^{-N}
\end{array} ; q, p y q^{-N}\right.
\end{array}\right) .
$$

Rewrite (203) as

$$
K_{m}^{\mathrm{qtm}}\left(1+\left(1-q^{-1}\right) q x ; p^{-1}, N ; q^{-1}\right)=\left((p q)^{-1} ; q^{-1}\right)_{n} K_{n}^{\mathrm{Aff}}\left(1+(1-q) q^{-N}\left(\frac{1-q^{N}}{1-q}-x\right) ; p, N ; q\right) .
$$

In view of (200) and (209) this tends to (97) as $q \rightarrow 1$.
The orthogonality relation (14.14.2) holds with positive weights for $q>1$ if $p>q^{-1}$.
History The origin of the name of the quantum q-Krawtchouk polynomials is by their interpretation as matrix elements of irreducible corepresentations of (the quantized function algebra of) the quantum group $S U_{q}(2)$ considered with respect to its quantum subgroup $U(1)$. The orthogonality relation and dual orthogonality relation of these polynomials are an expression of the unitarity of these corepresentations. See for instance [343, Section 6].

14.16 Affine q-Krawtchouk

q-Hypergeometric representation For $n=0,1, \ldots, N$ (see (14.16.1)):

$$
\begin{align*}
K_{n}^{\text {Aff }}(y ; p, N ; q) & =\frac{1}{\left(p^{-1} q^{-1} ; q^{-1}\right)_{n}} 2 \phi_{1}\left(\begin{array}{c}
q^{-n}, q^{-N} y^{-1} \\
q^{-N}
\end{array} q, p^{-1} y\right) \tag{204}\\
& ={ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-n}, y, 0 \\
q^{-N}, p q
\end{array} ; q, q\right) . \tag{205}
\end{align*}
$$

Self-duality By (205):

$$
\begin{equation*}
K_{n}^{\mathrm{Aff}}\left(q^{-x} ; p, N ; q\right)=K_{x}^{\mathrm{Aff}}\left(q^{-n} ; p, N ; q\right) \quad(n, x \in\{0,1, \ldots, N\}) \tag{206}
\end{equation*}
$$

Special values By (204) and [GR, (II.4)]:

$$
\begin{equation*}
K_{n}^{\mathrm{Aff}}(1 ; p, N ; q)=1, \quad K_{n}^{\mathrm{Aff}}\left(q^{-N} ; p, N ; q\right)=\frac{1}{\left((p q)^{-1} ; q^{-1}\right)_{n}} \tag{207}
\end{equation*}
$$

By (207) and (206) we have also

$$
\begin{equation*}
K_{N}^{\mathrm{Aff}}\left(q^{-x} ; p, N ; q\right)=\frac{1}{\left((p q)^{-1} ; q^{-1}\right)_{x}} . \tag{208}
\end{equation*}
$$

Limit for $q \rightarrow 1$ to Krawtchouk (see (14.16.14) and Section 9.11):

$$
\begin{align*}
\lim _{q \rightarrow 1} K_{n}^{\mathrm{Aff}}(1+(1-q) x ; p, N ; q) & =K_{n}(x ; 1-p, N) \tag{209}\\
\lim _{q \rightarrow 1} K_{n}^{\mathrm{Aff}}\left(q^{-x} ; p, N ; q\right) & =K_{n}(x ; 1-p, N) \tag{210}
\end{align*}
$$

A relation between quantum and affine q-Krawtchouk

By (195), (204), (207) and (206) we have for $x \in\{0,1, \ldots, N\}$:

$$
\begin{align*}
K_{N-n}^{\mathrm{qtm}}\left(q^{-x} ; p^{-1} q^{-N-1}, N ; q\right) & =\frac{K_{x}^{\mathrm{Aff}}\left(q^{-n} ; p, N ; q\right)}{K_{x}^{\mathrm{Aff}}\left(q^{-N} ; p, N ; q\right)} \tag{211}\\
& =\frac{K_{n}^{\mathrm{Aff}}\left(q^{-x} ; p, N ; q\right)}{K_{N}^{\mathrm{Aff}}\left(q^{-x} ; p, N ; q\right)} . \tag{212}
\end{align*}
$$

Formula (211) is given in [K3, formula after (12)] and [K12, (59)]. In view of (201) and (210) formula (212) has (98) as a limit case for $q \rightarrow 1$.

Affine q^{-1}-Krawtchouk By (204), (207), (16) and (195) (see also p.505, first formula):

$$
\begin{align*}
\frac{K_{n}^{\mathrm{Aff}}\left(y ; p, N ; q^{-1}\right)}{K_{n}^{\mathrm{Aff}}\left(q^{N} ; p, N ; q^{-1}\right)} & ={ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n}, q^{-N} y \\
q^{-N}
\end{array}{ }^{-N, p^{-1} q^{n+1}}\right) \tag{213}\\
& =K_{n}^{\mathrm{qtm}}\left(q^{-N} y ; p^{-1}, N ; q\right) . \tag{214}
\end{align*}
$$

Formula (214) is equivalent to (203). Just as for (203), it tends after suitable substitutions to (97) as $q \rightarrow 1$.

The orthogonality relation (14.16.2) holds with positive weights for $q>1$ if $0<p<q^{-N}$.
History The affine q-Krawtchouk polynomials were considered by Delsarte [161, Theorem 11], [K8, (16)] in connection with certain association schemes. He called these polynomials generalized Krawtchouk polynomials. (Note that the ${ }_{2} \phi_{2}$ in $[\mathrm{K} 8,(16)]$ is in fact a ${ }_{3} \phi_{2}$ with one upper parameter equal to 0.) Next Dunkl [186, Definition 2.6, Section 5.1] reformulated this as an interpretation as spherical functions on certain Chevalley groups. He called these polynomials q-Kratchouk polynomials. The current name affine q-Krawtchouk polynomials was introduced by Stanton [488, (4.13)]. He chose this name because, in [488, pp. 115-116] the polynomials arise in connection with an affine action of a group G on a space X. Here X is the set of $(v-n) \times n$ matrices over $\operatorname{GF}(q)$. Let G be the group of block matrices $\left(\begin{array}{cc}A & 0 \\ S A & B\end{array}\right)$, where $A \in \mathrm{GL}_{n}(q)$, $B \in \mathrm{GL}_{v-n}(q)$ and $S \in X$. Then G acts on X by $\left(\begin{array}{cc}A & 0 \\ S A & B\end{array}\right) \cdot T=B T A^{-1}+S$.

14.17 Dual q-Krawtchouk

Symmetry

$$
\begin{equation*}
K_{n}(x ; c, N \mid q)=c^{n} K_{n}\left(c^{-1} x ; c^{-1}, N \mid q\right) . \tag{215}
\end{equation*}
$$

This follows from (14.17.1) combined with [GR, (III.11)].
In particular,

$$
\begin{equation*}
K_{n}(x ;-1, N \mid q)=(-1)^{n} K_{n}(-x ;-1, N \mid q) . \tag{216}
\end{equation*}
$$

14.20 Little q-Laguerre / Wall

Notation Here the little q-Laguerre polynomial is denoted by $p_{n}(x ; a ; q)$ instead of $p_{n}(x ; a \mid q)$.

Re: (14.20.11) The right-hand side of this generating function converges for $|x t|<1$. We can rewrite the left-hand side by use of the transformation

$$
{ }_{2} \phi_{1}\left(\begin{array}{c}
0,0 \\
c
\end{array} ; q, z\right)=\frac{1}{(z ; q)_{\infty}}{ }_{0} \phi_{1}\left(\begin{array}{l}
- \\
c
\end{array} q, c z\right) .
$$

Then we obtain:

$$
(t ; q)_{\infty} \phi_{1}\left(\begin{array}{c}
0,0 \tag{217}\\
a q
\end{array} ; q, x t\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\frac{1}{2} n(n-1)}}{(q ; q)_{n}} p_{n}(x ; a ; q) t^{n} \quad(|x t|<1) .
$$

Expansion of x^{n}

Divide both sides of (217) by $(t ; q)_{\infty}$. Then coefficients of the same power of t on both sides must be equal. We obtain:

$$
\begin{equation*}
x^{n}=(a ; q)_{n} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}} q^{n k} p_{k}(x ; a ; q) . \tag{218}
\end{equation*}
$$

Quadratic transformations

Little q-Laguerre polynomials $p_{n}(x ; a ; q)$ with $a=q^{ \pm \frac{1}{2}}$ are related to discrete q-Hermite I polynomials $h_{n}(x ; q)$:

$$
\begin{align*}
p_{n}\left(x^{2} ; q^{-1} ; q^{2}\right) & =\frac{(-1)^{n} q^{-n(n-1)}}{\left(q ; q^{2}\right)_{n}} h_{2 n}(x ; q), \tag{219}\\
x p_{n}\left(x^{2} ; q ; q^{2}\right) & =\frac{(-1)^{n} q^{-n(n-1)}}{\left(q^{3} ; q^{2}\right)_{n}} h_{2 n+1}(x ; q) . \tag{220}
\end{align*}
$$

$14.21 q$-Laguerre

Notation Here the q-Laguerre polynomial is denoted by $L_{n}^{\alpha}(x ; q)$ instead of $L_{n}^{(\alpha)}(x ; q)$.

Orthogonality relation

(14.21.2) can be rewritten with simplified right-hand side:

$$
\begin{equation*}
\int_{0}^{\infty} L_{m}^{\alpha}(x ; q) L_{n}^{\alpha}(x ; q) \frac{x^{\alpha}}{(-x ; q)_{\infty}} d x=h_{n} \delta_{m, n} \quad(\alpha>-1) \tag{221}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{h_{n}}{h_{0}}=\frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n} q^{n}}, \quad h_{0}=-\frac{\left(q^{-\alpha} ; q\right)_{\infty}}{(q ; q)_{\infty}} \frac{\pi}{\sin (\pi \alpha)} \tag{222}
\end{equation*}
$$

The expression for h_{0} (which is Askey's q-gamma evaluation [K1, (4.2)]) should be interpreted by continuity in α for $\alpha \in \mathbb{Z}_{\geq 0}$. Explicitly we can write

$$
\begin{equation*}
h_{n}=q^{-\frac{1}{2} \alpha(\alpha+1)}(q ; q)_{\alpha} \log \left(q^{-1}\right) \quad\left(\alpha \in \mathbb{Z}_{\geq 0}\right) . \tag{223}
\end{equation*}
$$

Expansion of x^{n}

$$
\begin{equation*}
x^{n}=q^{-\frac{1}{2} n(n+2 \alpha+1)}\left(q^{\alpha+1} ; q\right)_{n} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}}{\left(q^{\alpha+1} ; q\right)_{k}} q^{k} L_{k}^{\alpha}(x ; q) . \tag{224}
\end{equation*}
$$

This follows from (218) by the equality given in the Remark at the end of $\S 14.20$. Alternatively, it can be derived in the same way as (218) from the generating function (14.21.14).

Quadratic transformations

q-Laguerre polynomials $L_{n}^{\alpha}(x ; q)$ with $\alpha= \pm \frac{1}{2}$ are related to discrete q-Hermite II polynomials $\widetilde{h}_{n}(x ; q)$:

$$
\begin{align*}
& L_{n}^{-1 / 2}\left(x^{2} ; q^{2}\right)=\frac{(-1)^{n} q^{2 n^{2}-n}}{\left(q^{2} ; q^{2}\right)_{n}} \widetilde{h}_{2 n}(x ; q), \tag{225}\\
& x L_{n}^{1 / 2}\left(x^{2} ; q^{2}\right)=\frac{(-1)^{n} q^{2 n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}} \widetilde{h}_{2 n+1}(x ; q) . \tag{226}
\end{align*}
$$

These follows from (219) and (220), respectively, by applying the equalities given in the Remarks at the end of $\S 14.20$ and $\S 14.28$.

14.27 Stieltjes-Wigert

An alternative weight function

The formula on top of p .547 should be corrected as

$$
\begin{equation*}
w(x)=\frac{\gamma}{\sqrt{\pi}} x^{-\frac{1}{2}} \exp \left(-\gamma^{2} \ln ^{2} x\right), \quad x>0, \quad \text { with } \quad \gamma^{2}=-\frac{1}{2 \ln q} . \tag{227}
\end{equation*}
$$

For w the weight function given in $[\mathrm{Sz}, \S 2.7]$ the right-hand side of (227) equals const. $w\left(q^{-\frac{1}{2}} x\right)$. See also [DLMF, §18.27(vi)].

14.28 Discrete q-Hermite I

History Discrete q Hermite I polynomials (not yet with this name) first occurred in Hahn [261], see there p.29, case V and the q-weight $\pi(x)$ given by the second expression on line 4 of p.30. However note that on the line on p. 29 dealing with case V , one should read $k^{2}=q^{-n}$ instead of $k^{2}=-q^{n}$. Then, with the indicated substitutions, [261, (4.11), (4.12)] yield constant multiples of $h_{2 n}\left(q^{-1} x ; q\right)$ and $h_{2 n+1}\left(q^{-1} x ; q\right)$, respectively, due to the quadratic transformations (219), (220) together with (4.20.1).

14.29 Discrete q-Hermite II

Basic hypergeometric representation (see (14.29.1))

$$
\widetilde{h}_{n}(x ; q)=x^{n}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n}, q^{-n+1} \tag{228}\\
0
\end{array} ; q^{2},-q^{2} x^{-2}\right) .
$$

Standard references

[AAR] G. E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, 1999.
[DLMF] NIST Handbook of Mathematical Functions, Cambridge University Press, 2010; DLMF, Digital Library of Mathematical Functions, http://dlmf.nist.gov.
[GR] G. Gasper and M. Rahman, Basic hypergeometric series, 2nd edn., Cambridge University Press, 2004.
[HTF1] A. Erdélyi, Higher transcendental functions, Vol. 1, McGraw-Hill, 1953.
[HTF2] A. Erdélyi, Higher transcendental functions, Vol. 2, McGraw-Hill, 1953.
[Ism] M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Cambridge University Press, 2005; reprinted and corrected, 2009.
[KLS] R. Koekoek, P. A. Lesky and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer-Verlag, 2010.
[Sz] G. Szegö, Orthogonal polynomials, Colloquium Publications 23, American Mathematical Society, Fourth Edition, 1975.

References from Koekoek, Lesky \& Swarttouw

[24] W. A. Al-Salam and M. E. H. Ismail, Orthogonal polynomials associated with the RogersRamanujan continued fraction, Pacific J. Math. 104 (1983), 269-283.
[46] R. Askey, Orthogonal polynomials and special functions, CBMS Regional Conference Series, Vol. 21, SIAM, 1975.
[51] R. Askey, Beta integrals and the associated orthogonal polynomials, in: Number theory, Madras 1987, Lecture Notes in Mathematics 1395, Springer-Verlag, 1989, pp. 84-121.
[63] R. Askey and M. E. H. Ismail, A generalization of ultraspherical polynomials, in: Studies in Pure Mathematics, Birkhäuser, 1983, pp. 55-78.
[64] R. Askey and M. E. H. Ismail, Recurrence relations, continued fractions, and orthogonal polynomials, Mem. Amer. Math. Soc. 49 (1984), no. 300.
[72] R. Askey and J. A. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319.
[79] N. M. Atakishiyev and A. U. Klimyk, On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials, J. Math. Anal. Appl. 294 (2004), 246-257.
[91] W. N. Bailey, The generating function of Jacobi polynomials, J. London Math. Soc. 13 (1938), 8-12.
[109] F. Brafman, Generating functions of Jacobi and related polynomials, Proc. Amer. Math. Soc. 2 (1951), 942-949.
[146] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, 1978; reprinted Dover Publications, 2011.
[161] Ph. Delsarte, Association schemes and t-designs in regular semilattices, J. Combin. Theory Ser. A 20 (1976), 230-243.
[186] C. F. Dunkl, An addition theorem for some q-Hahn polynomials, Monatsh. Math. 85 (1977), 5-37.
[234] G. Gasper and M. Rahman, Positivity of the Poisson kernel for the continuous q ultraspherical polynomials, SIAM J. Math. Anal. 14 (1983), 409-420.
[236] G. Gasper and M. Rahman, Positivity of the Poisson kernel for the continuous q-Jacobi polynomials and some quadratic transformation formulas for basic hypergeometric series, SIAM J. Math. Anal. 17 (1986), 970-999.
[255] E. Grosswald, The Bessel polynomials, Lecture Notes in Math. 698, Springer-Verlag, 1978.
[261] W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr. 2 (1949), 4-34.
[281] M. E. H. Ismail, J. Letessier, G. Valent and J. Wimp, Two families of associated Wilson polynomials, Canad. J. Math. 42 (1990), 659-695.
[298] M. E. H. Ismail and J. A. Wilson, Asymptotic and generating relations for the q-Jacobi and ${ }_{4} \phi_{3}$ polynomials, J. Approx. Theory 36 (1982), 43-54.
[331] T. Koornwinder, Jacobi polynomials, II. An analytic proof of the product formula, SIAM J. Math. Anal. 5 (1974), 125-137.
[332] T. Koornwinder, Jacobi polynomials III. Analytic proof of the addition formula, SIAM J. Math. Anal. 6 (1975) 533-543.
[342] T. H. Koornwinder, Meixner-Pollaczek polynomials and the Heisenberg algebra, J. Math. Phys. 30 (1989), 767-769.
[343] T. H. Koornwinder, Representations of the twisted $S U(2)$ quantum group and some q hypergeometric orthogonal polynomials, Indag. Math. 51 (1989), 97-117.
[351] T. H. Koornwinder, The structure relation for Askey-Wilson polynomials, J. Comput. Appl. Math. 207 (2007), 214-226; arXiv:math/0601303v3.
[382] P. A. Lesky, Endliche und unendliche Systeme von kontinuierlichen klassischen Orthogonalpolynomen, Z. Angew. Math. Mech. 76 (1996), 181-184.
[384] P. A. Lesky, Einordnung der Polynome von Romanovski-Bessel in das Askey-Tableau, Z. Angew. Math. Mech. 78 (1998), 646-648.
[406] J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. London Math. Soc. 9 (1934), 6-13.
[416] A. F. Nikiforov, S. K. Suslov and V. B. Uvarov, Classical orthogonal polynomials of a discrete variable, Springer-Verlag, 1991.
[449] M. Rahman, Some generating functions for the associated Askey-Wilson polynomials, J. Comput. Appl. Math. 68 (1996), 287-296.
[463] V. Romanovski, Sur quelques classes nouvelles de polynômes orthogonaux, C. R. Acad. Sci. Paris 188 (1929), 1023-1025.
[471] L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, 1966.
[485] D. Stanton, A short proof of a generating function for Jacobi polynomials, Proc. Amer. Math. Soc. 80 (1980), 398-400.
[488] D. Stanton, Orthogonal polynomials and Chevalley groups, in: Special functions: group theoretical aspects and applications, Reidel, 1984, pp. 87-128.
[513] J. A. Wilson, Asymptotics for the ${ }_{4} F_{3}$ polynomials, J. Approx. Theory 66 (1991), 58-71.

Other references

[K1] R. Askey, Ramanujan's extensions of the gamma and beta functions, Amer. Math. Monthly 87 (1980), 346-359.
[K2] R. Askey and J. Fitch, Integral representations for Jacobi polynomials and some applications, J. Math. Anal. Appl. 26 (1969), 411-437.
[K3] M. N. Atakishiyev and V. A. Groza, The quantum algebra $U_{q}\left(s u_{2}\right)$ and q-Krawtchouk families of polynomials, J. Phys. A 37 (2004), 2625-2635.
[K4] M. Atakishiyeva and N. Atakishiyev, On discrete q-extensions of Chebyshev polynomials, Commun. Math. Anal. 14 (2013), 1-12.
[K5] S. Belmehdi, Generalized Gegenbauer orthogonal polynomials, J. Comput. Appl. Math. 133 (2001), 195-205.
[K6] Y. Ben Cheikh and M. Gaied, Characterization of the Dunkl-classical symmetric orthogonal polynomials, Appl. Math. Comput. 187 (2007), 105-114.
[K7] J. Cigler, A simple approach to q-Chebyshev polynomials, arXiv:1201.4703v2 [math.CO], 2012.
[K8] Ph. Delsarte, Properties and applications of the recurrence $F(i+1, k+1, n+1)=$ $q^{k+1} F(i, k+1, n)-q^{k} F(i, k, n)$, SIAM J. Appl. Math. 31 (1976), 262-270.
[K9] C. F. Dunkl and Y. Xu, Orthogonal polynomials of several variables, Cambridge University Press, 2014, second ed.
[K10] E. Feldheim, Relations entre les polynomes de Jacobi, Laguerre et Hermite, Acta Math. 75 (1942), 117-138.
[K11] W. Gautschi, On mean convergence of extended Lagrange interpolation, J. Comput. Appl. Math. 43 (1992), 19-35.
[K12] V. X. Genest, S. Post, L. Vinet, G.-F. Yu and A. Zhedanov, q-Rotations and Krawtchouk polynomials, arXiv:1408.5292v2 [math-ph], 2014.
[K13] V. X. Genest, L. Vinet and A. Zhedanov, A "continuous" limit of the Complementary Bannai-Ito polynomials: Chihara polynomials, SIGMA 10 (2014), 038, 18 pp.; arXiv:1309.7235v3 [math.CA].
[K14] V. Gorin and G. Olshanski, A quantization of the harmonic analysis on the infinitedimensional unitary group, arXiv:1504.06832v1 [math.RT], 2015.
[K15] M. J. Gottlieb, Concerning some polynomials orthogonal on a finite or enumerable set of points, Amer. J. Math. 60 (1938), 453-458.
[K16] W. Groenevelt and E. Koelink, The indeterminate moment problem for the q-Meixner polynomials, J. Approx. Theory 163 (2011), 836-863.
[K17] K. Jordaan and F. Toókos, Orthogonality and asymptotics of Pseudo-Jacobi polynomials for non-classical parameters, J. Approx. Theory 178 (2014), 1-12.
[K18] T. H. Koornwinder, Askey-Wilson polynomial, Scholarpedia 7 (2012), no. 7, 7761; http://www.scholarpedia.org/article/Askey--Wilson_polynomial.
[K19] T. H. Koornwinder, q-Special functions, a tutorial, arXiv:math/9403216v2 [math.CA], 2013.
[K20] T. H. Koornwinder, Quadratic transformations for orthogonal polynomials in one and two variables, in: Representation theory, special functions and Painlevé equations, Adv. Stud. Pure Math., Vol. 76, Math. Soc. Japan, Tokyo, 2018, pp. 418-447; arXiv:1512.09294v2 [math.CA], 2015.
[K21] N. N. Leonenko and N. Šuvak, Statistical inference for student diffusion process, Stoch. Anal. Appl. 28 (2010), 972-1002.
[K22] J. C. Mason, Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms, J. Comput. Appl. Math. 49 (1993), 169-178.
[K23] J. C. Mason and D. Handscomb, Chebyshev polynomials, Chapman \& Hall / CRC, 2002.
[K24] J. Meixner, Umformung gewisser Reihen, deren Glieder Produkte hypergeometrischer Funktionen sind, Deutsche Math. 6 (1942), 341-349.
[K25] G. Natanson, Exact quantization of the Milson potential via Romanovski-Routh polynomials, arXiv:1310.0796v3 [math-ph], 2015.
[K26] N. Nielsen, Recherches sur les polynômes d’ Hermite, Kgl. Danske Vidensk. Selsk. Math.Fys. Medd. I.6, København, 1918.
[K27] J. Peetre, Correspondence principle for the quantized annulus, Romanovski polynomials, and Morse potential, J. Funct. Anal. 117 (1993), 377-400.
[K28] H. Rosengren, Multivariable orthogonal polynomials and coupling coefficients for discrete series representations, SIAM J. Math. Anal. 30 (1999), 233-272.
[K29] E. J. Routh, On some properties of certain solutions of a differential equation of the second order, Proc. London Math. Soc. 16 (1885), 245-261.
[K30] J. A. Shohat and J. D. Tamarkin, The problem of moments, American Mathematical Society, 1943.
[K31] L. J. Slater, General transformations of bilateral series, Quart. J. Math., Oxford Ser. (2) 3 (1952), 73-80.
[K32] S. Tsujimoto, L. Vinet and A. Zhedanov, Dunkl shift operators and Bannai-Ito polynomials, Adv. Math. 229 (2012), 2123-2158.
[K33] L. Verde-Star, A unified construction of all the hypergeometric and basic hypergeometric families of orthogonal polynomial sequences, Linear Algebra Appl. 627 (2021), 242-274.

[^0]
[^0]: T. H. Koornwinder, Korteweg-de Vries Institute, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands;
 email: thkmath@xs4all.nl

