Extended abstract of the lecture

Orthogonal polynomials in several variables potentially useful in pde

by Tom H. Koornwinder, T.H.Koornwinder@uva.nl

held on 17 January 2011 during the Oberwolfach workshop
Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws and their Use in Science and Engineering,
16–20 January 2012.
Orthogonal polynomials in several variables potentially useful in pde

Tom H. Koornwinder

A system of orthogonal polynomials (OP’s) \(\{p_n\}_{n=0}^\infty \) on \(\mathbb{R} \) with respect to a positive measure \(\mu \) on \(\mathbb{R} \) is called classical if there is a second order differential operator \(L \) such that \(Lp_n = \lambda_n p_n \) \((n = 0, 1, 2, \ldots) \) for certain eigenvalues \(\lambda_n \). By a theorem of Bochner [1] there are three families of classical OP’s (up to an affine transformation of the argument of the OP):

1. Hermite: \(p_n = H_n \), \(d\mu(x) = e^{-x^2} dx \) on \(\mathbb{R} \),
 \[(Lf)(x) = \frac{1}{2}f''(x) - xf'(x), \quad \lambda_n = -n.\]
2. Laguerre: \(p_n = L_n^\alpha \), \(d\mu(x) = x^\alpha e^{-x} dx \) on \([0, \infty)\), \(\alpha > -1 \),
 \[(Lf)(x) = xf''(x) + (\alpha + 1 - x)f'(x), \quad \lambda_n = -n.\]
3. Jacobi: \(p_n = P_n^{(\alpha, \beta)} \), \(d\mu(x) = (1-x)^\alpha(1+x)^\beta dx \) on \([-1, 1]\), \(\alpha, \beta > -1 \),
 \[(Lf)(x) = (1-x^2)f''(x) + (\beta - \alpha - (\alpha + \beta + 2)x)f'(x), \quad \lambda_n = -n(n+\alpha+\beta+1).\]

Let \(\mu \) be a positive measure on \(\mathbb{R}^d \) such that \(\int_{\mathbb{R}} |x|^\alpha d\mu(x) < \infty \) \((\alpha \in (\mathbb{Z}_{\geq 0})^d) \) and the support of \(\mu \) has nonempty interior. Let \(\mathcal{P}_n \) consist of all polynomials \(p \) of degree \(\leq n \) such that \(\int_{\mathbb{R}^d} pqd\mu = 0 \) for all polynomials \(q \) of degree \(< n \). Then \(\mathcal{P}_n \) has the same dimension \(\binom{n+d-1}{n} \) as the space of homogeneous polynomials of degree \(n \) in \(d \) variables. Furthermore, the spaces \(\mathcal{P}_n \) \((n = 0, 1, 2, \ldots) \) are mutually orthogonal in \(L^2(\mu) \). We call \(\{\mathcal{P}_n\}_{n=0}^\infty \) a system of orthogonal polynomials with respect to the measure \(\mu \).

As a refinement of this notion we may choose an orthogonal basis \(\{p_n\}_{\alpha_1+\cdots+\alpha_d=n} \) for each space \(\mathcal{P}_n \), and call the polynomials \(p_n \) orthogonal polynomials. Of course, there are many ways to choose such orthogonal bases.

A system \(\{\mathcal{P}_n\} \) of orthogonal polynomials in \(d \) variables is called classical if there is a second order pdo \(L \) acting on the space of polynomials such that \(\mathcal{P}_n \) is an eigenspace of \(L \) for a certain eigenvalue \(\lambda_n \) \((n = 0, 1, 2, \ldots) \). As a refinement there may be, apart from \(L = L_1, d-1 \) further pdo’s \(L_2, \ldots, L_d \) such that \(L_1, L_2, \ldots, L_d \) commute, are self-adjoint with respect to \(\mu \), and have one-dimensional joint eigenspaces. Then we have OP’s \(p_n \) with \(L_ip_n = \lambda_n^{(i)} p_n \).

It was shown by Krall & Sheffer [8] and Kwon, Lee & Littlejohn [9] that there are five families of classical orthogonal polynomials in 2 variables, as follows:

1. \(dp(x, y) = e^{-x^2-y^2} dx dy \) on \(\mathbb{R}^2 \), \(L = \frac{1}{2}(\partial_{xx} + \partial_{yy}) - x\partial_x - y\partial_y, \quad \lambda_n = -n.\)
2. \(dp(x, y) = x^\alpha y^\beta e^{-x-y} dx dy \) on \([0, \infty) \times [0, \infty)\), \(\alpha, \beta > -1 \),
 \(L = x\partial_{xx} + y\partial_{yy} + (1 + \alpha - x)\partial_x + (1 + \beta - y)\partial_y, \quad \lambda_n = -n.\)
3. \(dp(x, y) = y^\beta e^{-x^2-y^2} dx dy \) on \(\mathbb{R} \times [0, \infty) \), \(\beta > -1 \),
 \(L = \frac{1}{2}x\partial_{xx} + y\partial_{yy} - x\partial_x + (1 + \beta - y)\partial_y, \quad \lambda_n = -n.\)
4. \(dp(x, y) = x^\alpha y^\beta(1-x-y)^\gamma dx dy \) on \(\{(x, y) \in \mathbb{R}^2 \mid x, y \geq 0, x + y \leq 1\} \), \(\alpha, \beta, \gamma > -1 \), \(L = x(1-x)\partial_{xx} + y(1-y)\partial_{yy} - 2xy\partial_{xy} + (\alpha + 1 - (\alpha + \beta + \gamma + 3)x)\partial_x + (\beta + 1 - (\alpha + \beta + \gamma + 3)y)\partial_y, \quad \lambda_n = -n(n + \alpha + \beta + \gamma + 2).\)
5. \(d\mu(x, y) = (1 - x^2 - y^2)^\alpha dx dy \) on \(\{(x, y) \in \mathbb{R}^2 \mid (x^2 + y^2) \leq 1\} \), \(\alpha > -1 \),
\[L = (1 - x^2)\partial_{xx} + (1 - y^2)\partial_{yy} - 2xy\partial_{xy} - (2\alpha + 3)(x\partial_x + y\partial_y), \]
\[\lambda_n = -n(n + 2\alpha + 2). \]

Orthogonal bases \(\{p_{n,k}\}_{k=0,1,...,n} \) for \(\mathcal{P}_n \) \((n = 0, 1, 2, \ldots) \) in these five cases can be obtained by Gram-Schmidt orthogonalization of the monomials \(1, x, y, x^2, xy, y^2, \ldots, x^n, x^{n-1}y, \ldots, x^{n-k}y^k, \ldots \). The resulting polynomials are as follows.

1. \(p_{n,k}(x, y) = H_{n-k}(x)H_k(y). \)
2. \(p_{n,k}(x, y) = L_{n-k}^\alpha(x)L_n^\beta(y). \)
3. \(p_{n,k}(x, y) = H_{n-k}(x)L_n^\beta(y). \)
4. \(p_{n,k}(x, y) = P_n(\alpha,\beta+\gamma+2k+1)(1 - 2x)(1 - x)^kP_k^{(\beta,\gamma)}(1 - 2y/(1 - x)). \)
5. \(p_{n,k}(x, y) = P_n(\alpha+k+\frac{1}{2},\alpha+k+\frac{1}{2})(1 - x^2)^{k/2}P_k^{(\alpha,\alpha)}(y/\sqrt{1 - x^2}). \)

The expansions in monomials of these polynomials \(p_{n,k} \) do not involve all monomials \(x^{m-j}y^j \) with \((m, j) \) equal or less than \((n, k) \) in the lexicographic ordering. For classes 1, 2 and 3 \(p_{n,k}(x, y) \) only contains monomials \(x^{m-j}y^j \) with \(m - j \leq n - k \) and \(j \leq k \). For classes 4 and 5 \(p_{n,k}(x, y) \) only contains monomials \(x^{m-j}y^j \) with \(m \leq n \) and \(j \leq k \). Furthermore, in these five cases there is a second order differential operator \(L_2 \) commuting with \(L \) which has the \(p_{n,k} \) as eigenfunctions with eigenvalue only depending on \(k \).

The OP’s \(p_{n,k} \) for case 4 (on the triangular region), as explicitly given above, were introduced by Proriol [10] in 1967. They were mentioned in the survey paper by Koornwinder [7] in 1975. Their special case \(\alpha = \beta = \gamma = 0 \) (constant weight function) was rediscovered by Dubiner [2] in 1991, who was motivated by applications to finite elements. Dubiner’s paper was much quoted in this context. For a while, the special functions and finite elements communities were not aware that they had a joint interest. But in 2000 Hesthaven & Teng [4] referred to Proriol’s paper, while later Karniadakis & Sherwin in their book [6] had ample references to papers on special functions. Conversely, in 2001 Dunkl & Xu referred in their book [3] to Dubiner’s paper.

Another important orthogonal system for case 5 on the disk is as follows.

\(R_{m,n}^\alpha(z) := \text{const.} \left\{ \begin{array}{ll}
P_n^{(\alpha,m-n)}(2|z|^2 - 1)z^{m-n}, & m \geq n, \\
P_m^{(\alpha,n-m)}(2|z|^2 - 1)\overline{z}^{m-n}, & n \geq m
\end{array} \right.
((m, n) \in (\mathbb{Z}_{\geq 0})^2, z \in \mathbb{C}, \alpha > -1). \)

Then \(R_{m,n}^\alpha(z) = \text{const.} z^m\overline{z}^n + \text{polynomial in } z, \overline{z} \text{ of lower degree.} \)

and \(\int_{x^2+y^2<1} R_{m,n}^\alpha(x+iy) \overline{R}_{k,l}^\alpha(x+iy) (1 - x^2 - y^2)^\alpha dx dy = 0 \) \((m, n) \neq (k, l)) \).

For \(\alpha = 0 \) these polynomials are called Zernike polynomials. They were introduced by Zernike [11] in 1934 for applications in optics and are still much used there. The polynomials \(R_{m,n}^\alpha \) for general \(\alpha \) first occurred in Zernike & Brinkman [12].
For numerical applications it is important that Jacobi polynomials can be approximated by polynomials which are orthogonal on finitely many equidistant points. These are the \textit{Hahn polynomials} \(Q_n(x; \alpha, \beta, N) (n = 0, 1, \ldots, N)\) satisfying
\[
\sum_{x=0}^{N} (Q_n(x; \alpha, \beta, N) \left(\frac{\alpha + x}{x}\right) \left(\frac{\beta + N - x}{N - x}\right) = 0 \quad (n \neq m).
\]
The approximation is: \(\lim_{N \to \infty} Q_n(Nx; \alpha, \beta, N) = \text{const.} P_n^{(\alpha, \beta)}(1 - 2x)\).

From the Hahn polynomials we can build polynomials (Karlin & McGregor [5])
\[
Q_{n,k}(x, y; \alpha, \beta, \gamma, N) := Q_{n-k}(x; \alpha, \beta+\gamma+2k+1, N-k) \left(\frac{N-x}{k}\right) Q_k(y; \beta, \gamma, N-x)
\]
which are orthogonal on the set \(\{(x, y) \in \mathbb{Z}^2 | x, y \geq 0, x + y \leq N\}\) with respect to the weights
\[
w(x, y; \alpha, \beta, \gamma, N) := \left(\frac{\alpha + x}{x}\right) \left(\frac{\beta + y}{y}\right) \left(\frac{\gamma + N - x - y}{N - x - y}\right).
\]
They approximate the polynomials of class 4 on the triangle:
\[
\lim_{N \to \infty} Q_{n,k}(Nx, Ny; \alpha, \beta, \gamma, N) = \text{const.} p_n^{(\alpha, \beta, \gamma)}(x, y),
\]
which looks promising for applications.

\textbf{References}