The hierarchy of hypergeometric functions

Tom Koornwinder

University of Amsterdam, thk@science.uva.nl

lecture, March 17, 2008

16ème colloque de la SMT, Sousse, Tunisie

Definition of hypergeometric series

A series $\sum_{k=0}^{\infty} c_k$ is called

- hypergeometric if c_{k+1}/c_k is a rational function of k;
- *q-hypergeometric* if c_{k+1}/c_k is a rational function of q^k ;
- elliptic hypergeometric if c_{k+1}/c_k is an elliptic function of k (meromorphic doubly periodic function).

Typical cases for c_{k+1}/c_k :

Definition of hypergeometric series (continued)

Pochhammer symbols and hypergeometric series:

• ordinary: $(a)_k := a(a+1)...(a+k-1),$

$${}_rF_s\left(\begin{matrix} a_1,\ldots,a_r\\b_1,\ldots,b_s \end{matrix};z\right):=\sum_{k=0}^\infty\frac{(a_1)_k\ldots(a_r)_k\,z^k}{(b_1)_k\ldots(b_s)_k\,k!}\,.$$

• q-case (|q| < 1): $(a; q)_k := (1 - a)(1 - qa) \dots (1 - q^{k-1}a),$ $(a; q)_{\infty} := (1 - a)(1 - qa)(1 - q^2a) \dots,$

$$_{r}\phi_{s}inom{a_{1},\ldots,a_{r},a_{r},q,z}{b_{1},\ldots,b_{s};q,z}:=\sum_{k=0}^{\infty}\frac{(a_{1};q)_{k}\ldots(a_{r};q)_{k}\left((-1)^{k}q^{\frac{1}{2}k(k-1)}\right)^{s-r+1}z^{k}}{(b_{1};q)_{k}\ldots,(b_{s};q)_{k}\left(q;q\right)_{k}}.$$

Series are terminating if some $a_i = -n$ resp. q^{-n} $(n \in \mathbb{Z}_{\geq 0})$.

As $q \to 1$ we have $(1-q)^{-k}(q^a;q)_k \to (a)_k$ and

$$_{r}\phi_{r-1}igg(egin{array}{c} q^{a_1},\ldots,q^{a_r}\ q^{b_1},\ldots,q^{b_{r-1}}\ ;q,z igg)
ightarrow {}_{r}F_{r-1}igg(egin{array}{c} a_1,\ldots,a_r\ b_1,\ldots,b_{r-1}\ ;z igg) \, .$$

Definition of hypergeometric series (continued)

Elliptic Pochhammer symbol and hypergeometric series:

$$|q|, |p| < 1.$$
 $\theta(a; p) := (a; p)_{\infty} (a^{-1}p; p)_{\infty}.$

$$(a; q, p)_k := \theta(a; p)\theta(qa; p) \dots \theta(q^{k-1}a; p).$$

$${}_{r}E_{r-1}\left(\begin{matrix} a_{1},\ldots,a_{r}\\b_{1},\ldots,b_{r-1}\end{matrix};q,p;z\right):=\sum_{k=0}^{\infty}\frac{(a_{1};q,p)_{k}\ldots(a_{r};q,p)_{k}z^{k}}{(b_{1};q,p)_{k}\ldots(b_{r-1};q,p)_{k}(q;q,p)_{k}}$$
$$(a_{1}\ldots a_{r}=b_{1}\ldots b_{r-1}q).$$

Series is terminating if some $a_i = q^{-n}$ $(n \in \mathbb{Z}_{\geq 0})$.

$$(a;q,p)_k \rightarrow (a;q)_k$$
 and $_rE_{r-1}(q,p,z) \rightarrow _r\phi_{r-1}(q,z)$ as $p\rightarrow 0$.

Nonterminating $_rF_s(z)$ and $_r\phi_s(z)$ series converge everywhere if s>r-1, converge for |z|<1 if s=r-1, and converge nowhere outside 0 if s< r-1.

Nonterminating elliptic hypergeometric series do not converge.

(q-)Hypergeometric series: elementary cases

Exponential series:
$${}_{0}F_{0}(-;-;z) = \sum_{k=0}^{\infty} \frac{z^{k}}{k!} = e^{z}$$
.

Binomial series:
$${}_{1}F_{0}(a; -; z) = \sum_{k=0}^{\infty} \frac{(a)_{k}}{k!} z^{k} = (1-z)^{-a}.$$

q-exponential series:

$$e_q(z) := {}_1\phi_0(0; -; q, z) = \sum_{k=0}^{\infty} \frac{z^k}{(q; q)_k} = \frac{1}{(z; q)_{\infty}} \quad (|z| < 1),$$

$$E_q(z) := {}_0\phi_0(-;-;q,-z) = \sum_{k=0}^{\infty} \frac{q^{\frac{1}{2}k(k-1)}z^k}{(q;q)_k} = (-z;q)_{\infty} \quad (|z| < \infty).$$

q-binomial series:

$$_{1}\phi_{0}(a;-;q,z)=\sum_{k=0}^{\infty}\frac{(a;q)_{k}}{(q;q)_{k}}z^{k}=\frac{(az;q)_{\infty}}{(z;q)_{\infty}}\quad (|z|<1).$$

Intermezzo: Chaundy-Bullard identity

$$(x+y)^{m+n+1} = y^{n+1} \sum_{i=0}^{m} {m+n+1 \choose i} x^{i} y^{m-i}$$

$$+ x^{m+1} \sum_{j=0}^{n} {m+n+1 \choose j} x^{n-j} y^{j},$$

$$1 = (1-x)^{n+1} \sum_{i=0}^{m} {m+n+1 \choose i} x^{i} (1-x)^{m-i}$$

$$+ x^{m+1} \sum_{j=0}^{n} {m+n+1 \choose j} x^{n-j} (1-x)^{j},$$

$$1 = (1-x)^{n+1} P_{m,n}(x) + x^{m+1} P_{n,m}(1-x) \quad (\deg(P_{m,n}) \le m),$$

$$(1-x)^{-(n+1)} = P_{m,n}(x) + \mathcal{O}(x^{m+1}) \quad (x \to 0),$$

$$= \sum_{k=0}^{m} \frac{(n+1)_k}{k!} x^k + \mathcal{O}(x^{m+1}) \quad (x \to 0).$$

Chaundy-Bullard identity, continued

Hence (Chaundy & Bullard, 1960):

$$1 = (1-x)^{n+1} P_{m,n}(x) + x^{m+1} P_{n,m}(1-x),$$

where

$$P_{m,n}(x) = \sum_{k=0}^{m} \frac{(n+1)_k}{k!} x^k.$$

Two-variable analogue (TK & Schlosser, 2008):

$$1 = (1 - x - y)^{l+1} P_{m,n,l}(x,y) + x^{m+1} P_{n,l,m}(y, 1 - x - y) + y^{n+1} P_{l,m,n}(1 - x - y, x),$$

where

$$P_{m,n,l}(x,y) = \sum_{i=0}^{m} \sum_{j=0}^{n} \frac{(l+1)_{i+j}}{i! \, j!} \, x^{i} y^{j}.$$

Similarly, an *n*-variable analogue.

Jacobi polynomials

Gauss hypergeometric series: ${}_2F_1(a,b;c;z) = \sum_{k=0}^{\infty} \frac{(a)_k(b)_k}{(c)_k k!} z^k$.

Terminating case gives Jacobi polynomials:

$$P_n^{(\alpha,\beta)}(x) := \text{const. } _2F_1(-n, n+\alpha+\beta+1; \alpha+1; \frac{1}{2}(1-x))$$

$$= \text{const. } \sum_{k=0}^n \frac{(-n)_k (n+\alpha+\beta+1)_k}{(\alpha+1)_k k!} \left(\frac{1-x}{2}\right)^k.$$

Orthogonality $(\alpha, \beta > -1)$:

$$\int_{-1}^{1} P_{n}^{(\alpha,\beta)}(x) P_{m}^{(\alpha,\beta)}(x) (1-x)^{\alpha} (1+x)^{\beta} dx = 0 \qquad (n \neq m).$$

Differential equation:

$$\left((1 - x^2) \frac{d^2}{dx^2} + (\beta - \alpha - (\alpha + \beta + 2)) \frac{d}{dx} \right) P_n^{(\alpha,\beta)}(x)
= -n(n + \alpha + \beta + 1) P_n^{(\alpha,\beta)}(x).$$

Jacobi functions

Nonterminating ${}_{2}F_{1}$ gives *Jacobi functions*:

$$\phi_{\lambda}^{(\alpha,\beta)}(t) := {}_2F_1\big(\tfrac{1}{2}(\alpha+\beta+1+i\lambda),\tfrac{1}{2}(\alpha+\beta+1-i\lambda);\alpha+1;-\sinh^2t\big).$$

Transform pair $(\alpha \pm \beta > -1)$:

$$\begin{cases} \widehat{f}(\lambda) = \int_0^\infty f(t) \, \phi_\lambda^{(\alpha,\beta)}(t) \, \Delta_{\alpha,\beta}(t) \, dt, \\ f(t) = \int_0^\infty \widehat{f}(\lambda) \, \phi_\lambda^{(\alpha,\beta)}(t) \, \frac{d\lambda}{|\mathcal{C}_{\alpha,\beta}(\lambda)|^2} \,, \end{cases}$$

where $\Delta_{\alpha,\beta}(t) := (\sinh t)^{2\alpha+1} (\cosh t)^{2\beta+1}$ and $c_{\alpha,\beta}(\lambda)$ is a certain quotient of products of Gamma functions.

Differential equation:

$$\frac{1}{\Delta_{\alpha,\beta}(t)}\frac{d}{dt}\circ\Delta_{\alpha,\beta}(t)\frac{d}{dt}\phi_{\lambda}^{(\alpha,\beta)}(t)=-\left(\lambda^2+(\alpha+\beta+1)^2\right)\phi_{\lambda}^{(\alpha,\beta)}(t).$$

Five different types of generalizations

The Gauss hypergeometric function / Jacobi polynomial / Jacobi function case can be generalized in five different directions, which often can be combined, and ideally should always be combined.

- Higher hypergeometric series; Askey scheme of hypergeometric orthogonal polynomials
- q-hypergeometric series, elliptic and hyperbolic hypergeometric function
- Non-symmetric functions (double affine Hecke algebras)
- Four regular singularities (Heun equation)
- Multivariable special functions associated with root systems (Heckman-Opdam, Macdonald, Macdonald-K, Cherednik, . . .)

I will not discuss items 3, 4 and 5 here. Item 3 was inspired by the multi-variable case.

Criteria for the (q-)hypergeometric hierarchy

For hypergeometric and *q*-hypergeometric functions we will restrict to some cases which:

- have a rich set of transformations, which form a nice symmetry group;
- allow harmonic analysis: orthogonal polynomials or biorthogonal rational functions, or continuous analogues of these as kernels of integral transforms.

Then we mainly have:

- 4F₃(1), ₇F₆(1), ₉F₈(1) hypergeometric functions, and qand hyperbolic analogues, and only one elliptic analogue.
- Moreover in these cases restrictions on parameters (balanced, very-well poised).
- Always distinction between terminating and non-terminating series.
- In non-terminating cases alternative representations as hypergeometric (Mellin-Barnes type) integral; crucial role of gamma function (ordinary, q-, hyperbolic, elliptic).

Symmetries of ${}_{3}F_{2}(1)$

Thomae's transformation formula rediscovered by Ramanujan:

$${}_{3}F_{2}\begin{pmatrix}a,b,c\\d,e\end{pmatrix} = \frac{\Gamma(d)\Gamma(e)\Gamma(d+e-a-b-c)}{\Gamma(a)\Gamma(d+e-a-c)\Gamma(d+e-a-b)} \times {}_{3}F_{2}\begin{pmatrix}d-a,e-a,d+e-a-b-c\\d+e-a-c,d+e-a-b\end{pmatrix};1$$

Hardy (Ramanujan, Twelve lectures on subjects suggested by his life and work, 1940):

$$\frac{1}{\Gamma(d)\,\Gamma(e)\,\Gamma(d+e-a-b-c)}\,\,{}_3F_2{\left(\begin{matrix} a,b,c\\d,e\end{matrix};1\right)}$$

is symmetric in d, e, d+e-b-c, d+e-c-a, d+e-a-b. Symmetry group $S_5 = W(A_4)$ (Weyl group of root system A_4).

Dynkin diagram for A_4 :

Balanced $_4F3(1)$

$$_{r}F_{r-1}(a_{1},...,a_{r};b_{1},...,b_{r-1};z)$$
 is called *balanced* if $b_{1}+...+b_{r-1}=a_{1}+...+a_{r}+1$.

Beyer-Louck-Stein rediscovered Hardy's S_5 -symmetry for ${}_3F_2(1)$, and found symmetry group $S_6 = W(A_5)$ for terminating balanced ${}_4F_3(1)$:

$$_4F_3(-n,a,b,c;d,e,f;1)$$
 $(d+e+f=-n+a+b+c+1).$ Dynkin diagram for A_5 :

Related orthogonal polynomials: Wilson polynomials $W_n(x^2) :=$

const.
$${}_{4}F_{3}\left({-n,n+a+b+c+d-1,a+ix,a-ix \atop a+b,a+c,a+d};1\right),$$

and *Racah polynomials*. These form the top level of the Askey scheme of hypergeometric orthogonal polynomials.

Wilson functions

For Wilson functions (non-polynomial analogues of Wilson polynomials) one has to go to the ${}_{7}F_{6}$ level.

Well-poised hypergeometric series:

$$_{r}F_{r-1}\left(\begin{array}{c} a_{1}, a_{2}, \ldots, a_{r} \\ 1 + a_{1} - a_{2}, \ldots, 1 + a_{1} - a_{r} \end{array}; z\right).$$

This is very well-poised (VWP) if $a_2 = 1 + \frac{1}{2}a_1$.

Terminating VWP $_7F_6(1) = \text{const.} \times \text{terminating balanced}$ $_4F_3(1)$.

Non-terminating VWP $_7F_6(1)$ = linear combination of two balanced $_4F_3(1)$'s.

Wilson function transform (Groenevelt).

The ₉F₈ top level

Terminating 2-balanced VWP $_9F_8(1)$:

Transformation formula (Bailey, Whipple).

Biorthogonal rational functions (J. Wilson).

Non-terminating 2-balanced VWP $_9F_8(1)$:

Four-term transformation formula (Bailey).

Askey-Wilson polynomials

$$_{r}\phi_{r-1}(a_{1},\ldots,a_{r};b_{1},\ldots,b_{r-1};q,z)$$
 is called *balanced* if $b_{1}\ldots b_{r-1}=qa_{1}\ldots a_{r}.$

Terminating balanced $_4\phi_3$ of argument q:

- Symmetry group $S_6 = W(A_5)$ (Van der Jeugt & S. Rao).
- Askey-Wilson polynomials:

$$p_n(\frac{1}{2}(z+z^{-1})) := \text{const. } _4\phi_3\left(\begin{matrix} q^{-n}, q^{n-1}abcd, az, az^{-1} \\ ab, ac, ad \end{matrix}; q, q\right).$$

• $P_n(z) := p_n(\frac{1}{2}(z+z^{-1}) \text{ satisfies}$ $A(z)P_n(qz) + A(z^{-1})P_n(q^{-1}z) - (A(z) + A(z^{-1}))P_n(z)$ $= (q^{-n} - 1)(1 - abcdq^{n-1})P_n(z),$ where $A(z) := \frac{(1 - az)(1 - bz)(1 - cz)(1 - dz)}{(1 - z^2)(1 - az^2)}.$

These are on the top level of the q-Askey scheme.

Askey-Wilson functions

Very well-poised (VWP) q-hypergeometric series:

$$_{r}V_{r-1}(a_{1}; a_{4}, \ldots, a_{r}; q, z) := _{r}\phi_{r-1} \begin{pmatrix} a_{1}, qa_{1}^{\frac{1}{2}}, -qa_{1}^{\frac{1}{2}}, a_{4}, \ldots, a_{r} \\ a_{1}^{\frac{1}{2}}, -a_{1}^{\frac{1}{2}}, qa_{1}/a_{4}, \ldots, qa_{1}/a_{r} \end{pmatrix}$$

Non-terminating very well-poised $_8\phi_7$ of argument $\frac{q^2\,a_1^2}{a_4\,a_5\,a_6\,a_7\,a_8}$:

- Sum of two non-terminating balanced $_4\phi_3$'s of argument q.
- Symmetry group $W(D_5)$ (Van der Jeugt & S. Rao).
- Askey-Wilson functions (Stokman).

Dynkin diagram for D_5 :

Bailey's two-term $_{10}\phi_9$ function

$$\begin{split} \Phi(a;b;c,d,e,f,g,h;q) := \\ (aq/c,aq/d,aq/e,aq/f,aq/g,aq/h;q)_{\infty} \\ \times (bc/a,bd/a,be/a,bf/a,bg/a,bh/a;q)_{\infty}/(b/a,aq;q)_{\infty} \\ \times _{10}V_{9}(a;b,c,d,e,f,g,h;q,q) \\ + \frac{(bq/c,bq/d,bq/e,bq/f,bq/g,bq/h,c,d,e,f,g,h;q)_{\infty}}{(a/b,b^{2}q/a;q)_{\infty}} \\ \times _{10}V_{9}(b^{2}/a;b,bc/a,bd/a,be/a,bf/a,bg/a,bh/a;q,q), \end{split}$$

where $a^3q^2 = bcdefgh$

Bailey's four-term transformation formula:

$$\Phi(a;b;c,d,e,f,g,h;q) = \Phi\Big(\frac{a^2q}{cde};b;\frac{aq}{de},\frac{aq}{ce},\frac{aq}{cd},f,g,h;q\Big).$$

Symmetry group $W(E_6)$

(Lievens & Van der Jeugt):

$_{10}\phi_9$: the terminating case

Terminating balanced very well-poised $_{10}\phi_9$'s of argument q:

- Bailey's two-term transformation formula.
- Same symmetry group $W(E_6)$.
- Biorthogonal rational functions (Rahman, J. Wilson)

Summary of important (*q*-)hypergeometric cases

- $_9F_8$ and $_{10}\phi_9$ (very well-poised): Four- and two-term transformation formulas, E_6 symmetry, biorthogonal rational functions in terminating case.
- $_7F_6$ and $_8\phi_7$ (very well-poised): non-terminating, D_5 symmetry, Wilson and Askey-Wilson functions as kernels in integral transform pairs.
- ${}_4F_3$ and ${}_4\phi_3$ (balanced): terminating, A_5 symmetry, Wilson, Racah and Askey-Wilson, q-Racah polynomials.

Elliptic case: Frenkel-Turaev formulas

Very well-poised elliptic hypergeometric series:

$${}_{r}V_{r-1}(a_{1}; a_{6}, \ldots, a_{r}; q, p) :=$$

$${}_{r}E_{r-1}\begin{pmatrix} a_{1}, qa_{1}^{\frac{1}{2}}, -qa_{1}^{\frac{1}{2}}, q(a_{1}/p)^{\frac{1}{2}}, -q(a_{1}p)^{\frac{1}{2}}, a_{6}, \ldots, a_{r} \\ a_{1}^{\frac{1}{2}}, -a_{1}^{\frac{1}{2}}, (pa_{1})^{\frac{1}{2}}, -(a_{1}/p)^{\frac{1}{2}}, qa_{1}/a_{6}, \ldots, qa_{1}/a_{r} \end{pmatrix},$$

where $a_6 \dots a_r = q^{\frac{1}{2}r-4} a_1^{\frac{1}{2}r-3}$.

Frenkel & Turaev gave a transformation formula for terminating $_{12}V_{11}$ and a summation formula for terminating $_{10}V_{9}$ as a degenerate case.

This followed from their study of the elliptic 6*j*-symbol, which is a solution of the Yang-Baxter equation for the fused eight-vertex model.

Spriridonov gave two-index biorthogonality relations for products of two terminating $_{12}V_{11}$ functions.

The elliptic hypergeometric integral

Elliptic gamma function (Ruijsenaars):

$$\Gamma_e(z; p, q) := \prod_{j,k=0}^{\infty} \frac{1 - z^{-1} p^{j+1} q^{k+1}}{1 - z p^j q^k}.$$

Elliptic hypergeometric integral (Spiridonov):

$$S_e(t; p, q) := \int_{\mathcal{C}} \frac{\prod_{j=1}^8 \Gamma_e(t_j z^{\pm 1}; p, q)}{\Gamma_e(z^{\pm 2}; p, q)} \frac{dz}{2\pi i z} \quad (\prod_{j=1}^8 t_j = p^2 q^2),$$

where \mathcal{C} is a deformation of the unit circle which separates the poles $t_j p^m q^n$ (m, n = 0, 1, ...) from the poles $t_j^{-1} p^{-m} q^{-n}$ (m, n = 0, 1, ...).

The transformations of $S_e(t; p, q)$ form a symmetry group which is isomorphic to $W(E_7)$ (Rains):

Hyperbolic hypergeometric series

In elliptic hypergeometric theory there are no transformation formulas below the $_{12}V_{11}$ level.

However, there is a limit case of the elliptic hypergeometric function, called *hyperbolic hypergeometric function*, started by Ruijsenaars, which is still above the q-case and with the following features:

- On top level again $W(E_7)$ symmetry.
- There is also a hyperbolic Askey-Wilson function.
- Has analytic continuation to q on unit circle.
- Explicit expressions as products of two q-hypergeometric functions or a sum of two such products.

For details see the Thesis by Fokko van de Bult, *Hyperbolic Hypergeometric Functions*, 2007 (partly based on papers jointly with Rains and Stokman).

References

On hypergeometric series:

W. N. Bailey, *Generalized hypergeometric series*, Cambridge University Press, 1935.

On *q*-hypergeometric series:

G. Gasper and M. Rahman, *Basic hypergeometric series*, 2nd edn., Cambridge University Press, 2004.

On the Askey and the q-Askey scheme:

R. Koekoek and R. F. Swarttouw, *The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue*, http://aw.twi.tudelft.nl/~koekoek/askey/.

On the Chaundy-Bullard identity:

T. H. Koornwinder and M. J. Schlosser, *On an identity by Chaundy and Bullard. I*, arXiv:0712.2125v2 [math.CA], March 2008.

References, continued

On elliptic hypergeometric functions:

- V. P. Spiridonov, Classical elliptic hypergeometric functions and their applications, arXiv:math/0511579v2.
- V. P. Spiridonov, *Elliptic hypergeometric functions*, arXiv:0704.3099v1.

On groups of transformations of hypergeometric functions:

- J. Van der Jeugt & K. S. Rao, *Invariance groups of transformations of basic hypergeometric series*, J. Math. Phys. 40 (1999), 6692–6700.
- S. Lievens & J. Van der Jeugt, *Symmetry groups of Bailey's transformations for* $_{10}\phi_9$ -*series*, J. Comput. Appl. Math. 206 (2007), 498–519.
- F. J. van de Bult, E. M. Rains & J. V. Stokman, *Properties of generalized univariate hypergeometric functions*, arXiv:math/0607250v1.