Askey-Wilson polynomials and an embedding of Zhedanov’s algebra $AW(3)$ in a double affine Hecke algebra

Tom H. Koornwinder

University of Amsterdam, thk@science.uva.nl

July 2, 2007
9th OPSFA, Marseille, France
Table of contents

1 Zhedanov’s algebra $AW(3)$

2 Double affine Hecke algebra of type (C_1^\vee, C_1)

3 Central extension of $AW(3)$
Zhedanov’s algebra $AW(3)$

Let $q \in \mathbb{C}$, $q \neq 0$, $q^m \neq 1$ $(m = 1, 2, \ldots)$.

q-commutator: $[X, Y]_q := q^{1/2}XY - q^{-1/2}YX$.

The algebra $AW(3)$ has:

- generators K_0, K_1, K_2,
- structure constants B, C_0, C_1, D_0, D_1,
- relations

$$[K_0, K_1]_q = K_2,$$
$$[K_1, K_2]_q = BK_1 + C_0K_0 + D_0,$$
$$[K_2, K_0]_q = BK_0 + C_1K_1 + D_1.$$

(Zhedanov, 1991)
Picture of Zhedanov
Choice of structure constants

Let a, b, c, d be complex parameters.

Let e_1, e_2, e_3, e_4 be the elementary symmetric polynomials in a, b, c, d.

Put for the structure constants:

$$B := (1 - q^{-1})^2(e_3 + qe_1),$$
$$C_0 := (q - q^{-1})^2,$$
$$C_1 := q^{-1}(q - q^{-1})^2 e_4,$$
$$D_0 := -q^{-3}(1 - q)^2(1 + q)(e_4 + qe_2 + q^2),$$
$$D_1 := -q^{-3}(1 - q)^2(1 + q)(e_1 e_4 + qe_3).$$
Basic representation of $\text{AW}(3)$

Let \mathcal{A}_{sym} be the space of symmetric Laurent polynomials $f[z] = f[z^{-1}]$.

Let the operator D_{sym} act on \mathcal{A}_{sym} by

$$(D_{\text{sym}}f)[z] := A[z] \left(f[qz] - f[z] \right) + A[z^{-1}] \left(f[q^{-1}z] - f[z] \right) + (1 + q^{-1}abcd) f[z],$$

where

Basic representation of $AW(3)$

Let \mathcal{A}_{sym} be the space of symmetric Laurent polynomials $f[z] = f[z^{-1}]$.

Let the operator D_{sym} act on \mathcal{A}_{sym} by

$$(D_{\text{sym}} f)[z] := A[z] \left(f[qz] - f[z] \right) + A[z^{-1}] \left(f[q^{-1}z] - f[z] \right) + (1 + q^{-1}abcd) f[z],$$

where

The basic representation of $AW(3)$ on \mathcal{A}_{sym} is given by

$$(K_0 f)[z] := (D_{\text{sym}} f)[z],$$

$$(K_1 f)[z] := (z + z^{-1}) f[z].$$
Define and notate *Askey-Wilson polynomials* by

\[P_n[z] := \text{const. } 4\phi_3 \left(\begin{array}{c} q^{-n}, q^{n-1}abcd, az, az^{-1} \\ ab, ac, ad \end{array} ; q, q \right) , \]

monic symmetric Laurent polynomial of degree \(n \):

\[P_n[z] = P_n[z^{-1}] = z^n + \cdots + z^{-n} . \]

These are OP’s (in variable \(x := \frac{1}{2}(z + z^{-1}) \)) under certain conditions for \(q, a, b, c, d \).
Askey-Wilson polynomials

Define and notate *Askey-Wilson polynomials* by

$$P_n[z] := \text{const. } 4\phi_3 \left(q^{-n}, q^{n-1}abcd, az, az^{-1} \atop ab, ac, ad \right; q, q),$$

monic symmetric Laurent polynomial of degree n:

$$P_n[z] = P_n[z^{-1}] = z^n + \cdots + z^{-n}.$$

These are OP’s (in variable $x := \frac{1}{2}(z + z^{-1})$) under certain conditions for q, a, b, c, d. Askey-Wilson polynomials satisfy

$$D_{\text{sym}} P_n = \lambda_n P_n, \quad \text{where} \quad \lambda_n := q^{-n} + q^{n-1}abcd.$$
Askey-Wilson polynomials $P_n[z]$ are the kernel of an intertwining operator between the basic representation on A_{sym} (z-dependence) and a representation on $\text{Fun}(\{0, 1, 2, \ldots\})$ (n-dependence):

$$(K_i)_z P_n[z] = (K_i)_n P_n[z].$$
Askey-Wilson polynomials $P_n[z]$ are the kernel of an intertwining operator between the basic representation on \mathcal{A}_{sym} (z-dependence) and a representation on $\text{Fun}(\{0, 1, 2, \ldots\})$ (n-dependence):

$$(K_i)_z P_n[z] = (K_i)_n P_n[z].$$

For K_0 2nd order q-difference equation:

$$A[z]P_n[qz] + B[z]P_n[z] + C[z]P_n[q^{-1}z] = \lambda_n P_n[z].$$
Askey-Wilson polynomials $P_n[z]$ are the kernel of an intertwining operator between the basic representation on A_{sym} (z-dependence) and a representation on $\text{Fun}(\{0, 1, 2, \ldots\})$ (n-dependence):

$$(K_i)_z P_n[z] = (K_i)_n P_n[z].$$

For K_0 2nd order q-difference equation:

$$A[z]P_n[qz] + B[z]P_n[z] + C[z]P_n[q^{-1}z] = \lambda_n P_n[z].$$

For K_1 3-term recurrence relation:

$$(z + z^{-1})P_n[z] = a_n P_{n+1}[z] + b_n P_n[z] + c_n P_{n-1}[z].$$
Askey-Wilson polynomials $P_n[z]$ are the kernel of an intertwining operator between the basic representation on A_{sym} (z-dependence) and a representation on $\text{Fun}(\{0, 1, 2, \ldots \})$ (n-dependence):

$$(K_i)_z P_n[z] = (K_i)_n P_n[z].$$

For K_0 2nd order q-difference equation:

$$A[z]P_n[qz] + B[z]P_n[z] + C[z]P_n[q^{-1}z] = \lambda_n P_n[z].$$

For K_1 3-term recurrence relation:

$$(z + z^{-1})P_n[z] = a_n P_{n+1}[z] + b_n P_n[z] + c_n P_{n-1}[z].$$

For K_2 q-structure relation:

$$\tilde{A}[z]P_n[qz] + \tilde{B}[z]P_n[z] + \tilde{C}[z]P_n[q^{-1}z]$$

$$= \tilde{a}_n P_{n+1}[z] + \tilde{b}_n P_n[z] + \tilde{c}_n P_{n-1}[z].$$
The Casimir operator

\[Q := (q^{-\frac{1}{2}} - q^{\frac{3}{2}})K_0 K_1 K_2 + qK_2^2 + B(K_0 K_1 + K_1 K_0) + qC_0 K_0^2 + q^{-1}C_1 K_1^2 + (1 + q)D_0 K_0 + (1 + q^{-1})D_1 K_1, \]

commutes in \(AW(3) \) with the generators \(K_0, K_1, K_2 \).
The Casimir operator

\[
Q := (q^{-1/2} - q^{3/2})K_0K_1K_2 + qK_2^2 + B(K_0K_1 + K_1K_0) + qC_0K_0^2 \\
+ q^{-1}C_1K_1^2 + (1 + q)D_0K_0 + (1 + q^{-1})D_1K_1,
\]

commutes in \(AW(3) \) with the generators \(K_0, K_1, K_2 \).

In the basic representation (which is irreducible for generic values of \(a, b, c, d \)), \(Q \) becomes a constant scalar:

\[
(Qf)[z] = Q_0 f[z],
\]

where

\[
Q_0 := q^{-4}(1 - q)^2\left(q^4(e_4 - e_2) + q^3(e_1^2 - e_1e_3 - 2e_2)
- q^2(e_2e_4 + 2e_4 + e_2) + q(e_3^2 - 2e_2e_4 - e_1e_3) + e_4(e_1 - e_2)\right).
\]
The Casimir operator

\[Q := (q^{-\frac{1}{2}} - q^{\frac{3}{2}})K_0 K_1 K_2 + qK_2^2 + B(K_0 K_1 + K_1 K_0) + qC_0 K_0^2 + q^{-1} C_1 K_1^2 + (1 + q)D_0 K_0 + (1 + q^{-1})D_1 K_1, \]

commutes in \(AW(3) \) with the generators \(K_0, K_1, K_2 \).

In the basic representation (which is irreducible for generic values of \(a, b, c, d \)), \(Q \) becomes a constant scalar:

\[(Qf)[z] = Q_0 f[z], \]

where

\[Q_0 := q^{-4}(1 - q)^2 \left(q^4 (e_4 - e_2) + q^3 (e_1^2 - e_1 e_3 - 2e_2) - q^2 (e_2 e_4 + 2e_4 + e_2) + q(e_3^2 - 2e_2 e_4 - e_1 e_3) + e_4(e_1 - e_2) \right). \]

Assumption

\(a, b, c, d \neq 0, \quad abcd \neq q^{-m} (m = 0, 1, 2, \ldots). \)
A faithful representation on A_{sym}

Definition

$AW(3, Q_0)$ is the algebra $AW(3)$ with additional relation $Q = Q_0$.
A faithful representation on A_{sym}

Definition

$AW(3, Q_0)$ is the algebra $AW(3)$ with additional relation $Q = Q_0$.

Theorem (THK, 2007)

$AW(3, Q_0)$ has the elements

$$K_0^n(K_1K_0)^lK_1^m \quad (m, n = 0, 1, 2, \ldots, \quad l = 0, 1)$$

as a linear basis.

The basic representation of $AW(3, Q_0)$ on A_{sym} is faithful.
Double affine Hecke algebra of type \((C_1^\vee, C_1)\)

The algebra \(\tilde{H}\) has:

- \(q, a, b, c, d\) as before,
- generators \(Z, Z^{-1}, T_1, T_0\),
- relations

\[
(T_1 + ab)(T_1 + 1) = 0, \\
(T_0 + q^{-1}cd)(T_0 + 1) = 0, \\
(T_1 Z + a)(T_1 Z + b) = 0, \\
(qT_0 Z^{-1} + c)(qT_0 Z^{-1} + d) = 0.
\]
Double affine Hecke algebra of type (C_1^\vee, C_1)

The algebra $\tilde{\mathcal{H}}$ has:

- q, a, b, c, d as before,
- generators $Z, Z^{-1}, T_1, T_0,$
- relations

\[(T_1 + ab)(T_1 + 1) = 0,\]
\[(T_0 + q^{-1}cd)(T_0 + 1) = 0,\]
\[(T_1Z + a)(T_1Z + b) = 0,\]
\[(qT_0Z^{-1} + c)(qT_0Z^{-1} + d) = 0.\]

(Sahi, Noumi & Stokman, Macdonald’s 2003 book; preceding work by Dunkl, Heckman, Cherednik.)
Double affine Hecke algebra of type \((C_1^\vee, C_1)\)

The algebra \(\tilde{\mathcal{H}}\) has:

- \(q, a, b, c, d\) as before,
- generators \(Z, Z^{-1}, T_1, T_0\),
- relations

\[
(T_1 + ab)(T_1 + 1) = 0,
(T_0 + q^{-1}cd)(T_0 + 1) = 0,
(T_1Z + a)(T_1Z + b) = 0,
(qT_0Z^{-1} + c)(qT_0Z^{-1} + d) = 0.
\]

(Sahi, Noumi & Stokman, Macdonald’s 2003 book; preceding work by Dunkl, Heckman, Cherednik.)

\(T_1\) and \(T_0\) are invertible.

\[
Y := T_1T_0, \quad D := Y + q^{-1}abcdY^{-1}.
\]
Basic representation of $\tilde{\mathcal{H}}$

Let \mathcal{A} be the space of Laurent polynomials $f[z]$. The \textit{basic representation} of $\tilde{\mathcal{H}}$ on \mathcal{A} is given by

\[(Zf)[z] := z f[z],\]
\[(T_1 f)[z] := -ab f[z] + \frac{(1 - az)(1 - bz)}{1 - z^2} (f[z^{-1}] - f[z]),\]
\[(T_0 f)[z] := -q^{-1} cd f[z] + \frac{(c - z)(d - z)}{q - z^2} (f[z] - f[qz^{-1}]).\]
Basic representation of $\tilde{\mathcal{H}}$

Let \mathcal{A} be the space of Laurent polynomials $f[z]$. The *basic representation* of $\tilde{\mathcal{H}}$ on \mathcal{A} is given by

\[
(Zf)[z] := z f[z],
\]
\[
(T_1 f)[z] := -ab f[z] + \frac{(1 - az)(1 - bz)}{1 - z^2} (f[z^{-1}] - f[z]),
\]
\[
(T_0 f)[z] := -q^{-1} cd f[z] + \frac{(c - z)(d - z)}{q - z^2} (f[z] - f[qz^{-1}]).
\]

Then

\[
(T_1 f)[z] = -ab f[z] \quad \text{iff} \quad f[z] = f[z^{-1}],
\]

and

\[
(Df)[z] = (D_{\text{sym}} f)[z] \quad \text{if} \quad f[z] = f[z^{-1}].
\]
Eigenspaces of D

Let

$$Q_n[z] := a^{-1}b^{-1}z^{-1}(1 - az)(1 - bz) P_{n-1}[z; qa, qb, c, d | q]$$

$$= z^n + \cdots + a^{-1}b^{-1}z^{-n}.$$

Then

$$DQ_n = \lambda_n Q_n, \quad T_1 Q_n = -Q_n.$$

D has eigenvalues λ_n ($n = 0, 1, 2, \ldots$).

T_1 has eigenvalues $-1, -ab$.

D and T_1 commute.

The eigenspace of D for λ_n is spanned by P_n and Q_n ($n = 1, 2, \ldots$).
Eigenspaces of Y

Let

$$E_{-n} = \frac{ab}{ab - 1} (P_n - Q_n) \quad (n = 1, 2, \ldots),$$

$$E_n = \frac{(1 - q^n ab)(1 - q^{n-1} abcd)}{(1 - ab)(1 - q^{2n-1} abcd)} P_n - \frac{ab(1 - q^n)(1 - q^{n-1} cd)}{(1 - ab)(1 - q^{2n-1} abcd)} Q_n \quad (n = 1, 2, \ldots).$$
Eigenspaces of Y

Let

$$E_{-n} = \frac{ab}{ab - 1} (P_n - Q_n) \quad (n = 1, 2, \ldots),$$

$$E_n = \frac{(1 - q^n ab)(1 - q^{n-1} abcd)}{(1 - ab)(1 - q^{2n-1} abcd)} P_n - \frac{ab(1 - q^n)(1 - q^{n-1} cd)}{(1 - ab)(1 - q^{2n-1} abcd)} Q_n \quad (n = 1, 2, \ldots).$$

Then

$$YE_{-n} = q^{-n} E_{-n} \quad (n = 1, 2, \ldots),$$

$$YE_n = q^{n-1} abcd E_n \quad (n = 0, 1, 2, \ldots).$$
The basic representation of $\tilde{\mathfrak{H}}$ is faithful.

The elements

$$Z^m Y^n T_1^i$$

$(m, n \in \mathbb{Z}, \ i = 0, 1)$

form a linear basis of $\tilde{\mathfrak{H}}$.

Theorem (Sahi)

The basic representation of $\tilde{\mathfrak{H}}$ is faithful.
Central extension of $AW(3)$

Let the algebra $\widetilde{AW}(3)$ be generated by K_0, K_1, K_2, T_1 such that T_1 commutes with K_0, K_1, K_2 and with further relations

$$(T_1 + ab)(T_1 + 1) = 0,$$

$$(q + q^{-1}) K_1 K_0 K_1 - K_1^2 K_0 - K_0 K_1^2 = B K_1 + C_0 K_0 + D_0 + E K_1 (T_1 + ab) + F_0 (T_1 + ab),$$

$$(q + q^{-1}) K_0 K_1 K_0 - K_0^2 K_1 - K_1 K_0^2 = B K_0 + C_1 K_1 + D_1 + E K_0 (T_1 + ab) + F_1 (T_1 + ab),$$

where

$$E := -q^{-2} (1 - q)^3 (c + d),$$

$$F_0 := q^{-3} (1 - q)^3 (1 + q) (cd + q),$$

$$F_1 := q^{-3} (1 - q)^3 (1 + q) (a + b) cd.$$
The following element \tilde{Q} commutes with all elements of $\tilde{AW}(3)$:

$$
\tilde{Q} := (K_1 K_0)^2 - (q^2 + 1 + q^{-2}) K_0 (K_1 K_0) K_1 \\
+ (q + q^{-1}) K_0^2 K_1^2 + (q + q^{-1}) (C_0 K_0^2 + C_1 K_1^2) \\
+ (B + E(T_1 + ab)) ((q + 1 + q^{-1}) K_0 K_1 + K_1 K_0) \\
+ (q + 1 + q^{-1}) (D_0 + F_0(T_1 + ab)) K_0 \\
+ (q + 1 + q^{-1}) (D_1 + F_1(T_1 + ab)) K_1 + G(T_1 + ab),
$$

where G can be explicitly specified.
The following element \(\tilde{Q} \) commutes with all elements of \(\tilde{AW}(3) \):

\[
\tilde{Q} := (K_1 K_0)^2 - (q^2 + 1 + q^{-2}) K_0(K_1 K_0) K_1
\]
\[
+ (q + q^{-1}) K_0^2 K_1^2 + (q + q^{-1})(C_0 K_0^2 + C_1 K_1^2)
\]
\[
+ (B + E(T_1 + ab))((q + 1 + q^{-1})K_0K_1 + K_1K_0)
\]
\[
+ (q + 1 + q^{-1})(D_0 + F_0(T_1 + ab))K_0
\]
\[
+ (q + 1 + q^{-1})(D_1 + F_1(T_1 + ab))K_1 + G(T_1 + ab),
\]

where \(G \) can be explicitly specified.

\(\tilde{AW}(3) \) acts on \(\mathcal{A} \) such that \(K_0, K_1, T_1 \) act as \(D_{\text{sym}}, Z + Z^{-1}, T_1 \), respectively, in the basic representation of \(\tilde{H} \) on \(\mathcal{A} \).

This action is called the \textit{basic representation} of \(\tilde{AW}(3) \) on \(\mathcal{A} \).
Basic representation of $\tilde{AW}(3)$

The following element \tilde{Q} commutes with all elements of $\tilde{AW}(3)$:

$$
\tilde{Q} := (K_1 K_0)^2 - (q^2 + 1 + q^{-2})K_0(K_1 K_0)K_1
+ (q + q^{-1})K_0^2K_1^2 + (q + q^{-1})(C_0 K_0^2 + C_1 K_1^2)
+ (B + E(T_1 + ab))((q + 1 + q^{-1})K_0 K_1 + K_1 K_0)
+ (q + 1 + q^{-1})(D_0 + F_0(T_1 + ab))K_0
+ (q + 1 + q^{-1})(D_1 + F_1(T_1 + ab))K_1 + G(T_1 + ab),
$$

where G can be explicitly specified.

$\tilde{AW}(3)$ acts on \mathcal{A} such that K_0, K_1, T_1 act as $D_{\text{sym}}, Z + Z^{-1}, T_1$, respectively, in the basic representation of \tilde{H} on \mathcal{A}. This action is called the \textit{basic representation} of $\tilde{AW}(3)$ on \mathcal{A}.

Then \tilde{Q} acts as the constant Q_0.
A faithful representation on A

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{AW}(3, Q_0)$ is the algebra $\tilde{AW}(3)$ with additional relation $\tilde{Q} = Q_0$.</td>
</tr>
</tbody>
</table>
A faithful representation on \mathcal{A}

Definition

$\tilde{\mathcal{A}}\mathcal{W}(3, Q_0)$ is the algebra $\tilde{\mathcal{A}}\mathcal{W}(3)$ with additional relation $\tilde{Q} = Q_0$.

Theorem (THK, 2007)

$\tilde{\mathcal{A}}\mathcal{W}(3, Q_0)$ has the elements

$$K_0^n(K_1K_0)^iK_1^mT_1^j \quad (m, n = 0, 1, 2, \ldots, \quad i, j = 0, 1)$$

as a linear basis.

The basic representation of $\tilde{\mathcal{A}}\mathcal{W}(3, Q_0)$ on \mathcal{A} is faithful.

$\tilde{\mathcal{A}}\mathcal{W}(3, Q_0)$ has an injective embedding in $\tilde{\mathcal{N}}$.
I did computations in algebras defined by generators and relations in Mathematica with the aid of the package NCAlgebra, see http://www.math.ucsd.edu/~ncalg/

See my Mathematica notebooks on http://www.science.uva.nl/~thk/art/
I did computations in algebras defined by generators and relations in Mathematica with the aid of the package \textbf{NCAlgebra}, see \url{http://www.math.ucsd.edu/~ncalg/}

See my Mathematica notebooks on \url{http://www.science.uva.nl/~thk/art/}

Details of this lecture in my paper

\textit{The relationship between Zhedanov’s algebras AW(3) and the double affine Hecke algebra in the rank one case}, \texttt{arXiv:math.QA/0612730v3}; \textbf{SIGMA 3 (2007), 063}.
I did computations in algebras defined by generators and relations in Mathematica with the aid of the package `NCAlgebra`, see http://www.math.ucsd.edu/~ncalg/

See my Mathematica notebooks on http://www.science.uva.nl/~thk/art/

Details of this lecture in my paper

The relationship between Zhedanov’s algegra AW(3) and the double affine Hecke algebra in the rank one case,

This is in the Vadim Kuznetsov memorial volume of SIGMA.
Picture of Vadim Kuznetsov