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Zhedanov’s algebra AW (3)

Let q ∈ C, q 6= 0, qm 6= 1 (m = 1, 2, . . .).

q-commutator: [X , Y ]q := q
1
2 XY − q−

1
2 YX .

The algebra AW (3) has:

generators K0, K1, K2,

structure constants B, C0, C1, D0, D1,

relations

[K0, K1]q = K2,

[K1, K2]q = BK1 + C0K0 + D0,

[K2, K0]q = BK0 + C1K1 + D1.

(Zhedanov, 1991)
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Choice of structure constants

Let a, b, c, d be complex parameters. Assume a, b, c, d 6= 0,
abcd 6= q−m (m = 0, 1, 2, . . .).

Let e1, e2, e3, e4 be the elementary symmetric polynomials in
a, b, c, d .

Put for the structure constants:

B := (1− q−1)2(e3 + qe1),

C0 := (q − q−1)2,

C1 := q−1(q − q−1)2e4,

D0 := −q−3(1− q)2(1 + q)(e4 + qe2 + q2),

D1 := −q−3(1− q)2(1 + q)(e1e4 + qe3).



Polynomial representation of AW (3)

Let Asym be the space of symmetric Laurent polynomials
f [z] = f [z−1].

Let the operator Dsym act on Asym by

(Dsymf )[z] := A[z]
(
f [qz]− f [z]

)
+ A[z−1]

(
f [q−1z]− f [z]

)
+ (1 + q−1abcd) f [z],

where

A[z] :=
(1− az)(1− bz)(1− cz)(1− dz)

(1− z2)(1− qz2)
.

The polynomial representation of AW (3) on Asym is given by

(K0f )[z] := (Dsymf )[z],

(K1f )[z] := (z + z−1)f [z].
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Askey-Wilson polynomials

Define and notate Askey-Wilson polynomials by

Pn[z] := const. 4φ3

(
q−n, qn−1abcd , az, az−1

ab, ac, ad
; q, q

)
,

monic symmetric Laurent polynomial of degree n:

Pn[z] = Pn[z−1] = zn + · · ·+ z−n.

These are orthogonal polynomials (in variable x := 1
2(z + z−1) )

under certain conditions for q, a, b, c, d .

Askey-Wilson polynomials satisfy

DsymPn = λnPn, where λn := q−n + qn−1abcd .
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Askey-Wilson polynomials as intertwining kernels

Askey-Wilson polynomials Pn[z] are the kernel of an
intertwining operator between the polynomial representation of
AW (3) on Asym (z-dependence) and a representation on
Fun({0, 1, 2, . . .}) (n-dependence):

(Ki)z Pn[z] = (Ki)n Pn[z].

For K0 2nd order q-difference equation:

A[z]Pn[qz] + B[z]Pn[z] + C[z]Pn[q−1z] = λnPn[z].

For K1 3-term recurrence relation:

(z + z−1)Pn[z] = anPn+1[z] + bnPn[z] + cnPn−1[z].

For K2 q-structure relation:

Ã[z]Pn[qz] + B̃[z]Pn[z] + C̃[z]Pn[q−1z]

= ãnPn+1[z] + b̃nPn[z] + c̃nPn−1[z].
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Relations for AW (3) in terms of K0, K1 only, and the
Casimir operator

AW (3) can also be considered as generated by K0, K1 with
relations

(q + q−1)K1K0K1 − K 2
1 K0 − K0K 2

1 = B K1 + C0 K0 + D0,

(q + q−1)K0K1K0 − K 2
0 K1 − K1K 2

0 = B K0 + C1 K1 + D1.

The Casimir operator

Q := K1K0K1K0 − (q2 + 1 + q−2)K0K1K0K1

+ (q + q−1)K 2
0 K 2

1 + (q + q−1)(C0K 2
0 + C1K 2

1 )

+ B
(
(q + 1 + q−1)K0K1 + K1K0

)
+ (q + 1 + q−1)

(
D0K0 + D1K1

)
.

commutes in AW (3) with the generators K0, K1.
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Value of the Casimir operator in the polynomial
representation

In the polynomial representation (which is irreducible for
generic values of a, b, c, d), Q becomes a constant scalar:

(Qf )[z] = Q0 f [z],

where

Q0 := q−4(1− q)2
(

q4(e4 − e2) + q3(e2
1 − e1e3 − 2e2)

− q2(e2e4 + 2e4 + e2) + q(e2
3 − 2e2e4 − e1e3) + e4(1− e2)

)
.



A faithful representation on Asym

Definition

AW (3, Q0) is the algebra AW (3) with additional relation
Q = Q0.

Theorem (THK, 2007)

AW (3, Q0) has the elements

K n
0 (K1K0)

lK m
1 (m, n = 0, 1, 2, . . . , l = 0, 1)

as a linear basis.

The polynomial representation of AW (3, Q0) on Asym is faithful.
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Proof of first part of theorem

AW (3, Q0) is spanned by elements Kα = Kα1 · · ·Kαk , where
α = (α1, . . . , αk ), αi = 0 or 1. Let ρ(α) the number of pairs (i , j)
such that i < j , αi = 1, αj = 0. Kα has the form

K n
0 (K1K0)

lK m
1 (m, n = 0, 1, 2, . . . , l = 0, 1)

iff ρ(α) = 0 or 1.

If ρ(α) > 1 then Kα must have a substring

K1K1K0 or K1K0K0 or K1K0K1K0.

By substitution of one of the three relations we see that each
such string is a linear combination of elements Kβ

with ρ(β) < ρ(α).



Sketch of proof of second part of theorem

Note that

(Dsym)n (Z + Z−1)m Pj [z] = λn
j+mPj+m[z] + · · · ,

(Dsym)n−1 (Z + Z−1) Dsym(Z + Z−1)m−1 Pj [z]

= λn−1
j+mλj+m−1Pj+m[z] + · · · .

If (with some am,l or bm,l 6= 0) we have:∑m
k=0

∑
l ak ,l(Dsym)l (Z + Z−1)k

+
∑m

k=1
∑

l bk ,l(Dsym)l−1 (Z + Z−1) Dsym(Z + Z−1)k−1 = 0

then we have for all j :∑
l(am,lλ

l
j+m + bm,lλ

l−1
j+mλj+m−1) = 0.

Then consider maximal l for which am,l or bm,l 6= 0, and get a
contradiction.
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The center of AW (3, Q0)

By a similar technique we can prove:

Theorem

The center of AW (3, Q0) consists of the scalars.



Double affine Hecke algebra of type (C∨
1 , C1)

The algebra H̃ has:
q, a, b, c, d as before,
generators Z , Z−1, T1, T0,
relations

(T1 + ab)(T1 + 1) = 0,

(T0 + q−1cd)(T0 + 1) = 0,

(T1Z + a)(T1Z + b) = 0,

(qT0Z−1 + c)(qT0Z−1 + d) = 0.

(Sahi, Noumi & Stokman, Macdonald’s 2003 book;
preceding work by Dunkl, Heckman, Cherednik.)

T1 and T0 are invertible.

Y := T1T0, D := Y + q−1abcdY−1.
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Polynomial representation of H̃

Let A be the space of Laurent polynomials f [z].

The polynomial representation of H̃ on A is given by

(Zf )[z] := z f [z],

(T1f )[z] := −ab f [z] +
(1− az)(1− bz)

1− z2

(
f [z−1]− f [z]

)
,

(T0f )[z] := −q−1cd f [z] +
(c − z)(d − z)

q − z2

(
f [z]− f [qz−1]

)
.

Then
(T1f )[z] = −ab f [z] iff f [z] = f [z−1],

and
(Df )[z] = (Dsymf )[z] if f [z] = f [z−1].
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Eigenspaces of D

Let

Qn[z] := a−1b−1z−1(1− az)(1− bz) Pn−1[z; qa, qb, c, d | q]

= zn + · · ·+ a−1b−1z−n.

Then
DQn = λnQn, T1Qn = −Qn.

D has eigenvalues λn (n = 0, 1, 2, . . .).

T1 has eigenvalues −1,−ab.

D and T1 commute.

The eigenspace of D for λn has basis Pn, Qn (n = 1, 2, . . .)
or P0 (n = 0).
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Non-symmetric Askey-Wilson polynomials

Let

E−n =
ab

ab − 1
(Pn −Qn) (n = 1, 2, . . .),

En =
(1− qnab)(1− qn−1abcd)

(1− ab)(1− q2n−1abcd)
Pn −

ab(1− qn)(1− qn−1cd)

(1− ab)(1− q2n−1abcd)
Qn

(n = 1, 2, . . .).

Then

YE−n = q−n E−n (n = 1, 2, . . .),

YEn = qn−1abcd En (n = 0, 1, 2, . . .).

The En[z] (n ∈ Z) are the nonsymmetric Askey-Wilson
polynomials. They form a biorthogonal system with respect to a
suitable inner product given by a contour integral.
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Relations for H̃ in terms of generators Z±, Y±, T1

T 2
1 = −(ab + 1)T1 − ab,

T1Z = Z−1T1 + (ab + 1)Z−1 − (a + b),

T1Z−1 = ZT1 − (ab + 1)Z−1 + (a + b),

T1Y = q−1abcdY−1T1 − (ab + 1)Y + ab(1 + q−1cd),

T1Y−1 = q(abcd)−1YT1 + q(abcd)−1(1 + ab)Y − q(cd)−1(1 + q−1cd),

YZ = qZY + (1 + ab)cd Z−1Y−1T1 − (a + b)cd Y−1T1 − (1 + q−1cd)Z−1T1

− (1− q)(1 + ab)(1 + q−1cd)Z−1 + (c + d)T1 + (1− q)(a + b)(1 + q−1cd),

YZ−1 = q−1Z−1Y − q−2(1 + ab)cd Z−1Y−1T1 + q−2(a + b)cd Y−1T1

+ q−1(1 + q−1cd)Z−1T1 − q−1(c + d)T1,

Y−1Z = q−1ZY−1 − q(ab)−1(1 + ab)Z−1Y−1T1 + (ab)−1(a + b)Y−1T1

+ q(abcd)−1(1 + q−1cd)Z−1T1 + q(abcd)−1(1− q)(1 + ab)(1 + q−1cd)Z−1

− (abcd)−1(c + d)T1 − (abcd)−1(1− q)(1 + ab)(c + d),

Y−1Z−1 = qZ−1Y−1 + q(ab)−1(1 + ab)Z−1Y−1T1 − (ab)−1(a + b)Y−1T1

− q2(abcd)−1(1 + q−1cd)Z−1T1 + q(abcd)−1(c + d)T1.



Faithfulness of the polynomial representation of H̃

Theorem (Sahi)

The polynomial representation of H̃ is faithful.

The elements

Z mY nT i
1 (m, n ∈ Z, i = 0, 1)

form a linear basis of H̃.



Central extension of AW (3)

Let the algebra ÃW (3) be generated by K0, K1, T1 such that T1

commutes with K0, K1 and with further relations

(T1 + ab)(T1 + 1) = 0,

(q + q−1)K1K0K1 − K 2
1 K0 − K0K 2

1 = B K1 + C0 K0 + D0

+ E K1(T1 + ab) + F0(T1 + ab),

(q + q−1)K0K1K0 − K 2
0 K1 − K1K 2

0 = B K0 + C1 K1 + D1

+ E K0(T1 + ab) + F1(T1 + ab),

where

E := −q−2(1− q)3(c + d),

F0 := q−3(1− q)3(1 + q)(cd + q),

F1 := q−3(1− q)3(1 + q)(a + b)cd .



Polynomial representation of ÃW (3)

The following element Q̃ commutes with all elements of ÃW (3):

Q̃ :=(K1K0)
2 − (q2 + 1 + q−2)K0(K1K0)K1

+ (q + q−1)K 2
0 K 2

1 + (q + q−1)(C0K 2
0 + C1K 2

1 )

+
(
B + E(T1 + ab)

)(
(q + 1 + q−1)K0K1 + K1K0

)
+ (q + 1 + q−1)

(
D0 + F0(T1 + ab)

)
K0

+ (q + 1 + q−1)
(
D1 + F1(T1 + ab)

)
K1 + G(T1 + ab),

where G can be explicitly specified.

ÃW (3) acts on A such that K0, K1, T1 act as D, Z + Z−1, T1,
respectively, in the polynomial representation of H̃ on A.
This action is called the polynomial representation of ÃW (3)
on A.

Then Q̃ acts as the constant Q0.



Polynomial representation of ÃW (3)
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ÃW (3) acts on A such that K0, K1, T1 act as D, Z + Z−1, T1,
respectively, in the polynomial representation of H̃ on A.
This action is called the polynomial representation of ÃW (3)
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A faithful representation on A

Definition

ÃW (3, Q0) is the algebra ÃW (3) with additional relation
Q̃ = Q0.

Theorem (THK, 2007)

ÃW (3, Q0) has the elements

K n
0 (K1K0)

iK m
1 T j

1 (m, n = 0, 1, 2, . . . , i , j = 0, 1)

as a linear basis.

The polynomial representation of ÃW (3, Q0) on A is faithful.

ÃW (3, Q0) has an injective embedding in H̃.
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Definition of spherical subalgebra

From now on assume ab 6= 1. In H̃ we have:

T1 + 1
1− ab

T1 + 1
1− ab

=
T1 + 1
1− ab

.

In the polynomial representation of H̃ we have:

(1− ab)−1(T1 + 1)f =

{
0 if T1f = −f ,

f if T1f = −abf .

Psym := (1− ab)−1(T1 + 1) projects A onto Asym.

Write
S(U) := PsymUPsym (U ∈ H̃).

Then
S(U) S(V ) = S(UPsymV ).

The image S(H̃) is a subalgebra of H̃, the spherical subalgebra.
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The image S(H̃) is a subalgebra of H̃, the spherical subalgebra.



Polynomial representation of spherical subalgebra

In the (faithful) polynomial representation of H̃ on A, the
spherical subalgebra restricted to Asym yields a representation
of S(H̃) on Asym, which is also faithful. The following diagram is
commutative.

H̃ −→ End(A)
↓ ↓

S(H̃) −→ End(Asym)

ZH̃(T1), the centralizer of T1 in H̃, is a subalgebra on which S is
an algebra homomorphism:

S(UV ) = S(UPsymV ) = S(U) S(V ) (U, V ∈ ZH̃(T1)).

Note the embedding ÃW (3, Q0) ↪→ ZH̃(T1) with
K0 7→ Y + q−1abcdY−1, K1 7→ Z + Z−1, T1 7→ T1.



ÃW (3, Q0) and AW (3, Q0)

ÃW (3, Q0) generated by K0, K1, T1 such that T1 commutes with
K0, K1 and (T1 + ab)(T1 + 1) = 0, and further relations

(q + q−1)K1K0K1 − K 2
1 K0 − K0K 2

1

= B K1 + C0 K0 + D0 + E K1(T1 + ab) + F0(T1 + ab),

(q + q−1)K0K1K0 − K 2
0 K1 − K1K 2

0

= B K0 + C1 K1 + D1 + E K0(T1 + ab) + F1(T1 + ab),

Q0 = (K1K0)
2 − (q2 + 1 + q−2)K0(K1K0)K1

+ (q + q−1)K 2
0 K 2

1 + (q + q−1)(C0K 2
0 + C1K 2

1 )

+
(
B + E(T1 + ab)

)(
(q + 1 + q−1)K0K1 + K1K0

)
+ (q + 1 + q−1)

(
D0 + F0(T1 + ab)

)
K0

+ (q + 1 + q−1)
(
D1 + F1(T1 + ab)

)
K1 + G(T1 + ab).

AW (3, Q0) is ÃW (3, Q0) with additional relation T1 = −ab.



AW (3, Q0) mapped onto S(ÃW (3, Q0))

ÃW (3, Q0) has basis K n
0 (K1K0)

iK m
1 T j

1
(m, n = 0, 1, 2, . . . , i , j = 0, 1).

S(ÃW (3, Q0)) has basis (1− ab)−1K n
0 (K1K0)

iK m
1 (T1 + 1)

(m, n = 0, 1, 2, . . . i = 0, 1).

AW (3, Q0) has basis K n
0 (K1K0)

iK m
1

(m, n = 0, 1, 2, . . . i = 0, 1).

U 7→ (1− ab)−1U(T1 + 1) : AW (3, Q0) → S(ÃW (3, Q0))

is algebra isomorphism
because terms with factor T1 + ab in relations for ÃW (3, Q0)

are killed by factor T1 + 1 in S(ÃW (3, Q0)).
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Spherical subalgebra is isomorphic to AW (3, Q0)

Theorem

S(H̃) = S(ÃW (3, Q0)), so the spherical subalgebra S(H̃) is
isomorphic to the algebra AW (3, Q0).

Sketch of Proof
H̃ has basis Z mY nT i

1 (m, n ∈ Z, i = 0, 1).

S(H̃) is spanned by (T1 + 1)Z mY n(T1 + 1) (m, n ∈ Z).

We say that ∑
k ,l∈Z

ck ,lZ
kY l = o(Z mY n)

if ck ,l 6= 0 implies |k | ≤ |m|, |l | ≤ |n|, (|k |, |l |) 6= (|m|, |n|).
The result will follow from

(T1+1)Z mY n(T1+1) ∈ (T1+1)
(

ÃW (3, Q0)+o(Z mY n)
)
(T1+1).
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Proof of theorem, continued

Write (T1 + 1)Z mY n(T1 + 1) as linear combination of

Z |m|Y |n|(T1 + 1), Z−|m|Y |n|(T1 + 1), Z−|m|Y−|n|(T1 + 1),

Z−|m|Y−|n|(T1 + 1) moduloo(Z |m|Y |n|)(T1 + 1). (1)

This is done by induction, starting with the H̃ relations for T1Z ,
T1Z−1, T1Y , T1Y−1.

Also write (T1 + 1)K m
1 K n

0 (T1 + 1) and
(T1 + 1)K m−1

1 K0K1K n−1
0 (T1 + 1) (m, n = 0, 1, . . .) as a linear

combination of (1).

These latter linear combinations turn out to span the linear
combinations obtained for (T1 + 1)Z mY n(T1 + 1).
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Proof of theorem, example

As an example see for m, n > 0:

(T1 + 1)Z mY n(T1 + 1)

=
(

Z mY n − ab(q−1abcd)nZ−mY−n + o(Z mY n)
)
(T1 + 1)

and

(T1+1)
(

K m−1
1 (K1K0−qK0K1)K

n−1
0

)
(T1+1) = (1−ab)(1−q2)

×
(

Z mY n − ab(q−1abcd)nZ−mY−n + o(Z mY n)
)
(T1 + 1).

Hence

(T1 + 1)Z mY n(T1 + 1) = (1− ab)−1(1− q2)−1

× (T1 + 1)
(

K m−1
1 (K1K0 − qK0K1)K

n−1
0 + o(Z mY n)

)
(T1 + 1).



The subalgebra related to the −1 eigenspace of T1

P−
sym := (ab− 1)−1(T1 + ab) projects A onto the −1 eigenspace

A−
sym of T1. Write

S−(U) := P−
symUP−

sym (U ∈ H̃).

The image S−(H̃) is a subalgebra of H̃, and S−(ÃW (3, Q0)) is
a subalgebra of S−(H̃).



Two isomorphic algebras

Theorem

Let AW (3, Q0; qa, qb, c, d) be AW (3, Q0) with a, b replaced by
qa, qb, respectively. Then K0 7→ q(ab − 1)−1K0(T1 + ab) and
K1 7→ (ab − 1)−1K1(T1 + ab) extend to an algebra isomorphism
AW (3, Q0; qa, qb, c, d) → S−(ÃW (3, Q0)).

This is related to a result in Berest-Etingof-Ginzburg, Duke
Math. J. (2003), Proposition 4.11 (see also Iain Gordon’s
lecture at this conference).

Sketch of proof
Rewrite relations for ÃW (3, Q0) while considering T1 + 1 as a
generator. Terms with factor T1 + 1 in the relations for
ÃW (3, Q0) are killed by factor T1 + ab in S−(ÃW (3, Q0)). In
what remains, replace K0 by q−1K0 and recognize the relations
for AW (3, Q0; qa, qb, c, d).
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The subalgebra S−(H̃) is isomorphic to
AW (3, Q0; qa, qb, c, d)

Theorem

S−(H̃) = S−(ÃW (3, Q0)), so the subalgebra S−(H̃) is
isomorphic to the algebra AW (3, Q0; qa, qb, c, d).

The proof is analogous to the proof that S(H̃) = S(ÃW (3, Q0)).
One has to show that

(T1+ab)Z mY n(T1+ab) ∈ (T1+ab)
(

ÃW (3, Q0)+o(Z mY n)
)
(T1+ab).
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The centralizer of T1 in H̃

Corollary

The centralizer ZH̃(T1) is equal to ÃW (3, Q0).

For the proof write U ∈ H̃ as

U = (1− ab)−1U(T1 + 1) + (ab − 1)−1U(T1 + ab).

If U ∈ ZH̃(T1) then so are U(T1 + 1) and U(T1 + ab). Hence

U(T1 + 1) = (1− ab)−1(T1 + 1)U(T1 + 1),

U(T1 + ab) = (ab − 1)−1(T1 + ab)U(T1 + ab).

So U(T1 + 1) ∈ S(H̃) = S(ÃW (3, Q0)) ⊂ ÃW (3, Q0) and
U(T1 + ab) ∈ S−(H̃) = S−(ÃW (3, Q0)) ⊂ ÃW (3, Q0).
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The center of H̃

Corollary

The center of H̃ consists of the scalars.

Proof Let U ∈ Z (H̃). Then U ∈ ZH̃(T1) = ÃW (3, Q0).

So U ∈ Z (ÃW (3, Q0)).
Then U(T1 + 1) ∈ Z (S(H̃)) ∼ Z (AW (3, Q0)) ∼ C and
U(T1 + ab) ∈ Z (S−(H̃)) ∼ Z (AW (3, Q0; qa, qb, c, d)) ∼ C.
So U is scalar.



Further problems

1 In higher rank, any root system, describe in terms of
generators and relations the algebra generated by
polynomial multiplication and by the q-difference operators
for which the Macdonald polynomials are eigenfunctions.

2 If thus the higher rank analogue of AW (3, Q0) is found,
what is the analogue of AW (3)?

3 What about representations of AW (3) for values of Q
different from Q0? Are there related special functions?

4 Higher rank analogues of my results in the nonsymmetric
case.



Usage of Mathematica

I did computations in algebras defined by generators and
relations in Mathematica with the aid of the package
NCAlgebra, see http://www.math.ucsd.edu/~ncalg/

This was developed by J. W. Helton, R. L. Miller and M.
Stankus, in particular for applications in systems engineering
and control theory.

See my Mathematica notebooks on
http://www.science.uva.nl/~thk/art/

http://www.math.ucsd.edu/~ncalg/
http://www.science.uva.nl/~thk/art/
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