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Plan of the course

@ The Askey and g-Askey scheme
© Zhedanov’s algebra
© Double affine Hecke algebra in the rank one case
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General orthogonal polynomials

Let {pn(X)}n=0.1,... be a system of real-valued polynomials
pn(x) of degree nin x. Let u be a positive Borel measure on R
such that [ [x|” du(x) < oo for all n. Then {py(x)} is called a
system of orthogonal polynomials (OP’s) if

/pn(x)xkdu(x)—o (k=0,1,...,n—1). (1)
R

Any system of orthogonal polynomials (with p_1(x) := 0,
po(x) := 1) satisfies a recurrence relation of the form

X Pn(X) = AnPn1(X) + Bnpn(X) + CnPp—1(X). (2)

Conversely, if {pn(x)} satisfies (2) with Ch,A,_1 > 0 then there
exists a positive Borel measure ;. on R such that (1) holds.
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General orthogonal polynomials (continued)

Notation
@ Write pp(x) = knx"+---.
® Write hy := [, pn(x)? du(x). Then

| o) () 0sx) = 3

Remarks

@ The orthogonality measure p is not necessarily uniquely
determined (up to constant factor) by the recurrence
relation (2). But if there exists an orthogonality measure p
with compact support then we have certainly uniqueness.

@ Let M be a linear operator acting on sequences
U= {Un}n=01,. by (M(U))n := ApUni1 + Bpun + Cpup_1.
Then, if {pn(x)} satisfies the recurrence relation (2), then

for each x the sequence {pn(x)} is an eigenfunction of M
with eigenvalue x.
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Bispectrality

We speak about bispectrality if we have a linear operator Ly
acting on functions in the variable x and a linear operator M
acting on functions in the variable £ such that there exists a
function ¢(x, &) in the two variables x, ¢ for which
Lx(o(x,€)) = a(§) &(x,$), ©)
Me(6(x,€)) = 7(x) (X, £). (4)
where o(£) and 7(x) are suitable eigenvalues.

In the case of OP’s the variable £ becomes the discrete
variable n and we have in general only equation (4). We are
interested in OP’s which also satisfy (3).

Structure equation implied by (3) and (4):
[Lx, TOO] (¢(x, €)) = Mg, o(£)] ((x; €))-
Here [A, B] := AB — BA (commutator).
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Classical orthogonal polynomials

These are essentially the only OP’s which are eigenfunctions of
a second order differential operator (Bochner’s theorem).

@ Hermite polynomials Hy(x), Hp(x)=2"x"+---,
du(x) == e dx, (%;722 - x%) Hn(X) = —nHp(X).

@ Laguerre polynomials L5 (x), L5(0) = (a+1)n/n', where
(a)p:=a(a+1)...(a+ n—1) (Pochhammer symbol).
du(x) == X(0,00)(X) X* € Xdx  (a > —1),

(XC;L; F(a+1- x)dix)Lg(x) — —nL(x).

e Jacobi polynomials PP (x), PP (1) = (a + 1)n/n,
du(x) = x(1.)() (1 =x)*(1 +x)7dx (o, 8> 1),

((1 X &+ (B—a—(a+p8+ 2)x)d%’(> P (x)
= —n(n+a+ 8+ 1Py (x).
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Structure relation for OP’s satisfying an eigenvalue
equation

Let {pn(x)} be a system of OP’s such that there is a linear
operator L acting on polynomials in x for which the p, are
eigenfunctions with eigenvalues \,. Write (Xf)(x) := x f(x).
Then, from

Lpn = Anpn,
Xpn = AnPns1 + Bnpn + Cnpn-—1,

we have the structure relation
[L, X] pn = An(Ant1 — An) Pt — Cp(An — An—1)Pn—1-

Remark Since L and X are symmetric operators with respect
to the inner product = Jg f(x) g(x) du(x),

the structure operator [L X] |s antl symmetrlc with respect to
this inner product.
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Structure relation for the classical OP’s

@ Hermite polynomials:

(i{ — x) Hn(X) = =3 Hp1(X) + nHp_q(x).

@ Laguerre polynomials:

(2 0ot 1 X) L) = (1)L 41 (1)~ (+0) L4 ()

@ Jacobi polynomials:
d a
(2(1 —X) = +fB-a—(a+B+ 2)x) PO (x) =

ax
2(n+1)(n+a+6+1) S 2(n+a)(n+ ) 5(a.5)
- 2n+a+ B+ 1 Poi )+2n+a+ﬁ+1 Po-v’ ().

Combine with 3-term recurrence relation. Then get the form
7(X) Pp(X) = @nPn+1(X) + bnPn(X) + CnPp—1(x) for a polynomial
7(x). Al-Salam & Chihara (1972) characterized the classical
OP’s as OP’s with such a structure relation.
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Algebra generated by L and X for the classical OP’s

Let {pn(x)} be a system of classical OP’s and let L be the
second order differential operator for which they are
eigenfunctions. Then L and X will generate an associative
algebra with identity of linear operators. Certainly the structure
operator S := [L, X] will belong to this algebra. Are there further
relations in the algebra? Let us try the commutators of S with L
and X.
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Algebra generated by L and X for the classical OP’s

(continued)

@ Hermite:

[L,X]=S, [X,S]=-1, [S L]=-X.
@ Laguerre:

[L,X]=S, [X,S]=-2X, [S,[]=-2L—-X+a+1.
@ Jacobi:

[L,X]=S, [X,S]=2X2-2,
[S, L] =2(XL+ LX) — (a+ B)(a + B+ 2)X + 32 — a2,
Lie algebras and representations involved:
@ Hermite: Heisenberg Lie algebra and its standard
representation on a space of suitable functions on R.
@ Laguerre: the Lie algebra s/(2,R) and its discrete series
representation in a suitable model.
@ Jacobi: quadratic terms; no (finite dimensional) Lie
algebra.
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The scheme of classical OP’s

lim PP(1 - 287 "x) = L3(x).

f—o0
lim a~2"P{) (0 2x) = Ha(x)/(2"n)).
lim a~2"L2((2a)2X + a) = (—1)"Ha(x)/(22"n1).

Jacobi

Laguerre

Hermite
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Discrete OP’s

A system {pn(x)}>, of OP’s is called discrete if the
orthogonality measure 1. has discrete support {xx}z>,. Then

/f ) du(x fok

for certain positive weights wy.

We will also admit finite systems {pn}—o.1,...n Of OP’s, where
the orthogonality measure p has finite support { X }k=0.1,....n-
Then

for certain positive weights wy.
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The Askey scheme

Extend the scheme of classical OP’s with the following classes:
@ OP’s of Hahn class are OP’s which are eigenfunctions of a
second order difference operator L of one of the forms

(LA)(x) := anf(x — 1) + bnf(x) + caf(x + 1) (discrete),
(LA)(x) := anf(x — i) + baf(x) + caf(x + i)  (continuous).
These are the Hahn, continuous Hahn, Meixner-Pollaczek,
Meixner, Krawtchouk and Charlier polynomials.

@ OP’s of quadratic lattice class are OP’s which are

eigenfunctions of a second order difference operator L of
one of the forms

(LA)(Y?) == anf((y — 1)2) + baf(y?) + caf ((y + 1)?) (discr.),
(LA)(y?) = anf((y — )?) + baf(y?) + caf((y +1)%)  (cont.).

These are the Wilson, Racah, dual Hahn and continuous
dual Hahn polynomials.
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Askey scheme
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Hypergeometric functions

All OP’s in the Askey scheme are hypergeometric functions.
The general hypergeometric function is defined by:

a1,..., (a1)k ar)kz
Ao ) e

* 7

where (a)x :=a(a+1)...(a+ k — 1) (Pochhammer symbol).

Ifa; =—n(n=0,1,2,...) then the series terminates after the
term with kK = n. A hypergeometric function becomes undefined
(singular) if one of the bottom parameters is a non-positive
integer, say bs = —N, but the function remains well-defined if
a; =-—nwithn=20,1,..., N, because the series then
terminates before the term with k = N.
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Example: Hahn polynomials

Hahn polynomials are given by

-nn+a+pf+1,-x

Qn(X;Oé,ﬂ,N)Z: 3F2< at1 —N ,1) (n:0,1,...,N).

They have a limit to Jacobi polynomials by
_ B -nn+a+F+1,-Nx
Qulian 3 N) = a0 PTG

Nesoo “nn+a+f+1 PP (4 — 2x)
— 2F X) = T gy
ot P (1)
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g-Pochhammer symbol

Let 0 < g < 1. Define the g-Pochhammer symbol by

(@ )k :=(1—a)(1—aq)...(1—ag<").
Also for k = oc:

(@9) =(1—a)(1 —ag)(1 —ag?) ... (convergent).
Put

(@1,---,anQk = (a; Qk---(ar gk-

The g-Pochhammer symbol is a g-analogue of the
Pochhammer symbol:

(qa; q)k _ 1— qa 1— qa+1 1— qa+k—1

(- 1-q 1-qg = 1-gq

1 aa+1)...(a+k—1) = (a)
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g-Hypergeometric series

Define the q-hypergeometric series by

,k(k_1))s—r+1 Zk

a1,..., (@) (@ Q) ((—1)<q
'¢S< ) —X(:) (B1: . (b G)x (3 9

1y

If a; = g~ " with n non-negative integer, then the series
terminates after the term with kK = n.

The g-hypergeometric series is formally a g-analogue of
ordinary hypergeometric series:

ar
“m r¢s<q yeoer g CI,( q)s—r+1z>

qbi, ..., qbs
a‘l,...’ar_
’Fs<b1,...,bs'z>‘
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The g-Askey scheme

Parallel to the Askey scheme there is a g-Askey scheme in
which the OP’s are expressed as terminating g-hypergeometric
series. There are limit relations within the g-Askey scheme, and
also from families in the g-Askey scheme to families in the
Askey scheme. The g-Askey scheme consists of two classes:

@ OP’s of g-Hahn class are OP’s which are eigenfunctions of
a second order g-difference operator L of the form

(LF)(x) := anf(q~ ' X) + bnf(x) + cnf(gx).

@ OP’s of quadratic g-lattice class are OP’s which are
eigenfunctions of a second order g-difference operator L of
the form

(LF)(3(z+27)) := anflq~ ' 2] + baf[2] + caf[qz],
where f[z] == f((z+2z7").
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Askey-Wilson polynomials

On the top level of the g-Askey scheme are the Askey-Wilson
polynomials:

Pn[Z] = Pn[Z; a, b7 Cad ’ q] = Pn(%(z—i_ZiA‘); a, b7 C, d | q)
ab, ac, ad, —n q"'abcd,az,az"!
_( Q)n & <CI q 'Q,C]).

"~ a(abedgn T q), 72 ab, ac, ad
The right-hand side gives a symmetric Laurent polynomial in z:
Polz] = Sop__ckzK = Po[z71] (ck = C_k, Cn #0).

Therefore it is an ordinary polynomial P,(3(z + z~")) of degree
nin the variable x := }(z + z~'). We have normalized P,[z]
such that itis monicin z,i.e., ¢, = 1.
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Askey-Wilson polynomials: orthogonality

Askey-Wilson polynomials P,[z] satisfy the orthogonality
relation

1 dz

_ (22,272, Q)
w(z) = (az,az1,bz,bz=1,cz,cz71,dz,dz""; @)oo ’
e — (abcd; q) o
0 (g,ab, ac,ad, bc, bd, cd; Q) ’

h,  (q,ab,ac,ad, bc, bd, cd; q)n

ho  (abed; q)a2n(g"'abed; q)n
Here C is the unit circle traversed in positive direction with
deformations to separate the sequences of poles converging to
zero from the sequences of poles diverging to co.
For suitable a, b, ¢, d this can be rewritten as an orthogonality
relation for the Pp(x) with respect to a positive measure
supported on [—1, 1] (or on its union with a finite discrete set).
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Askey-Wilson polynomials as eigenfunctions of L

Askey-Wilson polynomials are OP’s of quadratic g-lattice class.
They are eigenfunctions of a second order g-difference
operator L:

(LPn)[2] := A[2] Pnlgz] + Alz™ '] Palq ™" 2] — (Al2] + Alz™ ")) PalZ]

=(g"—1)(1 — abcdq" ") P,[2],

(1—az)(1 —bz)(1 —cz)(1 —dz)
(1—22)(1 - qz?)

With (Xf)[z]) := (Z + Z~") f[z], we obtain for the structure
operator:

where A[z] =

(IL, X1f)[2] := alz] flqz] — alz" "] flg~ 2],
(' = 1)(1 —az)(1 — bz)(1 — cz)(1 — dz)
z(1 - 22) ’

where a[z] .=

Tom Koornwinder AW(3), DAHA and bispectrality



Generalized Bochner theorem

There is a generalized Bochner theorem which characterizes
the Askey-Wilson polynomials and their limit cases as the only
polynomial solutions p,(x) of a second order difference
equation of the form

A(S)Pn(x(5+1))+B(S)Pn(x(8))+C(S)Pn(x(5—1)) = AnPn(x(8)).

See Grinbaum & Haine (1996), Ismail (2003), Vinet &
Zhedanov (2008).
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