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Orthogonal polynomials in several variables potentially useful in pde

Tom H. Koornwinder

A system of orthogonal polynomials (OP’s) {pn}∞n=0 on R with respect to a positive
measure µ on R is called classical if there is a second order differential operator L
such that Lpn = λnpn (n = 0, 1, 2, . . .) for certain eigenvalues λn. By a theorem of
Bochner [1] there are three families of classical OP’s (up to an affine transformation
of the argument of the OP):

1. Hermite: pn = Hn, dµ(x) = e−x2

dx on R,
(Lf)(x) = 1

2f
′′(x) − xf ′(x), λn = −n.

2. Laguerre: pn = Lα
n, dµ(x) = xαe−x dx on [0,∞), α > −1,

(Lf)(x) = xf ′′(x) + (α+ 1− x)f ′(x), λn = −n.

3. Jacobi: pn = P (α,β)
n , dµ(x) = (1− x)α(1 + x)β dx on [−1, 1], α,β > −1,

(Lf)(x) = (1−x2)f ′′(x)+(β−α−(α+β+2)x)f ′(x), λn = −n(n+α+β+1).

Let µ be a positive measure on Rd such that
∫
R
|xα| dµ(x) < ∞ (α ∈ (Z≥0)d)

and the support of µ has nonempty interior. Let Pn consist of all polynomials p
of degree ≤ n such that

∫
Rd pq dµ = 0 for all polynomials q of degree < n. Then

Pn has the same dimension
(
n+d−1

n

)
as the space of homogeneous polynomials of

degree n in d variables. Furthermore, the spaces Pn (n = 0, 1, 2, . . .) are mutually
orthogonal in L2(µ). We call {Pn}∞n=0 a system of orthogonal polynomials with
respect to the measure µ.

As a refinement of this notion we may choose an orthogonal basis {pα}α1+···+αd=n

for each space Pn, and call the polynomials pα orthogonal polynomials. Of course,
there are many ways to choose such orthogonal bases.

A system {Pn} of orthogonal polynomials in d variables is called classical if
there is a second order pdo L acting on the space of polynomials such that Pn

is an eigenspace of L for a certain eigenvalue λn (n = 0, 1, 2, . . .). As a refine-
ment there may be, apart from L = L1, d − 1 further pdo’s L2, . . . , Ld such
that L1, L2, . . . , Ld commute, are self-adjoint with respect to µ, and have one-

dimensional joint eigenspaces. Then we have OP’s pα with Ljpα = λ(j)α pα.
It was shown by Krall & Sheffer [8] and Kwon, Lee & Littlejohn [9] that there

are five families of classical orthogonal polynomials in 2 variables, as follows:

1. dµ(x, y) = e−x2−y2

dx dy on R2, L = 1
2 (∂xx + ∂yy)− x∂x − y∂y, λn = −n.

2. dµ(x, y) = xαyβe−x−y dx dy on [0,∞)× [0,∞), α,β > −1,
L = x∂xx + y∂yy + (1 + α− x)∂x + (1 + α− y)∂y, λn = −n.

3. dµ(x, y) = yβe−x2−y dx dy on R× [0,∞), β > −1,
L = 1

2∂xx + y∂yy − x∂x + (1 + β − y)∂y, λn = −n.

4. dµ(x, y) = xαyβ(1 − x − y)γ dx dy on {(x, y) ∈ R2 | x, y ≥ 0, x + y ≤ 1},
α,β, γ > −1, L = x(1− x)∂xx + y(1− y)∂yy − 2xy∂xy +

(
α+1− (α+ β +

γ + 3)x
)
∂x +

(
β + 1− (α+ β + γ + 3)y

)
∂y, λn = −n(n+ α+ β + γ + 2).
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5. dµ(x, y) = (1− x2 − y2)α dx dy on {(x, y) ∈ R2 | (x2 + y2 ≤ 1}, α > −1,
L = (1− x2)∂xx + (1− y2)∂yy − 2xy∂xy − (2α+ 3)(x∂x + y∂y),
λn = −n(n+ 2α+ 2).

Orthogonal bases {pn,k}k=0,1,...,n for Pn (n = 0, 1, 2, . . .) in these five cases can
be obtained by Gram-Schmidt orthogonalization of the monomials 1, x, y, x2, xy, y2,
. . . , xn, xn−1y, . . . , xn−kyk, . . . . The resulting polynomials are as follows.

1. pn,k(x, y) = Hn−k(x)Hk(y).

2. pn,k(x, y) = Lα
n−k(x)L

β
k (y).

3. pn,k(x, y) = Hn−k(x)L
β
k (y).

4. pn,k(x, y) = P (α,β+γ+2k+1)
n−k (1− 2x) (1 − x)kP (β,γ)

k

(
1− 2y/(1− x)

)
.

5. pn,k(x, y) = P
(α+k+ 1

2
,α+k+ 1

2
)

n−k (x) (1 − x2)k/2P (α,α)
k

(
y/

√
1− x2

)
.

The expansions in monomials of these polynomials pn,k do not involve all mono-
mials xm−jyj with (m, j) equal or less than (n, k) in the lexicographic ordering.
For classes 1, 2 and 3 pn,k(x, y) only contains monomials xm−jyj with m−j ≤ n−k
and j ≤ k. For classes 4 and 5 pn,k(x, y) only contains monomials xm−jyj with
m ≤ n and j ≤ k. Furthermore, in these five cases there is a second order dif-
ferental operator L2 commuting with L which has the pn,k as eigenfunctions with
eigenvalue only depending on k.

The OP’s pn,k for case 4 (on the triangular region), as explicitly given above,
were introduced by Proriol [10] in 1967. They were mentioned in the survey
paper by Koornwinder [7] in 1975. Their special case α = β = γ = 0 (constant
weight function) was rediscovered by Dubiner [2] in 1991, who was motivated by
applications to finite elements. Dubiner’s paper was much quoted in this context.
For a while, the special functions and finite elements communities were not aware
that they had a joint interest. But in 2000 Hesthaven & Teng [4] referred to
Proriol’s paper, while later Karniadakis & Sherwin in their book [6] had ample
references to papers on special functions. Conversely, in 2001 Dunkl & Xu referred
in their book [3] to Dubiner’s paper.

Another important orthogonal system for case 5 on the disk is as follows.

Rα
m,n(z) := const.

{
P (α,m−n
n )(2|z|2 − 1)zm−n, m ≥ n,

P (α,n−m
m )(2|z|2 − 1)zn−m, n ≥ m

((m,n) ∈ (Z≥0)
2, z ∈ C, α > −1).

Then Rα
m,n(z) = const. zmzn + polynomial in z, z of lower degree. and

∫

x2+y2<1
Rα

m,n(x + iy)Rα
k,l(x+ iy) (1− x2 − y2)α dx dy = 0 ((m,n) ̸= (k, l)).
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For α = 0 these polynomials are called Zernike polynomials. They were introduced
by Zernike [11] in 1934 for applications in optics and are still much used there.
The polynomials Rα

m,n for general α first occurred in Zernike & Brinkman [12].
For numerical applications it is important that Jacobi polynomials can be ap-

proximated by polynomials which are orthogonal on finitely many equidistant
points. These are the Hahn polynomials Qn(x;α,β, N) (n = 0, 1, . . . , N) satisfy-
ing

N∑

x=0

(QnQm)(x;α,β, N)

(
α+ x

x

)(
β +N − x

N − x

)
= 0 (n ̸= m).

The approximation is: limN→∞ Qn(Nx;α,β, N) = const. P (α,β)
n (1− 2x).

From the Hahn polynomials we can build polynomials (Karlin & McGregor [5])

Qn,k(x, y;α,β, γ, N) := Qn−k(x;α,β+γ+2k+1, N−k)

(
N − x

k

)
Qk(y;β, γ, N−x)

which are orthogonal on the set {(x, y) ∈ Z2 | x, y ≥ 0, x + y ≤ N} with respect
to the weights

w(x, y;α,β, γ, N) :=

(
α+ x

x

)(
β + y

y

)(
γ +N − x− y

N − x− y

)
.

They approximate the polynomials of class 4 on the triangle:

lim
N→∞

Qn,k(Nx,Ny;α,β, γ, N) = const. pα,β,γn,k (x, y),

which looks promising for applications.
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[1] S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730–736.
[2] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (1991),

345–390.
[3] Ch. F. Dunkl and Y. Xu, Orthogonal polynomials of several variables, Cambridge University

Press, 2001.
[4] J. S. Hesthaven and C. H. Teng, Stable spectral methods on tetrahedral elements, SIAM J.

Sci. Comput. 21 (2000), 2352–2380.
[5] S. Karlin & J. McGregor, Linear growth models with many types and multidimensional Hahn

polynomials, in Theory and application of special functions, R. A. Askey (ed.), Academic
Press, 1975, pp. 261–288.

[6] G. E. Karniadakis & S. J. Sherwin, Spectral/hp element methods for computational fluid
dynamics, Oxford University Press, 2005, second ed.

[7] T. H. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in
Theory and application of special functions, R. A. Askey (ed.), Academic Press, 1975,
pp. 435–495.

[8] H. L. Krall and I. M. Sheffer, Orthogonal polynomials in two variables, Ann. Mat. Pura
Appl. (4) 76 (1967), 325–376.

[9] K. H. Kwon, J. K. Lee and L. L. Littlejohn, Orthogonal polynomial eigenfunctions of second-
order partial differential equations, Trans. Amer. Math. Soc. 353 (2001), 3629–3647.

[10] J. Proriol, Sur une famille de polynomes à deux variables orthogonaux dans un triangle,
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Implementation and Efficiency of Discontinuous Galerkin Spectral
Element Methods for Fluid Flow Problems

David A. Kopriva

Discontinuous Galerkin spectral element methods (DGSEMs) are high order meth-
ods with many features to make them attractive for use to compute highly accurate
solutions to fluid flow and wave propagation problems. They are geometrically flex-
ible, like finite element methods, and can be used in arbitrarily complex geometries.
They are designed so that one increases the number of degrees of freedom either
by increasing the order of approximation or by increasing the number of elements.
The result is an approximation that can be both exponentially convergent in the
polynomial order of the approximation and high order in the element size. The
methods have been shown to have exponentially small dissipation and dispersion
errors, which makes them ideal for wave propagation problems. The approxima-
tions are highly localized, making boundary conditions and parallelization easy to
implement. Finally, the DGSEMs are robust, at least when compared to strong
form spectral methods.

Conventional wisdom, however, states that DG spectral element methods are:
(i) Too hard to implement and (ii) Less efficient than other methods, especially
compact finite difference methods. We can show that, as usual, conventional wis-
dom is not necessarily correct. We will describe an efficient and simple to imple-
ment form of the spectral element method, and examine strategies for reducing its
issues with stiffness. We will also compare the approximation with an optimized
compact finite difference method to discuss the issue of relative efficiency.

We solve problems of compressible flow, approximating flows modeled by a
system of conservation laws

(1) q⃗t +∇ · f⃗ = 0,

with fluxes

(2) f⃗ = f⃗ i + f⃗v

for either inviscid problems modeled by the Euler equations of gas-dynamics or
viscous problems modeled by the compressible Navier-Stokes equations

The development of a DGSEM approximation has the following steps: The
domain of interest is decomposed into multiple elements, which can be arbitrarily
complex. Each element is mapped onto a reference element, on which a strong
form of the equations still applies, namely

q̃t +∇ · f̃ = 0,

where

Ja⃗i = J∇ξi = a⃗j × a⃗k =
∂X⃗

∂ξj
× ∂X⃗

∂ξk
(i, j, k) cyclic


