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1 Representations of SU(2) and Jacobi polynomials

Literature: Sugiura [3, Ch. 2] and Vilenkin & Klimyk [4, Ch. 6]; furthermore Askey, Andrews
& Roy [1] on special functions.

1.1 Preliminaries about representation theory

Let G be a group. Representations of G can be defined on any vector space (possibly infinite
dimensional) over any field, but we will only consider representations on finite dimensional
complex vector spaces. Let V be a finite dimensional complex vector space. Let GL(V ) be the
set of all invertible linear transformations of V . This is a group under composition. If V has
dimension n and if we choose a basis e1, . . . , en of V then the map x = x1e1 + · · · + xnen 7→
(x1, . . . , xn) : V → Cn is an isomorphism of vector spaces. There is a corresponding group
isomorphism GL(V ) → GL(Cn) which sends each invertible linear transformation of V to the
corresponding invertible matrix with respect to this basis. We denote GL(Cn) by GL(n,C): the
group of all invertible complex n×n matrices. Here the group multiplication is by multiplication
of matrices.

Definition 1.1. A representation of a group G on a finite dimensional complex vector space V
is a group homomorphism π : G→ GL(V ). A linear subspace W of V is called invariant (with
respect to the representation π) if π(g)W ⊂ W for all g ∈ G. The representation π on V is
called irreducible if V and {0} are the only invariant subspaces of V .

Definition 1.2. Let π be a representation of a group G on a finite dimensional complex vector
space V . Choose a basis e1, . . . , en of V . Then, for g ∈ G, the linear map π(g) has a matrix
(πi,j(g))i,j=1,...,n with respect to this basis, which is determined by the formula

π(g) ej =
n∑
i=1

πi,j(g) ei.

The πi,j are complex-valued functions on G which are called the matrix elements of the repre-
sentation π with respect to the basis e1, . . . , en.

Remark 1.3. Let End(V ) be the space of all linear transformations A : V → V . If π is a map
of the group G into End(V ) such that π(g1g2) = π(g1)π(g2) for all g1, g2 and π(e) = id, then π
maps into GL(V ) and π is a representation of G on V .
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Definition 1.4. A topological group is a set G which is both a group and a topological space
such that the maps (g1, g2) 7→ g1g2 : G×G→ G and g 7→ g−1 : G→ G are continuous.

Example 1.5. GL(n,C) can be considered as an open subset of Cn2
by associating with the

element T = (ti,j)i,j=1,...,n ∈ GL(n,C) (detT 6= 0) the n2 complex coordinates ti,j . Then the
group GL(n,C), with the topology inherited from Cn2

, is a topological group.
Let V be an n-dimensional complex vector space. With any basis of V the group GL(V )

is isomorphic with GL(n,C). Give a topology to GL(V ) such that this isomorphism is also a
homeomorphism. Then GL(V ) is a topological group and the topology is independent of the
choice of the basis.

Definition 1.6. A representation of a topological group G on a finite dimensional complex
vector space V is a continuous group homomorphism π : G→ GL(V ).

Remark 1.7. Let G be a topological group, V a finite dimensional complex vector space and
π : G → GL(V ) a group homomorphism. Let e1, . . . , en a basis for V . Then the following five
properties are equivalent:

a) π is continuous;

b) for all v ∈ V the map g 7→ π(g) v : G→ V is continuous;

c) for all j the map g 7→ π(g) ej : G→ V is continuous;

d) for all v ∈ V and for all complex linear functionals f on V
the map g 7→ f(π(g)v) : G→ C is continuous.

e) The matrix elements πi,j of π with respect to the basis e1, . . . , en are continuous functions
on G.

Be aware that these equivalences are not necessarily true if V is an infinite dimensional topo-
logical vector space.

Remark 1.8. If π is a representation of G on V and if H is a subgroup of G then the restriction
of the group homomorphism π : G → GL(V ) to H is a group homomorphism π : H → GL(V ),
so it is a representation of H on V .

If G is moreover a topological group then H with the topology inherited from G becomes a
topological group.

If, furthermore, π is a representation of G as a topological group on V then the restriction
of π to H is a representation of H as a topological group on V .

Definition 1.9. Let V be a finite dimensional complex vector space with hermitian inner
product 〈 , 〉. A representation π of a group G on V is called unitary is π(g) is a unitary
operator on V for all g ∈ G, i.e., if

〈π(g) v, π(g)w〉 = 〈v, w〉 for all v, w ∈ V and for all g ∈ G.

Remark 1.10. Let V and G be as in Definition 1.9 and let π be a representation of G on V .
Let e1, . . . , en be an orthonormal basis of V and let π(g) have matrix (πi,j(g)) with respect to
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this basis. Then the representation π is unitary iff the matrix (πi,j(g)) is unitary for each g ∈ G.
One of the ways to characterize unitarity of the matrix (πi,j(g)) is that

πi,j(g) = πj,i(g−1) (i, j = 1, . . . , n).

Proposition 1.11 (Complete reducibility of unitary representations).
Let V and G be as in Definition 1.9 and let π be a unitary representation of G on V . Then:

a) If W is an invariant subspace of V then the orthoplement W⊥ of W is also an invariant
subspace.

b) V can be written as an orthogonal direct sum of subspaces Vi such that the representa-
tion π, when restricted to Vi, is irreducible.

1.2 A class of representations of SU(2)

Fix l ∈ {0, 1
2 , 1, . . .}. Let Hl be the space of homogeneous polynomials of degree 2l in two

complex variables z1, z2, i.e., consisting of polynomials f(z1, z2) with complex coefficients such
that f(cz1, cz2) = c2lf(z1, z2) for all c, z1, z2 ∈ C. Then the monomials zl−n1 zl+n2 (n = −l,−l +
1, . . . , l) form a basis of Hl, and Hl has dimension 2l + 1. For reasons which will become clear
later, we will work with a renormalized basis

ψln(z1, z2) :=
(

2l
l − n

) 1
2

zl−n1 zl+n2 (n = −l,−l + 1, . . . , l). (1.1)

For A ∈ GL(2,C) and f ∈ Hl define the function tl(A)f on C2 by

(tl(A)f)(z) := f(A′z) (z = (z1, z2) ∈ C2), (1.2)

where A′ is the transpose of the matrix A. So(
tl
(
a b
c d

)
f

)
(z1, z2) = f(az1 + cz2, bz1 + dz2), where

(
a b
c d

)
∈ GL(2,C).

From this it is clear that (tl(A)f)(z1, z2) is again a homogeneous polynomial of degree 2l in
z1, z2. Moreover, tl is a representation of GL(2,C) on Hl, since tl(I)f = f and

(tl(AB)f)(z) = f((AB)′z) = f(B′A′z) = (tl(B)f)(A′z)

=
(
tl(A)(tl(B)f)

)
(z) =

((
tl(A)tl(B)

)
f
)

(z).

The matrix elements tlm,n (m,n = −l,−l + 1, . . . , l) of tl with respect to the basis (1.1) are
determined by

tl(g)ψln =
l∑

m=−l
tlm,n(g)ψlm (g ∈ GL(2,C)), (1.3)
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Since (
tl
(
a b
c d

)
ψln

)
(z1, z2) =

(
2l

l − n

) 1
2

(az1 + cz2)l−n (bz1 + dz2)l+n, (1.4)

(1.3) can be written more explicitly as

(
2l

l − n

) 1
2

(az1 + cz2)l−n (bz1 + dz2)l+n =
l∑

m=−l

(
2l

l −m

) 1
2

tlm,n

(
a b
c d

)
zl−m1 zl+m2 ,(

a b
c d

)
∈ GL(2,C). (1.5)

From (1.5) we see that tlm,n

(
a b
c d

)
is a homogeneous polynomial of degree 2l in a, b, c, d, so

tlm,n is continuous on GL(2,C). By Remark 1.7 tl is then also a representation of GL(2,C)
considered as a topological group.

For fixed n we can consider (1.5) as a generating function for the matrix elements tlm,n with
m = −l, . . . , l: the matrix elements are obtained as the coefficients in the power series expansion
of the elementary function in z1, z2 on the left-hand side.

From (1.5) for n = l elementary expressions for the matrix elements tln,l can be obtained
(exercise):

tlm,l

(
a b
c d

)
=
(

2l
l −m

) 1
2

bl−mdl+m. (1.6)

From (1.5) we can derive a double generating function for the matrix elements tlm,n: Multiply
both sides of (1.5) with (

2l
l − n

) 1
2

wl−n1 wl+n2 ,

and sum over n. Then we obtain

(az1w1 + bz1w2 + cz2w1 + dz2w2)2l =
l∑

m,n=−l

(
2l

l −m

) 1
2
(

2l
l − n

) 1
2

tlm,n

(
a b
c d

)

× zl−m1 zl+m2 wl−n1 wl+n2 ,

(
a b
c d

)
∈ GL(2,C). (1.7)

Formula (1.7) implies the symmetry

tlm,n

(
a b
c d

)
= tln,m

(
a c
b d

)
, (1.8)

while (1.5) implies that

tlm,n

(
a b
c d

)
= tl−m,−n

(
d c
b a

)
. (1.9)
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From (1.8) and (1.9) we obtain a third symmetry

tlm,n

(
a b
c d

)
= tl−n,−m

(
d b
c a

)
. (1.10)

Let SU(2) denote the set of all 2 × 2 unitary matrices of determinant 1. This is clearly a
subgroup of GL(2,C). Note that SU(2) consists of all matrices(

a −c
c a

)
with a, c ∈ C and |a|2 + |c|2 = 1. (1.11)

Hence, as a topological space, SU(2) is homeomorphic with {(a, c) ∈ C2 | |a|2 + |c|2 = 1}, which
is the unit sphere in C2, i.e., the sphere S3. In particular, SU(2) is compact.

The representation tl of GL(2,C) given by (1.2), becomes by restriction a representation
of SU(2). Put a hermitian inner product on Hl such that the basis of functions ψln (n =
−l,−l + 1, . . . , l) is orthonormal.

Proposition 1.12. The representation tl of SU(2) is unitary.

Proof The inverse of
(
a −c
c a

)
∈ SU(2) is

(
a c
−c a

)
. In view of Remark 1.10 we have to show

that

tlm,n

(
a −c
c a

)
= tln,m

(
a c
−c a

)
.

Since, by (1.5), tlm,n

(
a b
c d

)
is a polynomial with real coefficients in a, b, c, d, we have

tlm,n

(
a −c
c a

)
= tlm,n

(
a −c
c a

)
.

Hence we have to show that

tlm,n

(
a −c
c a

)
= tln,m

(
a c
−c a

)
.

This last identity follows from (1.8).

Exercise 1.13. Give variants of the representation tl of GL(2,C) (see (1.2)) which also define
representations of GL(2,C) (for instance using the entry-wise complex conjugate of A and/or
powers of the determinant of A, or replacing A′ by A−1). What happens with these representa-
tions if you restrict them to SU(2)?
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1.3 Computation of matrix elements of representations of SU(2)

We can use the generating function (1.5) in order to compute the matrix elements tlm,n. First
we expand the two powers on the left-hand side of (1.5) by the binomial formula:

(az1 + cz2)l−n =
l−n∑
j=0

(
l − n
j

)
ajzj1c

l−n−jzl−n−j2 ,

(bz1 + dz2)l+n =
l+n∑
k=0

(
l + n

k

)
bkzk1d

l+n−kzl+n−k2 .

Hence the left-hand side of (1.5) can be rewritten as(
2l

l − n

) 1
2
l−n∑
j=0

l+n∑
k=0

(
l − n
j

)(
l + n

k

)
ajbkcl−n−jdl+n−kzj+k1 z2l−j−k

2 . (1.12)

In this double sum we make a change of summation variables (j, k) 7→ (m, j), where j+k = l−m.
Hence

(j, k) 7→ (l − k − j, j) with inverse map (m, j) 7→ (j, l −m− j). (1.13)

Now we have

0 ≤ j ≤ l − n and 0 ≤ k ≤ l + n ⇐⇒
− l ≤ m ≤ l and 0 ≤ j ≤ l − n and −m− n ≤ j ≤ l −m. (1.14)

Indeed, the inequalities to the left of the equivalence sign in (1.14) imply that 0 ≤ j + k ≤ 2l,
hence 0 ≤ l −m ≤ 2l, hence −l ≤ m ≤ l. Also, 0 ≤ k ≤ l + n implies 0 ≤ l −m − j ≤ l + n,
hence −m− n ≤ j ≤ l−m. Conversely, −m− n ≤ j ≤ l−m implies (substitute m = l− k− j)
that −l− n+ k+ j ≤ j ≤ k+ j, hence 0 ≤ k ≤ l+ n. (Note that −l ≤ m ≤ l to the right of the
equivalence sign in (1.14) is not strictly needed because it is implied by the other inequaltities
on the right.)

We conclude that the double sum (1.12) can be rewritten by the substitution j + k = l−m
as follows:(

2l
l − n

) 1
2

l∑
m=−l

(l−m)∧(l−n)∑
j=0∨(−m−n)

(
l − n
j

)(
l + n

l −m− j

)
ajbl−m−jcl−n−jdn+m+jzl−m1 zl+m2 . (1.15)

Here the first summation is by convention over all m ∈ {−l,−l + 1, . . . , l}. In the second
summation the symbol ∨ means maximum and the symbol ∧ means minimum. The range of
the double summation in (1.15) is justified by the equivalence (1.14). Note that the second
summation is an inner summation since its summation bounds depend on m, which is the
summation variable for the outer summation. The summand in (1.15) is obtained from the
summand in (1.12) by the substitution k = l −m− j.

Since (1.15) is a rewritten form of the left-hand side of (1.5), it must be equal to the right-
hand side of (1.5). Both (1.15) and the right-hand side of (1.5) are polynomials in z1, z2 with
explicit coefficients. Hence the corresponding coefficients must be equal. We conclude:
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Proposition 1.14.

tlm,n

(
a b
c d

)
=
(

2l
l −m

)− 1
2
(

2l
l − n

) 1
2

(l−m)∧(l−n)∑
j=0∨(−m−n)

(
l − n
j

)(
l + n

l −m− j

)
ajbl−m−jcl−n−jdn+m+j .

(1.16)

Note that the summation bounds in (1.12) reduce to one of four alternatives depending on
the signs of m+ n and m− n:

0 ≤ j ≤ l −m if m+ n ≥ 0 and m− n ≥ 0;
0 ≤ j ≤ l − n if m+ n ≥ 0 and m− n ≤ 0;

−m− n ≤ j ≤ l −m if m+ n ≤ 0 and m− n ≥ 0;
−m− n ≤ j ≤ l − n if m+ n ≤ 0 and m− n ≤ 0.

These four alternatives correspond two four subsets of the set {(m,n) | m,n ∈ {−l,−l +
1, . . . , l}}, which have triangular shape, overlapping boundaries, and together span the whole
set. These four subsets are mapped onto each other by the symmetries (1.8)–(1.10).

Hence it is sufficient to compute tlm,n if m+ n ≥ 0, m− n ≥ 0. For a while we only assume
m+ n ≥ 0 and not yet m− n ≥ 0 Then (1.16) takes the form

tlm,n

(
a b
c d

)
=
(

2l
l −m

)− 1
2
(

2l
l − n

) 1
2 ∑
j≥0

(
l − n
j

)(
l + n

l −m− j

)
ajbl−m−jcl−n−jdn+m+j . (1.17)

We will rewrite the right-hand side of (1.17) first as a Gauss hypergeometric function (with
some elementary factors in front) and next as a Jacobi polynomial. For this derivation remember
the Pochhammer symbol

(a)0 := 1, (a)k := a(a+ 1) . . . (a+ k − 1) (k ∈ Z>0).

In particular, note that

(n+ k)!
n!

= (n+ 1)k ,
n!

(n− k)!
= (−1)k(−n)k .
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Now we have for m+ n ≥ 0:

tlm,n

(
a b
c d

)
=
(

(l +m)! (l −m)!
(l + n)! (l − n)!

) 1
2 ∑
j≥0

(l − n)!
j! (l − n− j)!

(l + n)!
(l −m− j)! (n+m+ j)!

ajbl−m−jcl−n−jdn+m+j

=
(

(l +m)! (l −m)!
(l + n)! (l − n)!

) 1
2 (l + n)! bl−mcl−ndm+n

(l −m)! (m+ n)!

×
∑
j≥0

(l −m)!
(l −m− j)!

(l − n)!
(l − n− j)!

(m+ n)!
(m+ n+ j)! j!

(
ad

bc

)j

=
(

(l +m)! (l + n)!
(l −m)! (l − n)!

) 1
2 bl−mcl−ndm+n

(m+ n)!

∑
j≥0

(−l +m)j (−l + n)j
(m+ n+ 1)j j!

(
ad

bc

)j
. (1.18)

1.4 Hypergeometric series

An infinite series
∑∞

k=0 ck is called a hypergeometric series if c0 = 1 and there are complex-valued
polynomials P,Q in one complex variable such that Q(k) 6= 0 for k ∈ Z≥0 and

ck+1 = ck
P (k)
Q(k)

(k ∈ Z≥0). (1.19)

This property is satisfied if

ck :=
(a1)k . . . (ap)k

(b1)k . . . (bq)k k!
zk (1.20)

for certain complex a1, . . . , ap, b1, . . . , bq, z with b1, . . . , bq /∈ Z≤0. Then

ck+1 = ck
(a1 + k) . . . (ap + k) z

(b1 + k) . . . (bq + k)(1 + k)
.

Conversely, we see that for any hypergeometric series we can write ck in the form (1.20). (If the
polynomial Q in (1.19) has no root −1, then multiply P (k) and Q(k) by 1 + k.) The reason
for including the factor k! in the denominator of (1.20) is to let the series

∑
k ck naturally

start with k = 0. Indeed, if we consider (1.19) also for k ∈ Z<0 and write it in the form
ck = ck+1Q(k)/P (k), then we get ck = 0 for k ∈ Z<0 if Q(−1) = 0 and P (k) 6= 0 for k ∈ Z<0.

For ck given by (1.20), denote the hypergeometric series
∑∞

k=0 ck by

pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)

= pFq(a1, . . . , ap; b1, . . . , bq; z) :=
∞∑
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k k!

zk. (1.21)

If for some i and for some n ∈ Z≥0 we have ai = −n, while aj /∈ {−n + 1, . . . ,−1, 0} for j 6= i,
then the series (1.21) terminates after the term for k = n. Then the series is a polynomial
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of degree n in z. In that case, if we replace in (1.21)
∑∞

k=0 by
∑n

k=0, the sum will remain
meaningful if one or more of the parameters bj take integer values ≤ −n.

In the nonterminating case we can apply the ratio test for convergence of the series (1.21).
We see that the series has radius of convergence∞ if p ≤ q, 1 if p = q+1, and 0 if p > q+1. Then,
for p ≤ q+ 1, the hypergeometric series is certainly an analytic function in the complex variable
z on the open disk with that radius and with center 0. We call this function a hypergeometric
function.

The hypergeometric series generalizes the geometric series

1F0

(
1
−

; z
)

=
∞∑
k=0

zk =
1

1− z
(|z| < 1).

The general case of the 1F0 series is the infinite binomial series

1F0

(
a

−
; z
)

=
∞∑
k=0

(a)k
k!

zk = (1− z)−a (|z| < 1). (1.22)

The 0F0 series is the exponential series:

0F0

(
−
−

; z
)

=
∞∑
k=0

zk

k!
= ez (z ∈ C).

The general 2F1 series is called Gauß hypergeometric series:

2F1

(
a, b

c
; z
)

=
∞∑
k=0

(a)k(b)k
(c)kk!

zk (|z| < 1). (1.23)

See Dutka [2] for the early history of hypergeometric series. He attributes the introduction of
the 2F1 series to Euler in 1778 (see [2, (11)]), which is much earlier than Gauß’ first memoir on
this hypergeometric series in 1813.

The Euler integral representation

2F1

(
a, b

c
; z
)

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−a dt (Re c > Re b > 0) (1.24)

is also misnamed according to [2]. Its first occurrence is in the thesis by Vorsselman de Heer
(Utrecht, 1833), see [2, (27)]. However, according to Dutka, Euler obtained a tranformed version
of the right-hand side of (1.24) of which Euler showed that it satisfies a transformed version of
the differential equation (1.32). Formula (1.24) can be proved for |z| < 1 by expanding (1−tz)−a
as a power series (see (1.22)), next interchanging summation and integration (justify this), and
finally using the beta integral. From (1.24) one can see that the right-hand side, as a function
of z, has an analytic continuation to C\[1,∞). This shows that the Gauß hypergeometric series
(1.23) extends to a one-valued analytic function on C\[1,∞). For the moment we have shown
this analytic continuation only for Re c > Re b > 0, but the property can be extended to general
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parameter values (for instance by using that (1.23) is a solution of the differential equation (1.32)
below).

Gauss’ summation formula evaluates

2F1

(
a, b

c
; 1
)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(Re (c− a− b) > 0), (1.25)

where

2F1

(
a, b

c
; 1
)

:= lim
x↑1

2F1

(
a, b

c
;x
)

=
∞∑
k=0

(a)k(b)k
(c)kk!

. (1.26)

Here the infinite series converges absolutely converges if Re (c − a − b) > 0 and the limit then
exists because summability implies Abel summability. If moreover Re c > Re b > 0 then (1.25)
follows by letting z ↑ 1 in (1.24). (Gauß obtained it in a different way.) For the general case
that Re (c− a− b) > 0 one has to use analytic continuation of (1.25) with respect to a, b, c.

Another important corollary of (1.24) is Pfaff’s transformation formula

2F1

(
a, b

c
; z
)

= (1− z)−a 2F1

(
a, c− b

c
;

z

z − 1

)
. (1.27)

If Re c > Re b > 0 then (1.27) indeed follows from (1.24) by substitution of t = 1 − s for the
integration variable. For the general case one has to justify analytic continuation of both sides
of (1.27) with respect to the parameters b and c. (Pfaff obtained (1.27) in a different way.)
Note that we can expand the right-hand side of (1.27) as a power series in z/(z− 1) if Re z < 1

2 .
Hence (1.27) gives an analytic continuation of the left-hand side from the open unit disc to its
union with the half plane {z ∈ C | Re z < 1

2}.
As observed by Vorsselman de Heer in 1833, combination of two versions of (1.27) yields

Euler’s tranformation formula

2F1

(
a, b

c
; z
)

= (1− z)c−a−b 2F1

(
c− a, c− b

c
; z
)
. (1.28)

Euler obtained this in 1778 in a different way.
Termwise differentiation in (1.23) yields the differentiation formula

d

dz
2F1

(
a, b

c
; z
)

=
ab

c
2F1

(
a+ 1, b+ 1

c+ 1
; z
)
. (1.29)

Note that all parameters are raised by 1. Similarly one obtains

d

dz

(
zc 2F1

(
c− a, c− b
c+ 1

; z
))

= czc−1
2F1

(
c− a, c− b

c
; z
)
, (1.30)

which, combined with (1.28), yields

d

dz

(
zc(1− z)a+b−c+1

2F1

(
a+ 1, b+ 1

c+ 1
; z
))

= czc−1(1− z)a+b−c
2F1

(
a, b

c
; z
)
. (1.31)
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Note that here all parameters are lowered by 1. Combination of (1.29) and (1.31) yields Euler’s
differential equation(

z(1− z) d
2

dz2
+
(
c− (a+ b+ 1)z

) d
dz
− ab

)
2F1

(
a, b

c
; z
)

= 0. (1.32)

Exercise 1.15. Derive from (1.24) that

2F1

(
a, b

c
; z
)

= − e−iπc Γ(c)
4 sin(πb) sin(π(c− b)) Γ(b)Γ(c− b)

×
∫

(1+,0+,1−,0−)
tb−1(1− t)c−b−1(1− tz)−a dt (z /∈ [0,∞), b, 1− c, c− b /∈ Z>0).

Here the closed integration contour goes successively around 1 in positive sense, around 0 in
positive sense, around 1 in negative sense, and around 0 in negative sense. The factors tb−1 and
(1 − t)c−b−1 are taken such that they are equal to their principal values at a point t ∈ (0, 1)
where the path of integration starts. The factor (1 − tz)−a is defined such that it equals 1 if
z → 0.

1.5 Jacobi polynomials

Let (a, b) be an open interval and let two systems of monic orthogonal polynomials {pn}∞n=0 and
{qn}∞n=0 be defined with respect to strictly positive weight functions w respectively w1 on (a, b).
Suppose that w is continuous and w1 is continuously differentiable on (a, b). Under suitable
boundary assumptions on w and w1, integration by parts yields∫ b

a
p′n(x) qm−1(x)w1(x) dx = −

∫ b

a
pn(x)w(x)−1 d

dx

(
w1(x) qm−1(x)

)
w(x) dx (1.33)

without stock terms. Suppose that

w(x)−1 d

dx

(
w1(x)xn−1

)
= an x

n + polynomial of degree < n (1.34)

for certain an 6= 0. Then (1.32) and (1.33) together with the orthogonality properties of {pn}∞n=0

and {qn}∞n=0 yield that

p′n(x) = n qn−1(x), (1.35)

w(x)−1 d

dx

(
w1(x) qn−1(x)

)
= an pn(x). (1.36)

The pair of operators D− and D+ defined by

(D−f)(x) := f ′(x), (1.37)

(D+f)(x) :=
(
w(x)−1 d

dx
◦ w1(x)

)
f(x) =

w1(x)
w(x)

f ′(x) +
w′1(x)
w(x)

f(x) (1.38)
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will be called a pair of shift operators. So we have:
adjointness:∫ b

a
(D−f)(x) g(x)w1(x) dx = −

∫ b

a
f(x) (D+g)(x)w(x) dx (f , g polynomials), (1.39)

shift formulas:
D−pn = n qn−1, D+qn−1 = an pn, (1.40)

second order differential equation:

(D+ ◦D−)pn = nan pn, (1.41)

relation between squared L2-norms:

n

∫ b

a
(qn−1(x))2w1(x) dx = −an

∫ b

a
(pn(x))2w(x) dx. (1.42)

From (1.42) we see that an < 0.

The following cases are examples for which the above considerations are valid:

i) Jacobi: (a, b) = (−1, 1), w(x) = (1− x)α(1 + x)β, w1(x) = (1− x2)w(x), α, β > −1.

ii) Laguerre: (a, b) = (0,∞), w(x) = xαe−x, w1(x) = xw(x), α > −1.

iii) Hermite: (a, b) = (−∞,∞), w(x) = w1(x) = e−x
2
.

These three cases are essentially the only cases which satisfy the above conditions.

Let α, β > −1. Let a, b, w and w1 be as in case (i) above. Note that the integral of w over
(−1, 1) is a variant of the beta integral:∫ 1

−1
(1− x)α (1 + x)β dx =

2α+β+1 Γ(α+ 1) Γ(β + 1)
Γ(α+ β + 2)

. (1.43)

Denote the monic orthogonal polynomials on (−1, 1) with respect to the weight function w by
p

(α,β)
n (monic Jacobi polynomials). Then the raising shift operator D+ = D

(α,β)
+ is given by

(D(α,β)
+ f)(x) =

(
(1− x)−α(1 + x)−β

d

dx
◦ (1− x)α+1(1 + x)β+1

)
f(x)

= (1− x2) f ′(x) + (β − α− (α+ β + 2)x) f(x).

Hence an = −(n+ α+ β + 1) and the shift relations become:

d

dx
p(α,β)
n (x) = n p

(α+1,β+1)
n−1 (x), (1.44)(

(1− x)−α(1 + x)−β
d

dx
◦ (1− x)α+1(1 + x)β+1

)
p

(α+1,β+1)
n−1 (x)

=
(

(1− x2)
d

dx
+ (β − α− (α+ β + 2)x)

)
p

(α+1,β+1)
n−1 (x) = −(n+ α+ β + 1) p(α,β)

n (x).

(1.45)
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The second order differential equation becomes(
(1− x2)

d2

dx2
+ (β − α− (α+ β + 2)x)

d

dx

)
p(α,β)
n (x) = −n(n+ α+ β + 1) p(α,β)

n (x). (1.46)

Note that the hypergeometric differential equation (1.32) with a, b, c equal to −n, n + α + β +
1, α+1, respectively, can be obtained from (1.46) by the substitution x = 1−2z. Since solutions
of (1.32) are uniquely determined by a nonzero initial value at z = 0, we can prove (1.51) (given
below) already in this way.

Iteration of (1.45) yields the Rodrigues formula

p(α,β)
n (x) =

(−1)n

(n+ α+ β + 1)n
(1− x)−α(1 + x)−β

dn

dxn

(
(1− x)α+n (1 + x)β+n

)
. (1.47)

Formula (1.42) yields the recurrence∫ 1

−1

(
p(α,β)
n (x)

)2 (1− x)α(1 + x)β dx

=
n

n+ α+ β + 1

∫ 1

−1

(
p

(α+1,β+1)
n−1 (x)

)2 (1− x)α+1(1 + x)β+1 dx.

Iteration of this recurrence and combination with (1.43) yields∫ 1
−1

(
p

(α,β)
n (x)

)2 (1− x)α(1 + x)β dx∫ 1
−1(1− x)α(1 + x)β dx

=
22n n! (α+ 1)n (β + 1)n

(α+ β + 2)2n (n+ α+ β + 1)n
. (1.48)

Consider (1.45) for x = 1. This yields the recurrence

−2(α+ 1) p(α+1,β+1)
n−1 (1) = −(n+ α+ β + 1) p(α,β)

n (1).

By iteration we obtain

p(α,β)
n (1) =

2n (α+ 1)n
(n+ α+ β + 1)n

. (1.49)

By Taylor expansion and by use of (1.44) and (1.49) we obtain

p(α,β)
n (x) =

n∑
k=0

(x− 1)k

k!

(
d

dx

)k
p(α,β)
n (x)

∣∣∣
x=1

=
n∑
k=0

(x− 1)k

k!
n!

(n− k)!
p

(α+k,β+k)
n−k (1)

=
n∑
k=0

n! 2n−k (α+ k + 1)n−k (x− 1)k

k! (n− k)! (n+ α+ β + k + 1)n−k

=
2n (α+ 1)n

(n+ α+ β + 1)n

n∑
k=0

(−n)k (n+ α+ β + 1)k
(α+ 1)k k!

(
1− x

2

)k
. (1.50)

13



From (1.50) and (1.49) we obtain

p
(α,β)
n (x)

p
(α,β)
n (1)

=
n∑
k=0

(−n)k (n+ α+ β + 1)k
(α+ 1)k k!

(
1− x

2

)k
= 2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
. (1.51)

The following general result can be proved in an immediate way. Let {pn}∞n=0 be a system of
monic orthogonal polynomials with respect to a weight function w on (a, b). Put v(x) := w(−x)
and let {qn}∞n=0 be a system of monic orthogonal polynomials with respect to the weight function
v on (−b,−a). Then pn(−x) = (−1)nqn(x). In particular,

p(α,β)
n (−x) = (−1)np(β,α)

n (x). (1.52)

The standard normalization of Jacobi polynomials is different from the monic normalization.
Write P (α,β)

n for the constant multiple of p(α,β)
n such that

P (α,β)
n (1) =

(α+ 1)n
n!

. (1.53)

Then, by (1.49) and (1.53),

P (α,β)
n (x) =

(n+ α+ β + 1)n
2n n!

p(α,β)
n (x) =

(n+ α+ β + 1)n
2n n!

xn + lower degree terms.

From (1.53) and (1.51) we obtain:

P (α,β)
n (x) =

(α+ 1)n
n! 2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
. (1.54)

One may now also rewrite the other previous formulas in terms of these renormalized Jacobi
polynomials. For instance, (1.46) and (1.52) remain valid with pn replaced by Pn, and (1.48)
(more generally the orthogonality relations) now takes the form∫ 1

−1
P (α,β)
m (x)P (α,β)

n (x) (1− x)α(1 + x)β dx = h(α,β)
n δm,n (1.55)

with

h(α,β)
n =

2α+β+1(n+ α+ β + 1)n Γ(n+ α+ 1) Γ(n+ β + 1)
n! Γ(2n+ α+ β + 2)

. (1.56)

Theorem 1.16. For fixed α, β > −1 the Jacobi polynomials P (α,β)
n form a complete orthogonal

system in L2((−1, 1), (1− x)α(1 + x)β dx).

For the proof use that we have L2 with respect to a finite measure on a bounded interval.
Therefore the continuous functions on [−1, 1] are dense in L2((−1, 1), (1− x)α(1 + x)β dx), and
the polynomials are dense in sup-norm (and hence also in L2-norm) in C([−1, 1]) by Weierstrass’
approximation theorem.
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1.6 Orthogonality of matrix elements

We now recognize the formula (1.18) for the matrix element tlm,n (m+n ≥ 0) of the representation
tl of GL(2,C) as a hypergeometric series (1.23):

tlm,n

(
a b
c d

)
=
(

(l +m)! (l + n)!
(l −m)! (l − n)!

) 1
2 bl−mcl−ndm+n

(m+ n)! 2F1

(
−l +m,−l + n

m+ n+ 1
;
ad

bc

)
. (1.57)

Note that the two upper parameters −l+m,−l+n of the hypergeometric function in (1.57) are
both non-positive, and that the series will terminate after the term with j = (l −m) ∧ (l − n).

Pfaff’s transformation (1.27) implies for the hypergeometric function in (1.57) that

2F1

(
−l +m,−l + n

m+ n+ 1
;
ad

bc

)
= bm−lcm−l(bc− ad)l−m 2F1

(
−l +m, l +m+ 1

m+ n+ 1
;

ad

ad− bc

)
.

Hence we arrive at the following rewritten form of (1.57) (from now on assume m + n ≥ 0,
m− n ≥ 0):

tlm,n

(
a b
c d

)
=
(

(l +m)! (l + n)!
(l −m)! (l − n)!

) 1
2 cm−ndm+n(bc− ad)l−m

(m+ n)! 2F1

(
−l +m, l +m+ 1

m+ n+ 1
;

ad

ad− bc

)
.

(1.58)
Now use the expression (1.54) of Jacobi polynomials in terms of the Gauss hypergeometric
function. This implies for the hypergeometric function in (1.58) that

2F1

(
−l +m, l +m+ 1

m+ n+ 1
;

ad

ad− bc

)
=

(l −m)! (m+ n)!
(l + n)!

P
(m+n,m−n)
l−m

(
bc+ ad

bc− ad

)
.

Hence we can further rewrite (1.58) (if m± n ≥ 0) as follows:

tlm,n

(
a b
c d

)
=
(

(l +m)! (l −m)!
(l + n)! (l − n)!

) 1
2

cm−ndm+n(bc− ad)l−m P (m+n,m−n)
l−m

(
bc+ ad

bc− ad

)
. (1.59)

We are in particular interested in (1.59) if
(
a b
c d

)
∈ SU(2). Note that by (1.11) a general

element of SU(2) can be written as(
sin θ eiφ − cos θ e−iψ

cos θ eiψ sin θ e−iφ

)
with 0 ≤ θ ≤ π/2 and φ, ψ ∈ [0, 2π).

Hence we obtain:

Theorem 1.17. If m± n ≥ 0 then

tlm,n

(
sin θ eiφ − cos θ e−iψ

cos θ eiψ sin θ e−iφ

)
= (−1)l−m

(
(l +m)! (l −m)!
(l + n)! (l − n)!

) 1
2

× e−i(m+n)φ ei(m−n)ψ (sin θ)m+n(cos θ)m−n P (m+n,m−n)
l−m (cos 2θ). (1.60)
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We introduce a special Borel measure µ on SU(2) such that∫
SU(2)

fdµ =
1

2π2

∫ 2π

φ=0

∫ 2π

ψ=0

∫ π/2

θ=0
f

(
sin θ eiφ − cos θ e−iψ

cos θ eiψ sin θ e−iφ

)
sin θ cos θ dθ dψ dφ. (1.61)

for all continuous funtions f on SU(2). Note that∫
SU(2)

dµ = 1. (1.62)

The matrix elements tlm,n satisfy a remarkable orthogonality relation with respect to this
measure: ∫

SU(2)
tlm,n t

l′
m′,n′ dµ =

1
2l + 1

δl,l′ δm,m′ δn,n′ . (1.63)

For (m,n) 6= (m′, n′) this follows immediately from (1.60), (1.61) and the symmetries (1.8)–
(1.10). For (m,n) = (m′, n′) with m+ n,m− n ≥ 0 we have to show that

(l +m)! (l −m)!
(l + n)! (l − n)!

∫ π/2

0
P

(m+n,m−n)
l−m (cos 2θ)P (m+n,m−n)

l′−m (cos 2θ) (sin θ)2m+2n+1(cos θ)2m−2n+1 dθ

=
1

2l + 1
δl,l′ .

By the substitution x = cos 2θ this can be rewritten as

(l +m)! (l −m)!
(l + n)! (l − n)! 22m+1

∫ 1

−1
P

(m+n,m−n)
l−m (x)P (m+n,m−n)

l′−m (x) (1− x)m+n(1 + x)m−n dx =
δl,l′

2l + 1
.

(1.64)
In order to show this identity we remember the orthogonality relations (1.55), (1.56) for Jacobi
polynomials. Now observe that

h
(m+n,m−n)
l−m =

22m+1(l + n)! (l − n)!
(2l + 1)(l +m)! (l −m)!

.

This settles (1.64) and hence (1.63).

Proposition 1.18. The matrix elements tlm,n (l ∈ 1
2Z≥0, m,n ∈ {−l,−l + 1, . . . , l}) form a

complete orthogonal system in L2(SU(2), dµ).

The proof uses that the span of the matrix elements tlm,n, as functions of
(
a −c
c a

)
∈ SU(2)

(|a|2 + |c|2 = 1), equals the space of polynomials in the four real variables Re a, Im a,Re b, Im b,
restricted to |a|2 + |c|2 = 1. Hence, by Weierstrass’ approximation theorem, the tlm,n span a
dense subspace of C(SU(2)) with respect to the sup-norm, and thus also span a dense subspace
of L2(SU(2), dµ).
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1.7 Schur’s orthogonality relations

The orthogonality relation (1.63) is a special case of Schur’s orthogonality relations for the matrix
elements of the irreducible unitary representations of a compact group. For the formulation of
this theorem we need the concept of the Haar measure on a compact group (see for instance
Rudin [6, §5.12–5.14]).

Theorem 1.19. Let G be a compact group. There is a unique Borel measure µ on G, called Haar
measure, such that µ(G) = 1 and, for all Borel sets E ⊂ G and for all g ∈ G, µ(gE) = µ(E).
Then this measure also satisfies µ(E) = µ(Eg) for all Borel sets E ⊂ G and for all g ∈ G.

The left and right invariance of the measure µ can be equivalently phrased as follows: For
each continuous function f on G we have∫

G
f(hg) dµ(g) =

∫
G
f(g) dµ(g) =

∫
G
f(gh) dµ(g) (h ∈ G). (1.65)

When we write L2(G) (or L1(G), etc.) we will mean the L2-space on G with respect to the Haar
measure.

We will now show that the measure µ on SU(2) as defined by (1.61) is equal to the Haar
measure on SU(2). By (1.11) the group SU(2) is homeomorphic with the unit sphere S3 =
{(a, c) ∈ C2 | |a|2 + |c|2 = 1}. Let S ∈ SU(2). A left multiplication T 7→ ST : SU(2) → SU(2)
corresponds to some rotation of S3. Thus a rotation invariant measure on S3 will provide,
after suitable normalization, the Haar measure on SU(2). There exists, up to a constant factor,
a unique rotation invariant measure ω on S3. This measure is such that, for all continuous
functions on R4 of compact support and with λ Lebesgue measure on R4,∫

R4

f dλ =
∫ ∞
r=0

∫
ξ∈S3

f(rξ) r3 dω(ξ) dr. (1.66)

Now take coordinates

x = (r sin θ cosφ, r sin θ sinφ, r cos θ cosψ, r cos θ sinψ)

on R4, which means for r = 1 that x1 + ix2 = sin θ eiφ, x3 + ix4 = cos θ eiψ. These are just the
coordinates chosen in (1.61) for (a, c) ∈ C2 with |a|2 + |c|2 = 1. A straightforward computation
of the Jacobian yields:∫

R4

f(x1, x2, x3, x4) dx1 dx2 dx3 dx4

=
∫ ∞
r=0

∫ π/2

θ=0

∫ 2π

φ=0

∫ 2π

ψ=0
f(r sin θ cosφ, r sin θ sinφ, r cos θ cosψ, r cos θ sinψ)

× r3 sin θ cos θ dr dθ dφ dψ. (1.67)

Comparison of (1.66) and (1.67) gives, for continuous functions F on S3 ⊂ C2, that∫
S3

F dω =
∫ π/2

θ=0

∫ 2π

φ=0

∫ 2π

ψ=0
F (sin θ eiφ, cos θ eiψ) sin θ cos θ dθ dφ dψ. (1.68)
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In view of the previous observations we have thus shown that the Haar measure on SU(2) is
given by (1.61).

As a preliminary to Schur’s orthogonality relations we recall Schur’s Lemma:

Lemma 1.20 (Schur). Let G be a group, and let π, ρ be irreducible representations of G on
finite dimensional complex linear spaces V,W, respectively.

a) Let A : V →W be a linear map which is G-intertwining, i.e.,

Aπ(g) = ρ(g)A for all g ∈ G. (1.69)

Then A is bijective or A = 0.

b) Let A : V → V be linear such that Aπ(g) = π(g)A for all g ∈ G. Then A = λI for some
λ ∈ C.

For the proof use in a) that A(V ) and A−1{0} are G-invariant subspaces, and in b) that A
must have at least one (complex) eigenvalue and that eigenspaces of A are G-invariant.

In the case of bijective A in a) of Schur’s lemma we call the representations π and ρ equivalent:

Definition 1.21. Let G be a group, and let π, ρ be representations of G on finite dimensional
complex linear spaces V,W, respectively. Then π and ρ are called equivalent if there is a bijective
linear map A : V →W satisfying (1.69).

Equivalence is an equivalence relation on the collection of finite dimensional representations
of G, and also on the collection of finite dimensional irreducible representations of G.

Theorem 1.22. (Schur’s orthogonality relations)
Let G be a compact group with Haar measure µ. Let π and ρ be finite dimensional complex
irreducible unitary representations of G which are inequivalent to each other. Let π resp. ρ have
matrix elements (πi,j)i,j=1,...,dπ and (ρk,l)k,l=1,...,dρ with respect to certain orthonormal bases of
their representation spaces. Then ∫

G
πi,j(g) ρk,l(g) dµ(g) = 0

and ∫
G
πi,j(g)πk,l(g) dµ(g) =

1
dπ

δi,k δj,l.

For the proof fix j and l and put

Aik :=
∫
G
πij(g) ρk,l(g) dµ(g).

Then ∑
k

Aikρk,r(h) =
∑
m

πim(h)Am,r.
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Hence Aρ(h) = π(h)A for all h ∈ G. Then A = 0 by Schur’s lemma. But if we put ρ := π then
we conclude that A = λI for some λj,l ∈ C. Then∫

G
πi,j(g)πk,l(g) dµ(g) = λj,l δi,k.

We can compute λj,l = (dπ)−1 by putting k = i and summing over i.
Let (πα)α∈A be a maximal set of mutually inequivalent finite dimensional complex irreducible

unitary representations of G, and put dα := dπα . Then the orthogonality relations in Theorem
1.22 can be written as ∫

G
παi,j(g)πβk,l(g) dµ(g) =

1
dα

δα,β δi,k δj,l. (1.70)

The functions πi,j are continuous on G, so they are certainly in L2(G). By (1.70) the functions

d
1
2
α παi,j (α ∈ A, i, j = 1, . . . , dα) form an orthonormal system in L2(G). It can be shown in

general that this orthonormal system is complete, but in special cases (like G = SU(2)) the
completeness will already be obvious (it will follow from Proposition 1.18).

1.8 Irreducibility of representations

Comparison of (1.63) with (1.70) strongly suggests that (1.63) is the specialization of (1.70) to
SU(2). But we still have to show that the representations tl are irreducible.

Put aφ :=
(
eiφ 0
0 e−iφ

)
. Then aφaψ = aφ+ψ and aφ+2π = aφ. The group A := {aφ | 0 ≤ φ <

2π} is a closed abelian subgroup of SU(2). It is isomorphic and homeomorphic with the group
U(1) of complex numbers of absolute value 1, which has multiplication of complex numbers as
the group multiplication. It follows from (1.4) that

tl(aφ)ψln = e−2inφ ψln. (1.71)

Lemma 1.23. Let V be an invariant subspace of Hl with respect to the representation πl of
SU(2). If v ∈ V and 〈v, ψlm〉 6= 0 then ψlm ∈ V .

Proof We have

v =
l∑

n=−l
〈v, ψln〉ψln,

tl(aφ) v =
l∑

n=−l
〈v, ψln〉 tl(aφ)ψln =

l∑
n=−l
〈v, ψln〉 e−2inφ ψln.

Hence∫ 2π

0
e2imφ tl(aφ) v dφ =

l∑
n=−l
〈v, ψln〉

(∫ 2π

0
e2imφe−2inφ dφ

)
ψln = 2π〈v, ψlm〉ψlm.

19



The integral on the left should be interpreted as a Riemann integral of vectors, which can be
approximated by Riemann sums of vectors. Since v ∈ V , each approximating Riemann sum is
in V , and hence also their limit, the Riemann integral, is in V . Hence 2π〈v, ψlm〉ψlm ∈ V . So
ψlm ∈ V if 〈v, ψlm〉 6= 0.

This Lemma implies the following Proposition.

Proposition 1.24. Let V be an invariant subspace of Hl with respect to the representation πl

of SU(2). Then there is a subset A of {−l, . . . , l} such that V = Span{ψln | n ∈ A}. Let W be
the orthoplement of V and B the complement of A. Then W is also an invariant subspace and
W = Span{ψln | n ∈ B}.

Theorem 1.25. The representation tl of SU(2) is irreducible.

Proof Suppose tl is not irreducible. By Proposition 1.24 Hl is the orthogonal direct sum of
invariant subspaces V = Span{ψln | n ∈ A} and W = Span{ψln | n ∈ B}, where {−l, . . . , l}
is the disjoint union of certain nonempty subsets A and B. One of these subsets, say A, will
contain l. Then some m will be in B. Then tl(T )ψll will be in V for all T ∈ SU(2), and therefore
orthogonal to ψlm. Hence tlm,l(T ) = 0 for all T ∈ SU(2). In particular, also using (1.6), we
obtain

0 = tlm,l

(
sin θ − cos θ
cos θ sin θ

)
= (−1)l−m (cos θ)l−m (sin θ)l+m,

which gives a contradiction.

Exercise 1.26. (An interpretation of Krawtchouk polynomials as matrix elements of irreducible
representations of SU(2))

a) Prove that

2F1

(
−n, b
c

;x
)

=
(c− b)n

(c)n
2F1

(
−n, b

b− c− n+ 1
; 1− x

)
(n = 0, 1, 2, . . .). (1.72)

(Use (1.54) and (1.52).)

b) Prove that

2F1

(
−n,−m

c
;x
)

=
(c)m+n

(c)n(c)m
2F1

(
−n,−m

−c− n−m+ 1
; 1− x

)
(n,m = 0, 1, 2, . . .).

(1.73)
(Use (1.72).)

c) Prove that, for m+ n ≥ 0,

tlm,n

(
a b
c d

)
=
(

2l
l −m

) 1
2
(

2l
l − n

) 1
2

bl−mcl−ndm+n
2F1

(
−l +m,−l + n

−2l
;
bc− ad
bc

)
.

(1.74)
(Use (1.73) and (1.57).)
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d) Prove that, for m+ n ≥ 0,

tlm,n

(
sin θ − cos θ
cos θ sin θ

)
=
(

2l
l −m

) 1
2
(

2l
l − n

) 1
2

(−1)l−m(cos θ)2l−m−n(sin θ)m+n

×Kl−m(l − n; cos2 θ, 2l), (1.75)

where the Krawtchouk polynomials are given by

Kn(x; p,N) := 2F1

(
−n,−x
−N

; p−1

)
(n = 0, 1, . . . , N). (1.76)

e) Prove that
Kn(x; p,N) = (1− p−1)x+n−N KN−n(N − x; p,N). (1.77)

(Use (1.76) and (1.28).)

f) Prove that (1.75) remains valid for all m,n.
(Use (1.9) and (1.77).)

g) Show that

l∑
n=−l

tlm,n

(
sin θ − cos θ
cos θ sin θ

)
tlm′,n

(
sin θ − cos θ
cos θ sin θ

)
= δm,m′ , (1.78)

and rewrite this as an orthogonality relation for the Krawtchouk polynomials occurring
on the right-hand side of (1.75).

Exercise 1.27. (Addition formula and product formula for Legendre polynomials)
Let l = 0, 1, 2, . . . .

a) Prove that, for ad− bc = 1,

tl0,0

(
a b
c d

)
= Pl(2ad− 1), (1.79)

where Pl := P
(0,0)
l is the Legendre polynomial.

b) Prove that
tl0,0(T ) = Pl(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ)

if

T =

(
sin 1

2θ1 − cos 1
2θ1

cos 1
2θ1 sin 1

2θ1

)(
e

1
2
iφ 0

0 e−
1
2
iφ

)(
sin 1

2θ2 cos 1
2θ2

− cos 1
2θ2 sin 1

2θ2

)
.

c) Prove that

Pl(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ) = Pl(cos θ1)Pl(cos θ2)

+
∑

0<|k|≤l

tl0,k

(
sin 1

2θ1 − cos 1
2θ1

cos 1
2θ1 sin 1

2θ1

)
tlk,0

(
sin 1

2θ2 cos 1
2θ2

− cos 1
2θ2 sin 1

2θ2

)
e−ikφ. (1.80)
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d) Prove that

Pl(cos θ1)Pl(cos θ2) =
1

2π

∫ 2π

0
Pl(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ) dφ. (1.81)

1.9 On the proof of Proposition 1.18

I give a little more detail about the proof of Proposition 1.18. First observe, by (1.59), by
the symmetries (1.8)–(1.10), and by (1.52) (also valid if we replace pn by Pn) that, for m,n ∈
{−l,−l + 1, . . . , l} such that m± n ≥ 0 and for a, c ∈ C:

tlm,n

(
a −c
c a

)
= cm−nam+n

tln,m

(
a −c
c a

)
= (−c)m−nam+n

tl−m,−n

(
a −c
c a

)
= (−c)m−nam+n

tl−n,−m

(
a −c
c a

)
= cm−nam+n


×
(

(l +m)! (l −m)!
(l + n)! (l − n)!

) 1
2

(|a|2 + |c|2)l−m P (m−n,m+n)
l−m

(
|a|2 − |c|2

|a|2 + |c|2

)
. (1.82)

These exhaust all matrix elements of tl. They are homogeneous of degree 2l in a, a, c, c. We get
their restriction to SU(2) if we take |a|2+|c|2 = 1. For the restriction it makes no difference if we
replace in (1.82) the factor (|a|2 + |c|2)l−m by (|a|2 + |c|2)r−m with r− l ∈ Z≥0. Then we obtain
homogeneous polynomials of degree 2r in a, a, c, c. By a little thought we see that all functions
thus obtained, i.e., (|a|2 + |c|2)l−m replaced by (|a|2 + |c|2)r−m, r fixed, 0 ≤ l ∈ {r, r − 1, . . .},
m,n ∈ {−l,−l+ 1, . . . , l}, m±n ≥ 0 yield a basis for all homogeneous polynomials of degree 2r
in a, a, c, c. Then there follows our claim after the statement of Proposition 1.18 that the span

of the matrix elements tlm,n, as functions of
(
a −c
c a

)
∈ SU(2) (|a|2 + |c|2 = 1), equals the space

of polynomials in the four real variables Re a, Im a,Re c, Im c, restricted to |a|2 + |c|2 = 1. It is
a consequence of the Stone-Weierstrass theorem (see for instance [11, §36]) that, for a compact
subset X of Rn, the space of polynomials on Rn restricted to X lies dense in C(X) with respect
to the subnorm. Then, if µ is a finite Borel measure on X, this space of polynomials is also
dense in C(X) with respect to the norm of L2(X,µ). Finally, C(X,µ) is then dense in L2(X,µ),
see for instance [10, Theorem 3.14].

1.10 Lie groups and Lie algebra

References for the general theory of Lie groups and Lie algebras are [7], [8], [9], [12].

Definition 1.28. A Lie group is a group G which is also a C∞ manifold such that the maps
(g, h) 7→ gh : G×G→ G and g 7→ g−1 : G→ G are C∞.
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The fact that G is a C∞ manifold implies that G is a topological space (Hausdorff and
satisfying the second axiom of countability) and the fact that the group operations for G are
C∞ implies that they are continuous. So a Lie group is in particular a topological group.

The fact that the multiplication on a Lie group G is C∞ can be described as follows. Let
g0, h0 ∈ H. Take an open neighbourhood W of g0h0 on which there are local coordinates
(z1, . . . , zn). Then there are open neigbourhoods U of g0 and V of h0 such that UV ⊂ W and
such that we have local coordinates (x1, . . . , xn) on U and local coordinates (y1, . . . , yn) on V .
Then we can write the multiplication on U × V as

(x1, . . . , xn)(y1, . . . , yn) = (z1, . . . , zn),

which gives zj as a function zj(x1, . . . , xn, y1, . . . , yn) of 2n real variables. Then we require that
these functions are C∞.

Example 1.29. Consider G = GL(n,C). This is an open part of Mn(C) (the space of all
complex n × n matrices), so it is an open part of an n2-dimensional complex linear space, and
we can take on the whole group one system of local coordinates, namely the real and imaginary
parts of the matrix entries. Even better, we can take the matrix entries themselves as complex
coordinates. Thus GL(n,C) is a complex analytic manifold, and the group operations are
complex analytic (even stronger: multiplication is a polynomial map and taking the inverse is a
rational map). We say that GL(n,C) is a complex analytic group. Of course, GL(n,C) is then
also a real analytic group (real analytic manifold and group operations are real analytic) and a
C∞ group (Lie group as defined in Definition 1.28).

It can be shown that every Lie group is in fact a real analytic group, but complex analytic
groups are much more special.

Suppose that M is a C∞ manifold. Let p ∈ M and let U be an open neighbourhood of p
on which there are local coordinates (x1, . . . , xn). Let p have coordinates x0 = (x01, . . . , x0n).
With respect to this system of coordinates the tangent space TpM to M at p is just the linear
space Rn. With a tangent vector a ∈ Rn we associate on the one hand an equivalence class of
C∞ curves through p and on the other hand a linear functional on the space C∞(U) of real-
valued C∞ functions on U . The equivalence class of curves consists of all C∞ maps t 7→ x(t) =
(x1(t), . . . , xn(t)) such that x(0) = x0, i.e. p, and x′(0) = (x′1(0), . . . , x′n(0)) = (a1, . . . , an) = a.
The linear functional A is given by

Af :=
n∑
j=1

aj
∂

∂xj
f(x1, . . . , xn)

∣∣∣
x=x0

(f ∈ C∞(U)). (1.83)

Then we can also connect x(t) and A, if they are both assiciated with a as above:

Af =
d

dt
f(x(t))

∣∣∣
t=0

(f ∈ C∞(U)). (1.84)

A vector field X on M is an assignment of a tangent vector Xp ∈ TpM to each p ∈ M such
that, on any open set U in M with local coordinates (x1, . . . , xn), we have

Xxf =
n∑
j=1

cj(x1, . . . , xn)
∂

∂xj
f(x1, . . . , xn) (f ∈ C∞(U)) (1.85)
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with the cj being C∞ functions in x1, . . . , xn. Here Xx means the tangent vector attributed by
X to the point p with coordinates x = (x1, . . . , xn). Thus we can consider vector fields as first
order linear operators on M with C∞ coefficients.

Let X and Y be vector fields on M . Define the commutator [X,Y ] of X and Y by

[X,Y ]f := X(Y f)− Y (Xf) (f ∈ C∞(M)).

Then [X,Y ] is again a vector field. Clearly [X,Y ] is linear in X and Y and we have anticom-
mutativity

[X,Y ] = −[Y,X]

and the Jacobi identity

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Thus the real linear space of vector fields on X is a real Lie algebra.
Now let G be a Lie group and let V be an open neighbourhood of e with local coordinates

(y1, . . . , yn) such that e has coordinates (0, . . . , 0). Consider the tangent space TeG as the space
of linear operators A associated with a ∈ Rn and given by

Af :=
n∑
j=1

aj
∂

∂yj
f(y1, . . . , yn)

∣∣∣
y=0

(f ∈ C∞(V )). (1.86)

Define in terms of A the vector field XA on G by

(XAf)(g) := A(h 7→ f(gh)) (f ∈ C∞(G), g ∈ G). (1.87)

Indeed, for given g ∈ G and f ∈ C∞(G) the function h 7→ f(gh) restricted to V is a C∞

function on V , by which A(h 7→ f(gh)) is well defined. Also, for g in an open set U with local
coordinates (x1, . . . , xn) we can write the right-hand side of (1.87) in the form of the right-hand
side of (1.85) with C∞ coefficients. Thus XA is a vector field and it is left invariant in the sense
that

(XAf)(g1g) = XA(g 7→ f(g1g)) (f ∈ C∞(G), g, g1 ∈ G). (1.88)

It is not difficult to show that all left invariant vector fields on G are of the form XA for some
A ∈ TeG, and that the map A 7→ XA is a linear bijection from TeG onto the linear space of left
invariant vector fields on G. Note that we can recover A from XA by

Af = (XAf)(e). (1.89)

By this linear bijection the Lie algebra structure of the space of left invariant vector fields can
be transfered to TeG. Thus TeG becomes a Lie algebra with Lie bracket [A,B] defined by

X[A,B] := [XA, XB] (A,B ∈ TeG). (1.90)

Note that we cannot a priori consider this Lie bracket [A,B] as a commutator AB−BA because
it is not clear how to define the product AB for A,B ∈ TeG. The tangent space TeG considered
as a Lie algebra is also denoted by g or Lie(G). It is called the Lie algebra of the Lie group G.
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1.11 Linear Lie groups

Definition 1.30. Let G be a Lie group with subgroup H. We call H a regularly embedded Lie
subgroup of G if, for each h ∈ H, there is an open neighbourhood U of h in G on which there are
local coordinates (x1, . . . , xn) (x1, . . . , xn ∈ (−a, a)) such that H ∩ U consists of all elements of
U with coordinates (x1, . . . , xm, 0, . . . , 0) (x1, . . . , xm ∈ (−a, a)). Then H becomes a Lie group
itself with the relative topology from G and with the structure of C∞ manifold given by the
local coordinates (x1, . . . , xm) on the sets H ∩ U . Then H is also a closed subset of G.

If a subgroup H of G would satisfy the requirements in the above definition except for the
rule that in the local coordinate neighbourhood U the intersection H ∩U should consist of only
one slice, then we still speak of a Lie subgroup H but it may not be regularly embedded and it
may not be a closed subset of G. Its topology, compatible with the structure of C∞ manifold,
may be different from the relative topology. An example is the abelian Lie group G := R2/Z2

with subgroup H := {(x, cx) (mod Z2) | x ∈ R}, where c is irrational. Usually we will only
consider regularly embedded Lie subgroups.

Definition 1.31. A regularly embedded linear Lie group is a regularly embedded Lie subgroup
of GL(n,C) for some n ∈ Z>0.

There is a theorem stating that every closed subgroup of GL(n,C) has a unique structure
of C∞ manifold by which it becomes a regularly embedded linear Lie group. For an example of
a subgroup of GL(1,C) which is not a Lie group, consider G := {ex | x ∈ Q} with the relative
topology as a subset of GL(1,C). It is not locally Euclidean, so it cannot be a Lie group.

Let G ⊂ GL(n,C) be a regularly embedded linear Lie group. Then one way of obtaining
the tangent space TIG to G at the identity element I is as the set of all matrices T ′(0) such
that t 7→ T (t) is a C∞ curve in GL(n,C) completely lying in G and with T (0) = I. This is
indeed a real linear subspace of Mn(C). Moreover, the Lie algebra structure of TIG, which is
by definition induced by the Lie algebra structure of the left invariant vector fields on G, is also
obtained as a commutator product:

Theorem 1.32. Let G ⊂ GL(n,C) be a regularly embedded linear Lie group with Lie algebra
g = TIG ⊂Mn(C). Then the Lie bracket on g equals

[A,B] = AB −BA (A,B ∈ g),

where AB and BA mean matrix multiplication.

An important tool in connecting the Lie algebra g of G ⊂ GL(n,C) with G is the exponential
map

exp(A) :=
∞∑
k=0

1
k!
Ak (A ∈Mn(C)). (1.91)

Some properties of exp:

a) exp(A+B) = exp(A) exp(B) if A and B commute.
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b) exp(A) ∈ GL(n,C) for all A ∈Mn(C).

c) exp(−A) = (exp(A))−1.

d) exp(TAT−1) = T exp(A)T−1 (A ∈Mn(C), T ∈ GL(n,C)).

e) det(expA) = etrA.

f) If T (t) := exp(tA) then T ′(t) = AT (t) = T (t)A. In particular, T ′(0) = A.

g) There are open neighbourhoods U of 0 in Mn(C) and V of I in GL(n,C) such that
exp: U → V is bijective and a C∞ diffeomorphism (even complex analytic).

Let G ⊂ GL(n,C) be a regularly embedded linear Lie group with Lie algebra g ⊂ Mn(C).
Then

exp(g) ⊂ G. (1.92)

Furthermore, after possibly shrinking U and V in item g) above while keeping the diffeomorphism
property of exp, we have

exp(g ∩ U) = G ∩ V. (1.93)

The converse also holds:

Theorem 1.33. Let G be a subgroup of GL(n,C), g a real linear subspace of Mn(C), let U
and V be as in item g) above, and suppose that (1.93) holds. Then G is a regularly embedded
linear Lie group with Lie algebra g. For any basis A1, . . . , Am of g the map (x1, . . . , xm) 7→
exp(x1A1 + · · ·+ xmAm) gives a system of local coordinates on G ∩ V .

Example 1.34. Let U(n) be the subgroup of GL(n,C) consisting all unitary matrices (matrices
T such that TT ∗ = I). Let u(n) be the real linear subspace of Mn(C) consisting of all skew
hermitian matrices (matrices A such that A+A∗ = 0). Then we can use Theorem 1.33 in order to
show that U(n) is a regularly embedded linear Lie group with Lie algebra u(n). Indeed, let U and
V be as in item g). Replace U by U0 := U∩U∗∩(−U)∩(−U∗) and V by V0 := exp(U0). Then U0

is still an open neighbourhood of 0 in Mn(C) and it is closed under taking opposites or adjoints.
If A ∈ u(n) ∩ U0 then (expA)∗ = exp(A∗) = exp(−A) = (expA)−1. Hence expA ∈ U(n) ∩ V0.
Conversely, if T ∈ U(n)∩ V0 then T = expA for some A ∈ U0 and (expA)∗ = (expA)−1. Hence
exp(A∗) = exp(−A). Since A∗ and −A are in U0 and exp is injective on U0, we conclude that
A∗ = −A. Hence A ∈ u(n) ∩ U0. By Theorem 1.33, U(n) is a regularly embedded linear Lie
group with Lie algebra u(n).

Let next SU(n) be the subgroup of GL(n,C) consisting of all unitary matrices of deter-
minant 1, and let su(n) be the real linear subspace of Mn(C) consisting of all skew hermitian
matrices of trace 0. Then we can show that SU(n) is a regularly embedded linear Lie group
with Lie algebra su(n) by the following refinement of the above reasoning. Start with U and
V such that moreover |trA| < π if A ∈ U . Then construct U0 and V0 as above. Then use that
det(expA) = etrA = 1 if trA = 0. Conversely, if det(expA) = 1 and |trA| < π then trA = 0.

Let G ⊂ GL(n,C) be a regularly embedded linear Lie group with Lie algebra g. By (1.84)
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and item f) we can write A and XA given by (1.86) and (1.87) for f ∈ C∞(G) and A ∈ g as:

Af =
d

dt
f(exp(tA))

∣∣∣
t=0

, (1.94)

XAf(T ) =
d

dt
f(T exp(tA))

∣∣∣
t=0

(T ∈ G). (1.95)

1.12 Representations of Lie groups

Let G be a Lie group. Let π be a representation of G on Cn, while G is only considered as an
abstract group, i.e., we have a group homomorphism π : G→ GL(n,C). Since G is in particular
a topological group, we also require that π is continuous. In order to let π also respect the
structure of C∞ manifold of G, we want to require moreover that π is a C∞ map, i.e., dat all
matrix elements πij are C∞ functions πij : G → C. However, there is a theorem that for a Lie
group G continuity of the homomorphism π already implies that it is C∞.

This obviously can also be phrased for a representation of a Lie group G on a finite dimen-
sional complex vector space V . Then π : G → GL(V ) is a group homomorphism, and for any
choice of basis e1, . . . , en of V we must have that the matrix elements of π(g) wiht respect to
this basis are C∞ functions of g ∈ G.

If g is a (real) Lie algebra then a representation of g on a finite dimensional complex vector
space V is a real linear map φ : g → End(V ) such that φ([A,B]) = φ(A)φ(B) − φ(B)φ(A). A
representation of a Lie group G implies a representation of its Lie algebra:

Theorem 1.35. Let G be a Lie group with Lie algebra g and let π : G→ GL(n,C) be a represen-
tation of G on Cn (i.e., π is a C∞ homomorphism). Define the real linear map dπ : g→Mn(C)
by

dπ(A) := A(x 7→ π(x)), i.e., (dπ(A))i,j := A(x 7→ πi,j(x)) (A ∈ g),

where A is considered as in (1.86). Then dπ is a Lie algebra representation of g.
If moreover G ⊂ GL(m,C) is a regularly embedded linear Lie group then, for A ∈ g:

exp(dπ(A)) = π(expA), (1.96)

dπ(A) =
d

dt
π(exp(tA))

∣∣∣
t=0

. (1.97)

This theorem can also be phrased for a representation π : G → GL(V ). Then dπ : g →
End(V ). In particular, we still have (1.97).

Corollary 1.36. Under the assumptions of the first part of Theorem 1.35 and with XA the left
invariant vector field on G given by (1.87) we have:

XA πi,j =
n∑
k=1

(dπ(A))k,j πi,k (A ∈ g). (1.98)

27



Proof For g, h ∈ G and A ∈ g we successively have:

πi,j(gh) =
n∑
k=1

πk,j(h)πi,k(g),

A(h 7→ πi,j(gh)) =
n∑
k=1

A(h 7→ πk,j(h))πi,k(g),

(XAπi,j)(g) =
n∑
k=1

(dπ(A))k,j πi,k(g).

1.13 Representations of su(2)

The Lie algebra su(2) consists of all 2× 2 matrices A such that A+A∗ = 0 and trA = 0. These

are precisely the matrices
(
it −c
c −it

)
with t ∈ R and c ∈ C. It has real dimension 3. Choose a

basis A,B,C of su(2) given by

A := 1
2

(
0 −1
1 0

)
, B := 1

2

(
i 0
0 −i

)
, C := 1

2

(
0 i
i 0

)
.

Then
[A,B] = C, [B,C] = A, [C,A] = B. (1.99)

By exponentiation A,B,C generate three one-parameter subgroups of SU(2):

aθ := exp(θA) =

(
cos 1

2θ − sin 1
2θ

sin 1
2θ cos 1

2θ

)
, (1.100)

bφ := exp(φB) =

(
e

1
2
iφ 0

0 e−
1
2
iφ

)
, (1.101)

cψ := exp(ψC) =

(
cos 1

2ψ i sin 1
2ψ

i sin 1
2ψ cos 1

2ψ

)
. (1.102)

We compute the representations dtl of su(2), where the representations tl of SU(2) on Hl
are defined by (1.2). Then

(tl(aθ)f)(z1, z2) = f(z1 cos 1
2θ + z2 sin 1

2θ,−z1 sin 1
2θ + z2 cos 1

2θ) (f ∈ Hl).

By (1.100) and (1.97) we compute for f ∈ Hl:

(dtl(A)f)(z1, z2) = 1
2

(
z2

∂

∂z1
− z1

∂

∂z2

)
f(z1, z2). (1.103)

Similarly, (1.97) combined with (1.101) or (1.102) yield
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(dtl(B)f)(z1, z2) = 1
2 i
(
z1

∂

∂z1
− z2

∂

∂z2

)
f(z1, z2), (1.104)

(dtl(C)f)(z1, z2) = 1
2 i
(
z2

∂

∂z1
+ z1

∂

∂z2

)
f(z1, z2). (1.105)

Note that the partial differential operators on the right-hand sides of (1.103)–(1.105) are in-
dependent of l and act on the space of all polynomials in z1, z2. This is no surprise since the
original definition of tl by (1.2) is also independent of l. As such they also satisfy the commuta-
tor relations (1.99): they span a Lie algebra of differential operators isomorphic to su(2). This
follows either by the homomorphism property of tl or by direct computation of the commutators.

Let us see how dtl(A), dtl(B), dtl(C) act on the orthonormal basis vectors ψln of Hl given
by (1.1). By substitution of f := ψln in (1.103)–(1.105) we obtain:

dtl(A)ψln = 1
2(l − n)

1
2 (l + n+ 1)

1
2ψln+1 − 1

2(l + n)
1
2 (l − n+ 1)

1
2ψln−1, (1.106)

dtl(B)ψln = −inψln, (1.107)

dtl(C)ψln = 1
2 i(l − n)

1
2 (l + n+ 1)

1
2ψln+1 + 1

2 i(l + n)
1
2 (l − n+ 1)

1
2ψln−1, (1.108)

where terms involving ψll+1 or ψl−l−1 disappear. We see that dtl(B) acts diagonally on this basis
and that dtl(±A− iC) act as ladder operators:

dtl(A− iC)ψln = (l − n)
1
2 (l + n+ 1)

1
2ψln+1, (1.109)

dtl(−A− iC)ψln = (l + n)
1
2 (l − n+ 1)

1
2ψln−1. (1.110)

The elements ±A − iC are no longer in the Lie algebra su(2) but they are certainly in its
complexification sl(2,C), the Lie algebra of complex 2 × 2 matrices of trace 0. Furthermore,
sl(2,C) is the Lie algebra of SL(2,C), the linear Lie group of complex 2× 2 matrices of deter-
minant 1. We defined the representations tl originally for GL(2,C), so certainly for SL(2,C).
Therefore, we can also use Theorem (1.97) for π = tl, G = SL(2,C), g = sl(2,C). Note that

exp(t(A− iC)) =
(

1 0
t 1

)
, exp(t(−A− iC)) =

(
1 t
0 1

)
. (1.111)

From (1.98) combined with (1.109), (1.110) we conclude:

XA−iC t
l
m,n = (l − n)

1
2 (l + n+ 1)

1
2 tlm,n+1, (1.112)

X−A−iC t
l
m,n = (l + n)

1
2 (l − n+ 1)

1
2 tlm,n−1. (1.113)

From (1.112), (1.113) we want to derive differential relations for Jacobi polynomials which shift
the degree and the parameters.

Let n±m ≥ 0, ad− bc = 1. From (1.59), (1.8) and (1.52) we obtain

tlm,n

(
a b
c d

)
=
(

(l + n)! (l − n)!
(l +m)! (l −m)!

) 1
2

bn−mdn+m P
(n−m,n+m)
l−n (2ad− 1). (1.114)
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By (1.95) and (1.111) we have

XA−iC t
l
m,n

(
a b
c d

)
=

d

dt

∣∣∣
t=0

tlm,n

(
a+ bt b
c+ dt d

)
.

In combination with (1.114) and (1.112) this yields

bn−mdn+m d

dt

∣∣∣
t=0

P
(n−m,n+m)
l−n (2(a+ bt)d− 1)

= (l + n+ 1) bn−m+1dn+m+1 P
(n−m+1,n+m+1)
l−n−1 (2ad− 1).

Finally this is reduced to

d

dx

∣∣∣
x=2ad−1

P
(n−m,n+m)
l−n (x) = 1

2(l + n+ 1)P (n−m+1,n+m+1)
l−n−1 (2ad− 1).

Thus we have given a proof by representation theory of the differentiation formula

d

dx
P (α,β)
n (x) = 1

2(n+ α+ β + 1)P (α+1,β+1)
n−1 (x) (1.115)

in the case α, β ∈ Z≥0. Formula (1.115) is essentially the same as (1.44).

Exercise 1.37. Use (1.95), (1.111), (1.114) and (1.113) in order to derive

d

dx

(
(1− x)α(1 + x)βP (α,β)

n (x)
)

= −2(n+ 1)(1− x)α−1(1 + x)β−1P
(α−1,β−1)
n+1 (x) (1.116)

for α, β ∈ Z>0. Formula (1.116) is essentially the same as (1.45).

Exercise 1.38. Let G be a compact group and let π be an irreducible unitary representation of
G on a finite dimensional complex linear space V . Define the character χπ of the representation
π by

χπ(g) := tr (π(g)) (g ∈ G). (1.117)

a) Prove that χπ is a central function on G:

χπ(hgh−1) = χπ(g) (g, h ∈ G).

b) Let µ be the Haar measure on G. Show that
∫
G |χπ(g)|2 dµ(g) = 1 and that, for ρ

another irreducible unitary representation of G which is not equivalent to π,∫
G χπ(g)χρ(g) dµ(g) = 0.

c) Let π have matrix elements πij (i, j = 1, . . . , dπ) with respect to some orthonormal basis
of V . Let f ∈ Span{πij}i,j=1,...,dπ be a central function on G. Show that f = const. χπ.

d) Define the Chebyshev polynomial of the second kind by

Un(cos θ) :=
sin((n+ 1)θ)

sin θ
. (1.118)

Show that Un(x) is a polynomial of degree n in x and that (by the orthogonality properties)

Un(x) =
n+ 1

P
( 1
2
, 1
2

)
n (1)

P
( 1
2
, 1
2

)
n (x). (1.119)
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e) Let χl be the character of the representation tl of SU(2). Show that

χl

(
eiθ 0
0 e−iθ

)
= U2l(cos θ), χl

(
a −c
c a

)
= U2l(Re a) (|a|2 + |c|2 = 1). (1.120)

1.14 The Casimir operator

Let g be a Lie algebra over the field F = R or C. Then the universal enveloping algebra U(g)
is defined as the quotient algebra T (g)/J , where T (g) is the tensor algebra F + g + g2 + · · ·
of g (g considered as a linear space) and J is the two-sided ideal generated by all elements
AB−BA− [A,B] (A,B ∈ g). So U(g) is an associative algebra with unit element. Suppose that
g is finite dimensional with basis X1, . . . , Xn. Then the PBW theorem (theorem of Poincaré-
Birkhoff-Witt, see for instance [14, §17.3]) says that the elements Xk1

1 . . . Xkn
n (k1, . . . , kn ∈ Z≥0)

form a basis of U(g). In particular this implies that g is injectively embedded in U(g) as the
span of X1, . . . , Xn.

If φ is a representation of the Lie algebra g on the linear space V then φ extends to an
algebra representation of U(g) on V by

φ(A1 . . . Am)v := φ(A1) . . . φ(Am)v (A1, . . . , Am ∈ g, v ∈ V ). (1.121)

Suppose that g = Lie(G) for some Lie group G. Then the action A → XA of g on C∞(G)
by left invariant differential operators of order 1 extends to an action of U(g) on C∞(G) by left
invariant differential operators:

(XA1...Amf)(g) :=
∂

∂t1
. . .

∂

∂tm
f
(
g exp(t1A1) . . . exp(tmAm)

)∣∣∣
t1,...,tm=0

(f ∈ C∞(G), A1, . . . , Am ∈ g, g ∈ G). (1.122)

It can be shown that (1.122) defines an algebra isomorphism Y 7→ XY of U(g) onto the algebra of
left invariant differential operators on G (see [13, Ch. II, Proposition 1.9]). If π is a representation
of G on a finite dimensional complex vector space with matrix elements πk,l with respect to some
basis of V then it follows from (1.121) and (1.122) that

(XY πk,l)(g) =
∑
m

πk,m(g) dπm,l(Y ) (g ∈ G, Y ∈ U(g)). (1.123)

Let g be a Lie algebra. We call an element Ω of U(g) a Caimir element if Ω is in the center
of U(g), i.e., if it commutes with all elements of U(g), or equivalently, if AΩ = ΩA for all A ∈ g.

Let G be a Lie group with Lie algebra g and let π be a representation of G on a finite
dimensional complex linear space V . Let Ω be a Casimir element of g. Then

dπ(A)dπ(Ω)− dπ(Ω)dπ(A) = 0 (A ∈ g).

It can then be shown by exponentiation that

π(exp(A)) dπ(Ω)
(
π(exp(A))

)−1 = dπ(Ω) (A ∈ g).

31



Here exp is the matrix exponential if G is a linear Lie group and a generalized exponential map
exp: g→ G otherwise. If the Lie group G is moreover connected then it follows that

π(g)dπ(Ω) = dπ(Ω)π(g)

for all g ∈ G. If moreover the representation π is irreducible then it follows by Schur’s lemma
that dπ(Ω) = const. I. So we have:

Proposition 1.39. If π is an irreducible finite dimensional complex representation of a con-
nected Lie group G with Lie algebra g and if Ω is a Casimir element in U(g) then there exists
ω ∈ C such that dπ(Ω) = ωI.

Now consider the Lie group G := SU(2) with Lie algebra g := su(2). Since SU(2) is
homeomorphic with S3, it is connected. Let A,B,C be the basis of su(2) introduced in the
beginning of §1.13. Then it is immediately verified that

Ω := A2 +B2 + C2 (1.124)

commutes with A,B,C. Hence Ω is a Casimir element in U(su(2)). By Proposition 1.39 and
the irreducibility of the representations tl of SU(2) we already know that dtl(Ω) = ωlI for some
ωl ∈ C, and we might compute ωl from dtl(Ω)f = ωlf for just one suitable nonzero f ∈ Hl.
However, let us compute dtl(Ω)ψln for all basis elements ψln of Hl. Rewrite (1.124) as

Ω = −(A− iC)(−A− iC) +B2 − iB

and use (1.109), (1.110), (1.107). Then we obtain

dtl(Ω)ψln = −dtl(A− iC)dtl(−A− iC)ψln + (dtl(B))2ψln − idtl(B)ψln
= −(l − n)(l + n+ 1)ψln − n2ψln − nψln = −l(l + 1)ψln.

Hence
dtl(Ω) = −l(l + 1)I. (1.125)

Now it follows by (1.123) that
XΩt

l
m,n = −l(l + 1)tlm,n. (1.126)

Let n±m ≥ 0, ad− bc = 1. Then we can write tlm,n as in (1.114), and we can reduce (1.126) to

(1− x)−n+m(1 + x)−n−m
d

dx

(
(1− x)n−m+1(1 + x)n+m+1 d

dx
P

(n−m,n+m)
l−n (x)

)
− n(n+ 1)P (n−m,n+m)

l−n (x) = −l(l + 1)P (n−m,n+m)
l−n (x). (1.127)

Thus we have obtained the second order differential equation (1.48) for Jacobi polynomials P (α,β)
n

(α, β ∈ Z≥0) in a new conceptual way, from the representation theory of SU(2).
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2 Spherical harmonics

Reference for this Chapter is for instance Stein & Weiss [15, Ch. IV, §2].

2.1 Definition of spherical harmonics

Let O(d) be the group of real orthogonal d× d matrices, i.e., O(d) := {T ∈ Md(R) | T ′T = I},
where Md(R) is the space of all real d × d matrices and T ′ is the adjoint of T . Another way
to describe O(d) is as the set of all real d × d matrices for which the column vectors form an
orthonormal system. It can easily be seen that O(d) is a linear Lie group, but for the moment
we will only need that it is a compact group (note that O(d) is a closed and bounded subset of
Md(R)).

We say that a group G acts on a space X if we have a map (g, x) 7→ g . x : G×X → X such
that (gh) . x = g . (h . x) and e . x = x. If G is a topological group and X is a topological space
then we call an action of G on X continuous if the map (g, x) 7→ g . x : G×X → X is continuous.

We call an action of G on X transitive if for all x, y ∈ X there is g ∈ G such that g . x = y.
If we fix some element x0 of X then we see that the action of G on X is already transitive if for
each x ∈ X there exists g ∈ G such that g . x0 = x.

For an action of G on X and x0 ∈ X we call the subgroup H := {g ∈ G | g · x0 = x0} the
stabilizer of x0 in G. If H is any subgroup of G and G/H denotes the space of right cosets gH
(g ∈ G) then we have a transitive action of G on G/H by

g1 . (g2H) := (g1g2)H,

and then the stabilizer of eH in G is H. The space G/H is called a homogeneous space.
For a transitive action of G on X and x0 ∈ X and H the stabilizer of x0 in G we have a

bijective map
gH 7→ g . x0 : G/H → X

which commutes with the G-actions: if gH is sent to x then g1 . (gH) is sent to g1 . x.
Clearly, the natural action of O(d) on Rd, i.e., (T, x) 7→ Tx : O(d)×Rd → Rd, is a continuous

group action. Let Sd−1 be the unit sphere in Rd given by {x ∈ Rd | |x| = 1}, where |x| :=√
x2

1 + · · ·+ x2
d. Note that Sd−1 is compact. By restriction to Sd−1 of the O(d)-action on Rd,

the group O(d) acts continuously on Sd−1. Moreover, this action is transitive. For a proof,
let x ∈ Sd−1. Apply Gram-Schmidt orthonormalization to x, e1, . . . , ed in order to find an
orthonomal system of d vectors of which x is the first. The orthogonal transformation T having
these vectors as columns sends e1 to x.

The stabilizer of e1 in O(d) is easily be seen to consist of all block matrices
(

1 0
0 T1

)
such that

T1 ∈ O(d− 1). This stabilizer subgroup, which is clearly isomorphic to O(d− 1), is also denoted
by O(d− 1). So Sd−1 with the transitive action of O(d) is isomorphic to the homogeneous space
O(d)/O(d− 1).

If we have an action of a group G on a space X then we have a (usually infinite dimensional)
representation of G on the complex (resp. real) linear space of complex-valued (resp. real-valued)

33



functions f on X by
(g . f)(x) := f(g−1 . x).

If the group action is continuous then this also defines a representation of G on the space of
continuous functions on X. For the action of O(d) on Rd we can further restrict to the space of
real-valued polynomials on Rd.

Let Pn denote the real linear space of real-valued homogeneous polynomials of degree n on
Rd. It is clearly finite dimensional and it has a basis consisting of the monomials

xn1
1 . . . xndd (n1 + · · ·+ nd = n). (2.1)

Then we have a representation of O(d) on Pn:

(T . f)(x) := f(T−1x) (f ∈ Pn), (2.2)

and this representation is continuous. The map which sends f ∈ Pn to its restriction f
∣∣
Sd−1 is

a linear bijection since we can reconstruct f from its restriction:

f(rx) = rn f(x) (x ∈ Sd−1, r ∈ [0,∞), f ∈ Pn).

Thus we can consider (2.2) also as a representation of O(d) on the space of restrictions to Sd−1

of homogeneoous polynomials of degree n on Rd.
We have

dim(Pn) =
(
n+ d− 1
d− 1

)
. (2.3)

For the proof we count the number of monomials (2.1). This equals the number of ways to write
n = n1 + · · ·+ nd with n1, . . . , nd ∈ Z≥0, and this equals the number of subsets of size d− 1 in
a set of n+ d− 1 elements.

We will often use that

d∑
j=1

xj
∂f(x)
∂xj

= nf(x) (f ∈ Pn). (2.4)

For the proof note that

n f(x) =
d

dt
(tn)

∣∣∣
t=1

f(x) =
d

dt
f(tx)

∣∣∣
t=1

=
d∑
j=1

xj
∂f(x)
∂xj

.

Let ∆ denote the Laplace operator in d variables:

∆ :=
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

.

If y = T−1x (T ∈ O(d)) then

∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

=
∂2

∂y2
1

+ · · ·+ ∂2

∂y2
d

.
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Indeed,
∂

∂xi
=

d∑
j=1

∂yj
∂xi

∂

∂yj
=

d∑
j=1

(T−1)j,i
∂

∂yj
=

d∑
j=1

Ti,j
∂

∂yj
.

Hence
d∑
i=1

(
∂

∂xi

)2

=
d∑

i,j,k=1

Ti,jTi,k
∂

∂yj

∂

∂yk
=
∑
j,k

δj,k
∂

∂yj

∂

∂yk
=

d∑
j=1

(
∂

∂yj

)2

.

It follows that

∆(T . f) = T . (∆f) (T ∈ O(d), f a C2 function).

We call a C2 function f on Rd harmonic if ∆f = 0. Thus we see that if f is harmonic and
T ∈ O(d) then T . f is harmonic.

Let Hn denote the real linear space of real harmonic homogeneous polynomials on Rd of
degree n:

Hn := {f ∈ Pn | ∆f = 0}.

Then, under the representation of O(d) on Pn, the subspace Hn is invariant, so we have also a
(continuous) representation of O(d) on Hn.

The restriction map f 7→ f
∣∣
Sd−1 is a linear bijection of Hn on the space of its restrictions

to Sd−1. This last space is called the space of spherical harmonics of degree n on Sd−1. We
can consider the representation of O(d) on Hn equivalently as a representation on the space of
spherical harmonics of degree n.

Note that, for d ≥ 2, f(x) := (x1 + ix2)n yields a function f ∈ Hn. So Hn has certainly
nonzero dimension if d ≥ 2. On the other hand, for n ≥ 2 there are many f ∈ Pn outside Hn:

Lemma 2.1. Let n ≥ 2, f ∈ Pn−2 and F (x) := |x|2f(x) (so certainly F ∈ Pn). If F ∈ Hn then
F = 0.

Proof Suppose F 6= 0. Then there is a maximal k (1 ≤ k ≤ 1
2n) such that F (x) = |x|2kg(x)

for some g ∈ Pn−2k. Write r := |x|. We use that ∆ acting on a function only depending on r

acts as d2

dr2
+ d−1

r
d
dr , and that ∂r

∂xi
= xi

r , and (2.4). Then

0 = ∆
(
r2kg(x)

)
= ∆(r2k) g(x) + 2

d∑
i=1

∂

∂xi
(r2k)

∂

∂xi
g(x) + r2k ∆g(x)

=
( d2

dr2
+
d− 1
r

d

dr

)
(r2k) g(x) + 4kr2k−2

d∑
i=1

xi
∂

∂xi
g(x) + r2k ∆g(x)

= 2k(2k + d− 2)r2k−2g(x) + 4k(n− 2k)r2k−2g(x) + r2k ∆g(x)

= 2k(2n− 2k + d− 2)r2k−2g(x) + r2k ∆g(x).

Hence g(x) = const. r2∆g(x), so F (x) = const. r2k+2 ∆g(x). This contradicts the maximality
of k.
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Proposition 2.2. We have

Pn = Hn ⊕ |x|2 Pn−2 (n ≥ 2) and Pn = Hn (n = 0, 1). (2.5)

Proof The case n = 0, 1 is seen immediately. Let n ≥ 2. Hn and |x|2 Pn−2 are linear
subspaces of Pn. By Lemma 2.1 they have intersection {0}. So it is sufficient to prove that
dim(Pn) ≤ dim(Hn) + dim(|x|2 Pn−2). But this inequality holds because

dim(Pn) = dim(Hn) + dim(∆(Pn)) ≤ dim(Hn) + dim(Pn−2) = dim(Hn) + dim(|x|2 Pn−2),

Here the first identity is the fact from linear algebra that, for a linear map A : V →W , we have
dimV = dimA−1(0) + dimA(V ). The second inequality follows because ∆(Pn) ⊂ Pn−2.

As a corollary, we see that

dimHn = dimPn − dimPn−2 (n ≥ 2) and dimHn = dimPn (n = 0, 1).

By (2.1) we compute for d ≥ 2 that

dimHn =
(2n+ d− 2)(n+ d− 3)!

n! (d− 2)!
(n ≥ 1) and dimH0 = 1. (2.6)

For d = 1 we have trivially dimHn = 1 if n = 0, 1 and dimHn = 0 if n ≥ 2.

Exercise 2.3. Let SO(d) := {T ∈ O(d) | detT = 1}. This is again a compact group.

a) Show that SO(d) acts transitively on Sd−1 if d ≥ 2 (but not if d = 1) and that then

the stabilizer of e1 in SO(d) equals the subgroup of block matrices
(

1 0
0 T1

)
with T1 ∈

SO(d−1). (This subgroup is isomorphic to SO(d−1) and it is also denoted by SO(d−1).)

b) Let 〈x, y〉 :=
∑d

j=1 xjyj denote the inner product on Rd. Show that O(d) acts on Sd−1

in a doubly transitive way, i.e., if x, y, x′, y′ ∈ Sd−1 such that 〈x, y〉 = 〈x′, y′〉 then there
exists T ∈ O(d) such that Tx = x′, Ty = y′.

c) Show that SO(d) acts on Sd−1 in a doubly transitive way if d ≥ 3 (but not for d = 1, 2).

d) Let F be a function on Sd−1 × Sd−1 such that F (Tx, Ty) = F (x, y) for all T ∈ O(d).
Show that F (x, y) = f(〈x, y〉) for some function f on [−1, 1]. For d ≥ 3 show a similar
conclusion for F if F (Tx, Ty) = F (x, y) for all T ∈ SO(d).

Exercise 2.4. Let Pn be the space of real-valued homogeneous polynomials of degree n on Rd.
Write ∂j for ∂

∂xj
. Define on Pn the bilinear form

〈f, g〉n :=
(
f(∂1, . . . , ∂d)g

)
(0) (f, g ∈ Pn). (2.7)

Here f(∂1, . . . , ∂d) is the partial differential operator obtained by replacing x1, . . . , xd by ∂1, . . . , ∂d
in f(x1, . . . , xd) =

∑
n1+···+nd=n cn1,...,ndx

n1
1 . . . xndd .
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a) Show that (2.7) defines an inner product on Pn.

b) Show that
〈T . f, T . g〉n = 〈f, g〉n (T ∈ O(d)). (2.8)

c) Show for n ≥ 2 that

〈|x|2f, g〉n = 〈f,∆g〉n−2 (f ∈ Pn−2, g ∈ Pn). (2.9)

d) Show for n ≥ 2 that g ∈ Hn iff 〈|x|2f, g〉n = 0 for all f ∈ Pn−2. (This also gives an
alternative proof of Proposition 2.2.)

Hint In a) compute 〈f, g〉n when f and g are monomials. In b) the left hand side equals
f
(
T−1(∂/∂x1, . . . , ∂/∂xd)

)
g
(
T−1(x1, . . . , xd)

)∣∣
x=0

. Put y = T−1x and compute the j-th coor-
dinate of T−1(∂/∂x1, . . . , ∂/∂xd) in terms of ∂/∂y1, . . . , ∂/∂yd.

2.2 Zonal spherical harmonics

We keep the notation of §2.1, but we suppose from now on that d ≥ 2.
We call a function f on Sd−1 zonal if T . f = f for all T ∈ O(d − 1). We want to find the

zonal functions in Pn
∣∣
Sd−1 , and next the zonal spherical harmonics. Since Pn and Pn

∣∣
Sd−1 are

isomorphic as O(d)-modules, and similarly for Hn and Hn
∣∣
Sd−1 , it is sufficient for this purpose

to search for O(d− 1)-invariant functions in Pn and in Hn.

Lemma 2.5. Let f ∈ Pn. Then f is zonal iff, for certain coefficients cj,

f(x) =
[ 1
2
n]∑

j=0

cj x
n−2j
1 (x2

2 + · · ·+ x2
d)
j . (2.10)

Proof Clearly, every f of the form (2.10) is in Pn and zonal. Let conversely f ∈ Pn be zonal.
Then, for certain homogeneous polynomials fk of degree k in x2, . . . , xd we have:

f(x) =
n∑
k=0

xn−k1 fk(x2, . . . , xd) =
n∑
k=0

xn−k1 fk(−x2, . . . ,−xd) =
n∑
k=0

xn−k1 (−1)kfk(x2, . . . , xd),

where we used O(d− 1)-invariance and homogeneity. Hence, the terms for odd k vanish. Then,
again by O(d− 1)-invariance and homogeneity, we have for certain coefficients cj :

f(x) =
[n/2]∑
j=0

xn−2j
1 f2j(x2, . . . , xd) =

[n/2]∑
j=0

xn−2j
1 f2j

(√
x2

2 + · · ·+ x2
d, 0, . . . , 0

)

=
[ 1
2
n]∑

j=0

cj x
n−2j
1 (x2

2 + · · ·+ x2
d)
j .

Proposition 2.6. The linear space of zonal functions in Hn has dimension 1.
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Proof A function f ∈ Pn will be a zonal function in Hn iff it has the form (2.10) and satisfies

∆f = 0. Put ρ :=
√
x2

2 + . . .+ x2
d. Then, similarly as in the proof of Lemma 2.1, observe that

∂2

∂x2
2

+ · · ·+ ∂2

∂x2
d

acts on a function only depending on ρ as d2

dρ2
+ d−2

ρ
d
dρ . Now split ∆, acting on

the terms in (2.1), as the sum of ∂2

∂x2
1

and ∂2

∂x2
2

+ · · ·+ ∂2

∂x2
d
, where the first part acts only on the

factor xn−2j
1 and the second part acts only on the factor ρ2j . Thus ∆f = 0 is equivalent with

[ 1
2
n]∑

j=0

cj

(
(n− 2j)(n− 2j − 1)xn−2j−2

1 ρ2j + 2j(2j + d− 3)xn−2j
1 ρ2j−2

)
= 0. (2.11)

Note that 2j(2j+d−3)xn−2j
1 ρ2j−2 vanishes if j = 0 and (n−2j)(n−2j−1)xn−2j−2

1 ρ2j vanishes
if j = [1

2n]. Hence (2.11) can be equivalently written as

[ 1
2
n]∑

j=1

(
(n− 2j + 2)(n− 2j + 1)cj−1 + 2j(2j + d− 3)cj

)
xn−2j

1 ρ2j−2 = 0,

and this is equivalent with

cj = − (n− 2j + 2)(n− 2j + 1)
2j(2j + d− 3)

cj−1 (j = 1, . . . , [1
2n]).

2.3 Compact homogeneous spaces and reproducing kernels

Let G be a topological group which is compact Hausdorff as a topological space. Let X be a
compact Hausdorff space on which G acts in a continuous and transitive way. Fix x0 ∈ X. Let
K be the stabilizer of x0 in G. Then K is a closed subgroup of G, hence a compact group itself.
Let µ be the Haar measure on G. It implies a G-invariant normalized Borel measure ω on X by

ω(E) := µ({g ∈ G | g . x0 ∈ E}) (E Borel set in X),

or equivalently, ∫
X
f dω :=

∫
G
f(g . x0) dµ(g) (f ∈ C(X)).

It can be shown that this measure ω is the unique G-invariant normalized measure on X. Let
L2(X) := L2(X,ω). Write the inner product on L2(X) as

〈f1, f2〉 :=
∫
X
f1 f2 dω (f1, f2 ∈ L2(X)). (2.12)

Then, by G-invariance of ω, this inner product is G-invariant:

〈g . f1, g . f2〉 = 〈f1, f2〉 (f1, f2 ∈ L2(X), g ∈ G).
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We may consider the action of G on L2(X) as a unitary representation of G on the (ususally
infinite dimensional) Hilbert space L2(X). The continuity of the representation will now hold
in the form:

g 7→ 〈g . f1, f2〉 : G→ C is continuous for all f1, f2 ∈ L2(X). (2.13)

This can first be proved for f1, f2 ∈ C(X), and next for f1, f2 ∈ L2(X) by using the density of
C(X) in L2(X). If we write λ(g) f for g . f (f ∈ L2(X), g ∈ G) then λ(g) is a unitary operator
on L2(X) for each g ∈ G, so certainly λ(g) ∈ B(L2(X)), the space of bounded linear operators on
L2(X). In general, λ : G 7→ B(L2(X)) will not be continuous with respect to the operator norm
topology of B(L2(X)). The property (2.13) is called weak continuity of λ. Strong continuity for
λ can also be shown. This means that

g 7→ g . f : G→ L2(X) is continuous for all f ∈ L2(X).

It is only in the case of infinite dimensional representations that these distinctions between
various types of continuity have to be made.

Let now V ⊂ C(X) ⊂ L2(X) be a linear space of finite nonzero dimension N which is
G-invariant. Then we have a finite dimensional unitary representation of G on V . Choose an
orthonormal basis f1, . . . , fN of V . Put

Φ(x, y) :=
N∑
j=1

fj(x) fj(y) (x, y ∈ X). (2.14)

This definition is independent of the choice of the orthonormal basis of V (for which the G-
invariance of V is not yet needed). This can either be proved by working with the unitary
matrix which connects two orthonormal bases of V or, more conceptually, by observing that the
operator P , defined by

(Pf)(x) :=
∫
X

Φ(x, y) f(y) dω(y) (f ∈ L2(X)),

is the orthogonal projection of L2(X) onto V . In particular,∫
X

Φ(x, y) f(y) dω(y) = f(x) (f ∈ V ),

and for that reason Φ(x, y) is called the reproducing kernel of V .
By G-invariance of ω the functions g . f1, . . . , g . fN form an orthonormal basis of V for each

g ∈ G. Hence Φ is G-invariant:

Φ(g . x, g . y) = Φ(x, y) (x, y ∈ X, g ∈ G). (2.15)

In particular,
Φ(k . x, x0) = Φ(k . x, k . x0) = Φ(x, x0) (x ∈ X, k ∈ K).

Put
φ(x) := N−1Φ(x, x0) (x ∈ X). (2.16)
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Proposition 2.7. The function φ, defined by (2.16), is a zonal (i.e. K-invariant) function in V .
Furthermore,

φ(x0) = 1 and 〈φ, φ〉 = N−1. (2.17)

Proof We already showed that φ is zonal. By (2.16) and (2.14) we see that φ ∈ V . For all
g ∈ G we have

Nφ(x0) = Φ(x0, x0) = Φ(g . x0, g . x0).

Hence, for all x ∈ X we have

Nφ(x0) = Φ(x, x) =
N∑
j=1

|fj(x)|2.

Integration of both sides over X yields

Nφ(x0) =
N∑
j=1

〈fj , fj〉 =
N∑
j=1

1 = N, hence φ(x0) = 1.

Next,

〈φ, φ〉 = N−2

∫
X

Φ(x, x0) Φ(x, x0) dω(x) = N−2
N∑

i,j=1

∫
X
fi(x) fi(x0) fj(x) fj(x0) dω(x)

= N−2
N∑

i,j=1

fj(x0) fi(x0) δi,j = N−2
N∑
j=1

fj(x0) fj(x0)

= N−2Φ(x0, x0) = N−1φ(x0) = N−1.

Theorem 2.8. Let V be a G-invariant linear subspace of C(X) of nonzero finite dimension.
Let VK be the subspace of zonal functions in V . Then:

a) 0 6= φ ∈ VK and dimVK ≥ 1.

b) If dimVK = 1 then the representation of G on V is irreducible and VK is spanned by φ.

Proof For the proof of b) suppose that the representation is not irreducible. Then V is
the orthogonal direct sum of two invariant subspaces V1 and V2 of nonzero dimension. Then
dimVK ≥ 2 by a).

2.4 Zonal spherical harmonics (continued)

We continue §2.2, where we keep the notation of §2.1. It follows from Proposition 2.6 and
Theorem 2.8 that:

Theorem 2.9. The representation of O(d) on Hn is irreducible.
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The Lebesgue measure on Rd induces on every (d − 1)-dimensional smooth submanifold a
surface measure, certainly also on Sd−1. We denote the surface measure on Sd−1 by σ. It is for
instance determined by the property that∫

Rd
f(y) dy =

∫ ∞
r=0

∫
x∈Sd−1

f(rx) rd−1 dσ(x) dr (2.18)

for all continuous L1 functions on Rd. Clearly, the measure σ on Sd−1 is O(d)-invariant. There-
fore the normalized O(d)-invariant measure ω on Sd−1 is given by

dω =
1

σ(Sd−1)
dσ.

Let L2(Sd−1) := L2(Sd−1, ω) and write the inner product in L2(Sd−1) as in (2.12) with
X := Sd−1.

Theorem 2.10. If hn ∈ Hn, hm ∈ Hm and n 6= m then 〈hn, hm〉 = 0.

Proof Without loss of generality we may assume fn, fm to be real-valued. Then

0 =
∫
|x|≤1

(hn ∆hm − hm ∆hn) dx =
∫
Sd−1

(
hn

∂hm
∂ν
− hm

∂hn
∂ν

)
dσ = (m− n)

∫
Sd−1

hn hm dσ.

Division by m − n yields the required orthogonality. Above we used a formula by Green in
the second identity, where ∂

∂ν denotes normal derivative. In the third identity we used that
∂
∂ν f(x) = nf(x) (x ∈ Sd−1) if f is homogeneous of degree n on Rd.

Proposition 2.11. Let d ≥ 3. Consider Sd−2 := {(x1, . . . , xd) ∈ Sd−1 | x1 = 0} as a subset of
Sd−1 and let σ′ be the surface measure on Sd−2. Then, for all f ∈ C(Sd−1),∫

Sd−1

f dσ =
∫
x′∈Sd−2

∫ 1

t=−1
f
(
te1 +

√
1− t2 x′

)
(1− t2)

1
2
d− 3

2 dt dσ′(x′). (2.19)

Proof Let f ∈ Cc(Rd) (continuous with compact support). Then∫
Rd
f(y) dy =

∫
y′∈Rd−1

∫ ∞
y1=−∞

f(y1e1 + y′) dy1 dy
′

=
∫
x′∈Sd−2

∫ ∞
ρ=0

∫ ∞
y1=−∞

f(ye1 + ρx′) ρd−2 dy1 dρ dσ
′(x′)

=
∫
x′∈Sd−2

∫ 1

t=−1

∫ ∞
r=0

f
(
rte1 + r

√
1− t2 x′

)
(1− t2)

1
2
d− 3

2 rd−1 dr dt dσ′(x′).

Here we used (2.18) (with d replaced by d− 1) in the second identity. In the third identity we
passed from integration variables y1, ρ to r, t by y1 = rt, ρ = r

√
1− t2. The Jacobian of this

transformation can be computed to be r(1 − t2)−
1
2 . Now compare the above rewriting of the

integral of f over Rd with the rewriting of this integral by (2.18). In particular we can make this
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comparison for f of the form f(rx) = f1(x)f2(r) (x ∈ Sd−1, r ∈ [0,∞)). This yields (2.19).

For d = 2 we trivially see that∫
S1

f dσ =
∫ 2π

0
f(cos θ e1 + sin θ e2) dθ =

∑
j=0,1

∫ 1

−1
f
(
te1 + (−1)j

√
1− t2 e2

)
(1− t2)−

1
2 dt.

(2.20)

Corollary 2.12. let d ≥ 2 and let f ∈ C(Sd−1) be zonal. Then∫
Sd−1

f dω =
Γ(1

2d)
Γ(1

2d−
1
2)Γ(1

2)

∫ 1

−1
f
(
te1 +

√
1− t2 e2

)
(1− t2)

1
2
d− 3

2 dt. (2.21)

Proof Use (2.19) and (2.20) and the fact that f(te1 +
√

1− t2 x′) is independent of x′ ∈ Sd−2

if f is zonal. The constant factor in front of the integral on the right in (2.21) is obtained from∫ 1

−1
(1− t2)

1
2
d− 3

2 dt =
Γ(1

2d−
1
2)Γ(1

2)
Γ(1

2d)
.

Theorem 2.13. Let f ∈ Hn. Then f is zonal iff, for the restriction of f to Sd−1,

f
(
te1 +

√
1− t2 x′

)
= const. P

( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t) (t ∈ [−1, 1], x′ ∈ Sd−2). (2.22)

Here P
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t) is a Jacobi polynomial.

Proof For each n choose a nonzero real-valued zonal function φn ∈ Hn By (2.10) there are
constants cj such that

φn

(
te1 +

√
1− t2 x′

)
=

[ 1
2
n]∑

j=0

cj t
n−2j (1− t2)j .

Hence φn only depends on t and is a polynomial of degree ≤ n in t, which we denote by pn(t).
By Theorem 2.10 and Corollary 2.12 we have∫ 1

−1
pn(t) pm(t) (1− t2)

1
2
d− 3

2 dt = 0 (n 6= m).

Hence pn is equal to the orthogonal polynomial of degree n with respect to the weight function
(1− t2)

1
2
d− 3

2 on (−1, 1).

Remark 2.14. By Theorems 2.8 and 2.13 and Proposition 2.7 the zonal function φ on Sd−1

associated with Hn by (2.16) is given by

φ
(
te1 +

√
1− t2 x′

)
=
P

( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t)

P
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (1)
.

42



By (2.17) and (2.21) we must have

Γ(1
2d)

Γ(1
2d−

1
2)Γ(1

2)

∫ 1

−1

P
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t)

P
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (1)

2

(1− t2)
1
2
d− 3

2 dt =
1

dimHn
. (2.23)

This can indeed be independently verified by (1.53), (1.55), (1.56) and (2.6).

Exercise 2.15. Show, by a variation of Lemma 2.5 and its proof, that f ∈ Hn is zonal iff

f(x) =
[ 1
2
n]∑

j=0

ajx
n−2j
1 (x2

1 + · · ·+ x2
d)
j

with
aj = − (n− 2j + 2)(n− 2j + 1)

2j(2n− 2j + d− 2)
aj−1 (j = 1, 2, . . . , [1

2n]).

Conclude that

P
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t) = const.
[ 1
2
n]∑

j=0

(−1)j (1
2d− 1)n−j

j! (n− 2j)!
(2t)n−2j .

Determine the constant factor by comparing the coefficients of tn on the left and the right (use
the formula after (1.53)).

Exercise 2.16. Let d = d1 + d2 (d1, d1 ∈ Z>0). Consider O(d1) × O(d2) as the subgroup of

O(d) consisting of the block matrices
(
T1 0
0 T2

)
, where T1 is a d1 × d1 orthogonal matrix and

T2 is a d2 × d2 orthogonal matrix. Prove that the space of (O(d1)× O(d2))-invariant functions
in Hn is zero-dimensional if n is odd and one-dimensional if n is even.

For the persevering, identify these (O(d1) × O(d2))-invariant functions in Hn with certain
orthogonal polynomials.

2.5 Compact homogeneous spaces and reproducing kernels (continued)

As a preparation of the next theorem we prove the following lemma, which is related to Schur’s
lemma (Lemma 1.20) and to Definition 1.21 of equivalence of representations.

Lemma 2.17. Let G be a group and let π and ρ be irreducible unitary representations of G
on finite dimensional inner product spaces V and W , respectively. Let A : V → W be a linear
bijection such that A is G-intertwining, i.e., Aπ(g) = ρ(g)A for all g ∈ G. Then there exists
λ > 0 such that 〈Av1, Av2〉 = λ〈v1, v2〉 for all v1, v2 ∈ V .

Proof Let A∗ : W → V be the adjoint of V , which is defined by the property that 〈A∗w, v〉 =
〈w,Av〉 for all v ∈ V , w ∈ W . Then A∗ is G-intertwining and hence A∗A : V → V is G-
intertwining. By Schur’s lemma A∗A = λI for some λ ∈ C. Then

〈Av1, Av2〉 = 〈A∗Av1, v2〉 = λ〈v1, v2〉.
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Because of bijectivity, λ 6= 0. By taking v1 = v2 we see that λ > 0.

In the remainder of this subsection let G,X, ω, x0,K be as in §2.3.

Theorem 2.18. Let V,W be G-invariant linear subspaces of C(X) of finite nonzero dimension.
Suppose that the representations of G on V and W are irrreducible, that dimVK = 1 (VK being
the space of zonal functions in V ), and that V 6= W . Then:

a) The representations of G on V and W are inequivalent.

b) V is orthogonal to W .

Proof For the proof of a) suppose that the conclusion is not true, so suppose that the rep-
resentations of G on V and W are equivalent. Then there is a bijective G-intertwining linear
map A : V → W . By Lemma 2.17, this map A can be taken such that 〈Ap,Aq〉 = 〈p, q〉 for all
p, q ∈ V . Take an orthonormal basis f1, . . . , fN of V . Then Af1, . . . , AfN is an orthonormal
basis of W . Put

Φ(x, y) :=
N∑
j=1

fj(x) fj(y), Ψ(x, y) :=
N∑
j=1

fj(x)Afj(y).

We have seen in (2.15) that Φ(g . x, g . y) = Φ(x, y) for all g ∈ G. Similarly Ψ(g . x, g . y) = Ψ(x, y)
for all g ∈ G.

The functions Φ and Ψ are linearly independent. Indeed, we have for all f ∈ V that

f(y) =
∫
X

Φ(x, y) f(x) dω(x), (Af)(y) =
∫
X

Ψ(x, y) f(x) dω(x)

(show it first for f := fj). So Φ = cΨ with c 6= 0 would imply that V = W .
From this, together with G-invariance of Φ and Ψ, It follows that the functions x 7→ Φ(x, x0)

and x 7→ Ψ(x, x0) are linearly independent. But these two functions are both in V and zonal.
This is a contradiction.

For the proof of b) consider the orthogonal projection A : V + W → V . This is a G-
intertwining map. Then A restricted to W gives a G-intertwining map A : W → V . By Schur’s
lemma A is bijective or A = 0. If A is bijective then the representations of G on V and W are
equivalent, which cannot be the case by a). Hence A = 0, so all w ∈W are orthogonal to V .

Proposition 2.19. Let V be a G-invariant linear subspace of C(X) of finite nonzero dimension
N and with dimVK = 1. Let φ be the zonal function in V as defined by (2.16). Let dk be the
normalized Haar measure on K. Then∫

K
f(k . x) dk = f(x0)φ(x) (f ∈ V, x ∈ X). (2.24)

Proof Put f0(x) :=
∫
K f(k . x) dk. Then f0 ∈ V . Indeed, by Lebesgue’s theorem f0 is contin-

uous on X. If h ∈ L2(X) is orthogonal to V then, by Fubini’s theorem,

〈f0, h〉 =
∫
K
〈k−1 . f, h〉 dk = 0,
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where the last identity follows because k−1 . f ∈ V . Hence f0 is orthogonal to the orthoplement
of V , and therefore f0 ∈ V .

Furthermore, f0 is zonal by right invariance of the measure dk. Since dimVK = 1 we
must have f0 = c φ for some c ∈ C. In particular, f0(x0) = c φ(x0) = c. So c = f0(x0) =∫
K f(k . x0) dk = f(x0).

Theorem 2.20. Let V be a G-invariant linear subspace of C(X) of finite nonzero dimension
N and with dimVK = 1. Let Φ and φ be given by (2.14), (2.16). Then we have the product
formula

1
N

∫
K

Φ(k . x, y) dk = φ(x)φ(y) (x, y ∈ X), (2.25)

another version of which reads as∫
K
φ
(
(g1kg2) . x0

)
dk = φ(g1 . x0)φ(g2 . x0) (g1, g2 ∈ G). (2.26)

Proof For the proof of (2.25) consider (2.24) with f(x) := N−1Φ(x, y). This function is indeed
in V . We obtain from (2.24) that the left-hand side of (2.25) equals N−1Φ(x0, y)φ(x). Now use
that Φ(x0, y) = Φ(y, x0) = N φ(y).

For the proof of (2.26) first rewrite the left-hand side of (2.26) and then apply (2.24):

1
N

∫
K

Φ
(
k . (g2 . x0), g−1

1 . x0

)
dk = N−1Φ(x0, g

−1
1 . x0)φ(g2 . x0) = N−1Φ(g1 . x0, x0)φ(g2 . x0),

which is equal to the right-hand side of (2.26).

2.6 Applications of the abstract theory to spherical harmonics

We continue §2.2 and §2.4, where we keep the notation of §2.1. Consider first the applications
of Theorem 2.18 to the space Hn. Since the space of zonal functions in Hn has diemnsion 1,
Theorem 2.18a) would also prove the orthogonality of the spaces Hn (see Theorem 2.10) as
soon as we have shown that Hn 6= Hm if n 6= m. Anyhow, if we know that the spaces Hn are
orthogonal then we know that Hn 6= Hm if n 6= m, and then we can also use Theorem 2.18b) in
order to conclude:

Theorem 2.21. The representations of O(d) on the spaces Hn are mutually inequivalent.

There are various other ways to prove this last result. First, for d > 2 we can observe from
(2.6) that dimHm < dimHn if m < n. Indeed, for d = 3 we have dimHn = 2n+1 and for d > 3
we have

dimHn =
(n+ 1)(n+ 2) . . . (n+ d− 3) (2n+ d− 2)

(d− 2)!
,

which is strictly increasing in n. Clearly, representations on spaces of different dimensions cannot
be equivalent.
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For another, more conceptual proof of the inequivalence of the representations recall that
the polynomial (x1 + ix2)n belongs to Hn. Consider also the group SO(2), embedded in O(d)
as the subgroup consisting of all matrices

Aθ :=


cos θ sin θ 0 . . . 0
− sin θ cos θ 0 . . . 0

0 0 1 0
...

...
. . .

0 0 0 1

 .

For εn(x) := (x1 + ix2)n we have Aθ . εn = einθεn, so the restriction to SO(2) of the represen-
tation of O(d) on Hn contains the one-dimensional irreducible representation Aθ 7→ einθ as a
subrepresentation. However, if m < n and 0 6= f ∈ Hm then we cannot have that Aθf = einθf
for all θ. Indeed, we can expand f ∈ Hm as

f(x) =
∑

m1+···+md=m

cm1,...,md(x1 + ix2)m1(x1 − ix2)m2xm3
3 . . . xmdd .

Then

(Aθf)(x) =
∑

m1+···+md=m

ei(m1−m2)θcm1,...,md(x1 + ix2)m1(x1 − ix2)m2xm3
3 . . . xmdd .

If we would have Aθf = einθf for all θ then

f(x) =
1

2π

∫ 2π

0
(Aθf)(x) e−inθ dθ = 0

since m1 −m2 6= n for m1,m2 ≥ 0 and m1 +m2 ≤ m < n.
We conclude that the representations of O(d) on Hn and Hm (m < n) are inequivalent

because their restrictions to SO(2) are already inequivalent.

Put

R(α,β)
n (x) :=

P
(α,β)
n (x)

P
(α,β)
n (1)

(2.27)

and

pn(t) := R
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t) = φ
(
te1 +

√
1− t2 x′

)
(t ∈ [−1, 1], x′ ∈ Sd−2), (2.28)

where the second equality was given in Remark 2.14. Put also

Nn := dimHn =
(2n+ d− 2)(n+ d− 3)!

n! (d− 2)!
, (2.29)

where the second equality was given in (2.6). Then

Φ(x, y) = Nn pn(〈x, y〉) (x, y ∈ Sd−1). (2.30)
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Indeed, we can write y = Te1 for some T ∈ O(d). Then

Φ(x, y) = Φ(x, Te1) = Φ(T−1x, e1) = Nn pn(〈T−1x, e1〉) = Nn pn(〈x, Te1〉) = Nn pn(〈x, y〉).

Now we derive an integral representation for pn by applying Proposition 2.19 to the case
that V = Hn and f(x) = εn(x) = (x1 + ix2)n. Note that εn(e1) = 1. Then (2.24) yields∫

O(d−1)
εn(Tx) dT = φ(x) = pn(〈x, e1〉) (x ∈ Sd−1),

where dT is the normalized Haar measure on O(d− 1). Put x := te1 +
√

1− t2 e2 (t ∈ [−1, 1]).
Then 〈x, e1〉 = t and εn(Tx) =

(
t+ i
√

1− t2 〈Te2, e2〉
)n. So

pn(t) =
∫
O(d−1)

(
t+ i

√
1− t2 〈Te2, e2〉

)n
dT.

In general, for a continuous function F on [−1, 1] and with ω′ the normalized O(d− 1)-invariant
measure on Sd−2 we have∫
O(d−1)

F
(
〈Te2, e2〉

)
dT =

∫
Sd−2

F (〈x′, e2〉) dω′(x′) =
Γ(1

2d−
1
2)

Γ(1
2d− 1)Γ(1

2)

∫ 1

−1
F (u) (1− u2)

1
2
d−2 du,

(2.31)
where we used the beginning of §2.3 in the first equality and (2.21) in the second equality. We
conclude that

R
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t) =
Γ(1

2d−
1
2)

Γ(1
2d− 1)Γ(1

2)

∫ 1

−1
(t+ i

√
1− t2 u)n (1− u2)

1
2
d−2 du. (2.32)

Finally we derive a product formula for pn by applying Theorem 2.20 to the case that
V = Hn. From (2.25) (note that pn is real-valued) and (2.30) we get:∫

O(d−1)
pn(〈Tx, y〉) dT = pn(〈x, e1〉) pn(〈y, e1〉).

Put x = se1 +
√

1− s2 x′ and y = te1 +
√

1− t2 y′ (s, t ∈ [−1, 1], x′, y′ ∈ Sd−2). Then∫
O(d−1)

pn

(
st+

√
1− s2

√
1− t2 〈Tx′, y′〉

)
dT = pn(s) pn(t).

There are T1, T2 ∈ O(d − 1) such that x′ = T1e2, y′ = T2e2. Then 〈Tx′, y′〉 = 〈T−1
2 TT1e2, e2〉.

By left and right invariance of dT we get∫
O(d−1)

pn

(
st+

√
1− s2

√
1− t2 〈Te2, e2〉

)
dT = pn(s) pn(t).

By using (2.31) we conclude that

R
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (s)R
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t)

=
Γ(1

2d−
1
2)

Γ(1
2d− 1)Γ(1

2)

∫ 1

−1
R

( 1
2
d− 3

2
, 1
2
d− 3

2
)

n

(
st+

√
1− s2

√
1− t2 u

)
(1− u2)

1
2
d−2 du (2.33)
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Exercise 2.22. Show that, for d ≥ 3, there is a convergent expansion

1
|e1 − rx|d−2

=
∞∑
n=0

rnfn(x) (0 ≤ r < 1, x ∈ Rd, |x| ≤ 1)

with fn some homogeneous polynomial of degree n.
(Hint Use Taylor series on several variables.)
Show that ∆fn = 0 and that fn is O(d− 1)-invariant.
Compute fn(e1). Conclude that

1

(1− 2rt+ t2)
1
2
d−1

=
∞∑
n=0

(d− 2)n
(1

2d−
1
2)n

P
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t) (0 ≤ r < 1, −1 ≤ t ≤ 1),

where P
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t) is a Jacobi polynomial.

Exercise 2.23. Let X, V , x0, ω, φ be as in §2.3. Let f ∈ V . Show that f(x0) = 0 iff 〈f, φ〉 = 0.

Exercise 2.24. Show that ∂
∂x1

sends an O(d− 1)-invariant harmonic homogeneous polynomial
of degree n on Rd to a similar polynomial of degree n − 1. Use this to obtain a differentiation

formula sending the Jacobi polynomial P
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t) to P
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n−1 (t).

2.7 The addition formula

We continue §2.2, §2.4 and §2.6, where we keep the notation of §2.1.

Example 2.25. Let d = 2. If n ∈ Z>0 then dimHn = 2 and Hn has basis (x1 ± ix2)n. The
restrictions of these polynomials to S1 are the functions

(cos θ, sin θ) 7→ e±inθ.

They form an orthonormal basis of Hn. Then (2.14), for V := Hn and the orthonormal basis
just chosen, gives

Φ
(
(cos θ1, sin θ1), (cos θ2, sin θ2)

)
:= einθ1e−inθ2 + e−inθ1einθ2 = 2 cos

(
n(θ1 − θ2)).

Then (2.16) gives for the zonal spherical function:

φ(cos θ, sin θ) = cos(nθ). (2.34)

Now define the Chebyshev polynomial of the first kind by

Tn(cos θ) := cos(nθ). (2.35)

From the trigonometric identity

cos θ cos(nθ) = 1
2 cos

(
(n+ 1)θ

)
+ 1

2 cos
(
(n− 1)θ

)
(n ∈ Z>0) (2.36)
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we see that Tn(x) is a polynomial of degree n in x, and from the orthogonality∫ π

0
cos(mθ) cos(nθ) dθ = 0 (m,n ∈ Z≥0, m 6= n)

we see that ∫ 1

−1
Tm(x)Tn(x) (1− x2)−

1
2 dx = 0 (m 6= n). (2.37)

So the polynomials Tn are special Jacobi polynomials:

Tn(x) =
n!

(1
2)n

P
(− 1

2
,− 1

2
)

n (x). (2.38)

Now (2.30) gives
Tn
(
cos(θ1 − θ2)

)
= 1

2(einθ1e−inθ2 + e−inθ1einθ2). (2.39)

Another orthonormal basis of Hn can be chosen by starting with the zonal function
(cos θ, sin θ) 7→ 2

1
2 cos(nθ) and complementing it with the function (cos θ, sin θ) 7→ 2

1
2 sin(nθ).

Then (2.30) gives

Tn
(
cos(θ1 − θ2)

)
= cos(nθ1) cos(nθ2) + sin(nθ1) sin(nθ2), (2.40)

which is a well-known trigonometric identity when we rewrite the left-hand side by means of
(2.35). Formula (2.40) is a prototype of an addition formula because of the addition (or rather
difference) of θ1 and θ2 in the argument on the left-hand side.

It is also interesting to see the explicit realization of the product formula for d = 2. We start
with the formula just above (2.33), which becomes for d = 2 as follows:∫

O(1)
Tn

(
st+

√
1− s2

√
1− t2 〈Te2, e2〉

)
dT = Tn(s)Tn(t).

This can be rewritten as:

1
2

(
Tn
(
cos(θ1 − θ2)

)
+ Tn

(
cos(θ1 + θ2)

))
= Tn(cos θ1)Tn(cos θ2), (2.41)

again a well-known trigonometric identity after rewriting by means of (2.35). Note that the
product formula (2.41) follows from the addition formula (2.40) by adding to (2.40) the identity
obtained from it by the substitution θ2 → −θ2.

Now we will work with Hn for general d > 2. Consider (2.30) with pn given by (2.28), Nn by
(2.29) and Φ by (2.14). Choose the orthonormal basis f1, . . . , fNn of Hn such that f1 :=

√
Nn φn.

Then (2.30) can be written as:

pn(〈x, y〉) = pn(〈x, e1〉) pn(〈y, e1〉) +N−1
n

Nn∑
j=2

fj(x) fj(y) (x, y ∈ Sd−1). (2.42)
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Observe that the product formula for pn, when written in the form of the first formula after
(2.32), follows from (2.42). First replace x by Tx (T ∈ O(d− 1)) in (2.42):

pn(〈Tx, y〉) = pn(〈x, e1〉) pn(〈y, e1〉) +N−1
n

Nn∑
j=2

fj(Tx) fj(y) (x, y ∈ Sd−1, T ∈ O(d− 1)).

(2.43)
Then integrate both sides of (2.43) over O(d − 1) with respect to dT . We will arrive at the
mentioned product formula if we know that

∫
O(d−1) fj(Tx) dT = 0 for j = 2, . . . , Nn. This

follows from a slight extension of (2.24):

Proposition 2.26. Under the assumptions of Proposition 2.19 we have∫
K
f(k . x) dk = f(x0)φ(x) = N〈f, φ〉φ(x) (f ∈ V, x ∈ X). (2.44)

Proof Write f0(x) for the left part of (2.44), as in the proof of Proposition 2.19. Then, by
(2.24), f0 = f(x0)φ. Hence 〈f0, φ〉 = N−1f(x0). On the other hand, by Fubini’s theorem,
〈f0, φ〉 =

∫
K〈k

−1 . f, φ〉 dk =
∫
K〈f, k . φ〉 dk = 〈f, φ〉.

So, indeed, we obtain from (2.43) again the product formula∫
O(d−1)

pn(〈Tx, y〉) dT = pn(〈x, e1〉) pn(〈y, e1〉).

As we saw in §2.6, this product formula can be rewritten as (2.33). The integrand in (2.33)
can be seen, for fixed s, t, as a polynomial of degree n in u which is multiplied by (1− u2)

1
2
d−2

(the weight function for the Jacobi polynomials R
( 1
2
d−2, 1

2
d−2)

j (u)). This suggests to look for an
expansion

R
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n

(
st+

√
1− s2

√
1− t2 u

)
=

n∑
j=0

fn,j(s, t)R
( 1
2
d−2, 1

2
d−2)

j (u).

From this expansion we see, by (2.33), that

fn,0(s, t) = R
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (s)R
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t).

Below we will find fn,j(s, t) explicitly for other values of j. This will be done by choosing the
fj in (2.43) more specially, adapted to a decomposition of Hn with respect to the subgroup
O(d− 1).

Let k ∈ {0, 1, . . . , n}. Let H′k denote the space of harmonic homogeneous polynomials
h(x2, . . . , xd) of degree k.
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Lemma 2.27. There exists a nonzero zonal homogeneous polynomial φkn ∈ Pn−k of degree k,
unique up to a constant factor, with the following property:
For all nonzero zonal f ∈ Pn−k and for all nonzero h ∈ H′k we have that ∆(fh) = 0 iff f = c φkn
for some nonzero c.

Note that Proposition 2.6 is the special case k = 0 of the above lemma.

Proof of Lemma 2.27.
Put ρ :=

√
x2

2 + . . .+ x2
d. Let f ∈ Pn−k be nonzero and zonal. By Lemma 2.5 we can write

f(x) =
[ 1
2

(n−k)]∑
j=0

cjx
n−k−2j
1 ρ2j (x ∈ Rd). (2.45)

Let h ∈ H′k be nonzero. Clearly, fh ∈ Pn. We have

∆(xn−k−2j
1 ρ2jh) =

∂2 xn−k−2j
1

∂x2
1

ρ2jh+ xn−k−2j
1

((
∂2

∂ρ2
+
d− 2
ρ

d

dρ

)
ρ2j

)
h+ 2xn−k−2j

1

d∑
i=2

∂ρ2j

∂xi

∂h

∂xi

= (n− k − 2j)(n− k − 2j − 1)xn−k−2j−2
1 ρ2jh+ 2j(2j + 2k + d− 3)xn−k−2j

1 ρ2j−2h,

where we used that
d∑
i=2

∂ρ2j

∂xi
= 2jρ2j−2

d∑
i=2

xi
∂h

∂xi
= 2jkρ2j−2h

(since h is homogeneous of degree k in x2, . . . , xd). Then we find for f given by (2.45) that
∆(fh) = 0 iff

cj = − (n− k − 2j − 2)(n− k − 2j − 3)
2j(2j + 2k + d− 3)

cj−1.

Hence there is a one-dimensional space of functions f as in (2.45) such that ∆(fh) = 0. This
space is independent of the choice of h, it is only dependent on k.

Proposition 2.28. Let φkn and H′k be as in Lemma 2.27. Then:

a) We have

φkn(te1 +
√

1− t2 x′) = const. (1− t2)
1
2
k P

( 1
2
d− 3

2
+k, 1

2
d− 3

2
+k)

n−k (t) (t ∈ [−1, 1], x′ ∈ Sd−2).
(2.46)

b) The subspaces φknH′k of Hn are mutually orthogonal.

c) dimHn =
∑n

k=0 dimH′k

d) There is the orthogonal direct sum decomposition Hn =
n⊕
k=0

φknH′k.
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Proof For a) let ω be the O(d)-invariant measure on Sd−1 and ω′ be the O(d − 1)-invariant
measure on Sd−2. By (2.19) and (2.21) we have

dω(x) =
Γ(1

2d−
1
2)

Γ(1
2d− 1)Γ(1

2)
(1−t2)

1
2
d− 3

2 dt dω′(x′) (x = te1 +
√

1− t2 x′, t ∈ [−1, 1], x′ ∈ Sd−2).

Take 0 6= h ∈ H′k and fn := φkn h. Then

fn(te1 +
√

1− t2 x′) = φkn(te1 +
√

1− t2 x′)h(
√

1− t2 x′)

= pkn(t) (1− t2)
1
2
k h(x′) (t ∈ [−1, 1], x′ ∈ Sd−2)

for some nonzero polynomial pkn of degree ≤ n − k. By orthogonality of Hn and Hm (n 6= m)
we get

0 =
∫
Sd−1

fn(x) fm(x) dω(x) =
Γ(1

2d−
1
2)

Γ(1
2d− 1)Γ(1

2)

×
∫
x′∈Sd−2

∫ 1

t=−1
pkn(t) (1− t2)

1
2
k h(x′) pkm(t) (1− t2)

1
2
k h(x′) (1− t2)

1
2
d− 3

2 dt dω′(x′)

=
Γ(1

2d−
1
2)

Γ(1
2d− 1)Γ(1

2)

∫
Sd−2

|h(x′)|2 dω′(x′)
∫ 1

−1
pkn(t) pkm(t) (1− t2)

1
2
d− 3

2
+k dt.

Hence ∫ 1

−1
pkn(t) pkm(t) (1− t2)

1
2
d− 3

2
+k dt = 0 (n 6= m)

and we conclude that
pkn(t) = const. P

( 1
2
d− 3

2
+k, 1

2
d− 3

2
+k)

n−k (t). (2.47)

For b) let hk ∈ H′k, hl ∈ H′l (k 6= l). Then

∫
Sd−1

φkn hk φ
l
n hl dω =

Γ(1
2d−

1
2)

Γ(1
2d− 1)Γ(1

2)

∫ 1

−1
pkn(t) pln(t) (1− t2)

1
2

(d−3+k+l) dt

×
∫
Sd−2

hk(x′)hl(x′) dω′(x′) = 0.

For c) use (2.6):

dimHn − dimHn−1 =
(2n+ d− 2)(n+ d− 3)!

n! (d− 2)!
− (2n+ d− 4)(n+ d− 4)!

(n− 1)! (d− 2)!

=
(2n+ d− 3)(n+ d− 4)!

n! (d− 3)!
= dimH′n.

Finally, d) follows from b) and c).
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Let us refine (2.42) by a special choice of the orthonormal basis functions fj . First put
x = se1 +

√
1− s2 x′ and y = te1 +

√
1− t2 y′ (s, t ∈ [−1, 1], x′, y′ ∈ Sd−2). Then (2.42) becomes

pn

(
st+

√
1− s2

√
1− t2 〈x′, y′〉

)
= pn(s) pn(t)+N−1

n

Nn∑
j=2

fj(se1+
√

1− s2 x′) fj(te1 +
√

1− t2 y′).

(2.48)
Now choose the fj corresponding to the orthogonal direct sum decomposition of Hn in Propo-
sition 2.28 d). Choose an orthonormal basis hk,j (j = 1, 2, . . . , N ′k := dimH′k) for H′k. Let pkn(t)
be as in (2.47). Then the functions

se1 +
√

1− s2 x′ 7→ (ckn)
1
2 pkn(s) (1− s2)

1
2
k hk,j(x′) (k = 0, 1, . . . , n, j = 1, . . . , N ′k)

with normalization constants ckn given by

(ckn)−1 :=
Γ(1

2d−
1
2)

Γ(1
2d− 1)Γ(1

2)

∫ 1

−1
(pkn(s))2 (1− s2)

1
2
d− 3

2
+k ds, (2.49)

form an orthonormal basis of Hn. With this basis formula (2.48) takes the form

pn

(
st+

√
1− s2

√
1− t2 〈x′, y′〉

)
= pn(s) pn(t)

+N−1
n

n∑
k=1

ckn p
k
n(s) (1− s2)

1
2
k pkn(t) (1− t2)

1
2
k

N ′k∑
j=1

hk,j(x′)hk,j(y′).

Now we apply (2.30), (2.28) with d replaced by d − 1 to the inner sum on the right-hand side

above. Then this inner sum will be equal to N ′k R
( 1
2
d−2, 1

2
d−2)

k (〈x′, y′〉). Since in the resulting
identity x′ and y′ only occur in the form 〈x′, y′〉, we may put u := 〈x′, y′〉 and we arrive at the
addition formula

R
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n

(
st+

√
1− s2

√
1− t2 u

)
= R

( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (s)R
( 1
2
d− 3

2
, 1
2
d− 3

2
)

n (t)

+N−1
n

n∑
k=1

cknN
′
k p

k
n(s) (1− s2)

1
2
k pkn(t) (1− t2)

1
2
k R

( 1
2
d−2, 1

2
d−2)

k (u). (2.50)

Now use (2.47), (2.49), (2.27) (1.53), (1.56) in (2.50). Then we have proved the case α =
0, 1

2 , 1, . . . of the following:

Theorem 2.29 (addition formula for Jacobi polynomials P (α,α)
n ). For x, y ∈ [−1, 1] and α > −1

2
(and by suitable analytic continuation for more general complex values of x, y, α) we have:

P (α,α)
n

(
xy +

√
1− x2

√
1− y2 t

)
=

n∑
k=0

(α+ k) (n+ 2α+ 1)k (2α+ 1)k (n− k)!
22k (α+ 1

2k) (α+ 1
2)k (α+ 1)n

× P (α+k,α+k)
n−k (x) (1− x2)

1
2
k P

(α+k,α+k)
n−k (y) (1− y2)

1
2
k P

(α− 1
2
,α− 1

2
)

k (t). (2.51)
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Proof Fix n, x, y, t. Both sides of (2.51) are rational functions of α (quotients of two polyno-
mials in α). We know that the formula is true for α ∈ 1

2Z≥0, this is for an infinite number of
values of α. Hence the formula is valid for all α ∈ C (outside the poles).

Exercise 2.30. Show that differentiation of both sides of (2.51) with respect to t yields the
same formula with α, n replaced by α+1, n−1, respectively. Conclude that (2.51) would already
follow in general if we know its special case α = 0 (i.e., the case obtained by an interpretation
on S2).

Exercise 2.31. Divide both sides of (2.51) by yn and let y → ∞. Show that the resulting
formula is

(
x+ i

√
1− x2 t

)n
=

n∑
k=0

ik (α+ k) (2α+ 1)k n!
2k (α+ 1

2k) (α+ 1
2)k (α+ 1)n

× P (α+k,α+k)
n−k (x) (1− x2)

1
2
k P

(α− 1
2
,α− 1

2
)

k (t). (2.52)

Show that (2.32) (even for real d > 2) is also a consequence of (2.52).

2.8 Compact Gelfand pairs

In this subsection G will be a compact group with normalized Haar measure dg and K will be
a closed subgroup of G with normalized Haar measure dk. Let Ĝ be the set of all equivalence
classes of finite dimensional irreducible unitary representations of G. For each π ∈ Ĝ we choose
in the equivalence class a concrete representation π on a linear space Vπ. Let

dπ := dimVπ, cπ := dim{v ∈ Vπ | ∀k ∈ K π(k)v = v}, (G/K )̂ := {π ∈ Ĝ | cπ 6= 0}.

So cπ is the dimension of the (evidently linear) space of K-fixed vectors in Vπ. Also π ∈ (G/K )̂
iff Vπ contains a nonzero K-fixed vector.

Definition 2.32. The pair (G,K) is called a Gelfand pair if cπ ≤ 1 for each π ∈ Ĝ.
For π ∈ Ĝ with cπ = 1 choose a K-fixed vector vK ∈ Vπ with ‖vK‖ = 1 and define the spherical
function φπ by

φπ(g) := 〈π(g) vK , vK〉 (g ∈ G). (2.53)

Note that the definition of φπ is independent of the choice of vK .

The following properties of a spherical function φπ are seen directly:

a) φπ is a continuous function on G.

b) φπ is K-biinvariant, i.e., φπ(k1gk2) = φπ(g) for all k1, k2 ∈ K, g ∈ G.

c) φπ(e) = 1.

For the proof of two further properties we need a lemma:
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Lemma 2.33. Let cπ = 1, v ∈ Vπ. Then∫
K
π(k) v dk = 〈v, vK〉 vK . (2.54)

Proof Put v0 :=
∫
K π(k) v dk. Then v0 ∈ V and π(k) v0 = v0 for all k ∈ K by left invariance

of the Haar measure on K. Hence v0 = c vK for some c ∈ C. So

c = 〈v0, vK〉 =
∫
K
〈π(k)v, vK〉 dk =

∫
K
〈v, π(k−1)vK〉 dk = 〈v, vK〉

∫
K
dk = 〈v, vK〉.

Proposition 2.34. Let cπ = 1. Let f be a K-biinvariant function on G which is a linear
combination of functions g 7→ 〈π(g)v, w〉 (v, w ∈ Vπ). Then

f = f(e)φπ. (2.55)

Proof It is sufficient to show that f = c φπ for some c ∈ C. We can write f(g) as a finite sum
of terms 〈π(g) vj , wj〉 (vj , wj ∈ Vπ). Then

f(g) =
∫
K

∫
K
f(k−1

2 gk1) dk1 dk2 =
∑
j

∫
K

∫
K
〈π(k−1

2 gk1) vj , wj〉 dk1 dk2

=
∑
j

〈π(g)
∫
K π(k1) vj dk1,

∫
K π(k2)wj dk2〉 =

∑
j〈vj , vK〉 〈wj , vK〉 〈π(g)vK , vK〉 = c φπ(g).

In the forelast equality we used (2.54).

Theorem 2.35 (product formula for spherical functions). Let cπ = 1. Then∫
K
φπ(g1kg2) dk = φπ(g1)φπ(g2) (g1, g2 ∈ G). (2.56)

Proof For fixed g1 the function f : g2 7→
∫
K φπ(g1kg2) dk is K-biinvariant and∫

K φπ(g1kg2) dk = 〈π(g2) vK ,
∫
K π(k−1)π(g−1

1 ) vK dk〉. Hence we can apply Proposition 2.34.
Then (2.55) yields:∫

K
φπ(g1kg2) dk = f(g2) = f(e)φπ(g2) =

(∫
K
φπ(g1k) dk

)
φπ(g2) = φπ(g1)φπ(g2).

For another characterization of Gelfand pairs we need the concepts of convolution and Fourier
transform of functions on a compact group G. The convolution product f1 ∗ f2 of f1, f2 ∈ C(G)
is defined by

(f1 ∗ f2)(g) :=
∫
G
f1(g1) f2(g−1

1 g) dg1 (g ∈ G). (2.57)

Then f1 ∗ f2 ∈ C(G) and one can show associativity :

(f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3).
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However, if the group G is not commutative then the convolution product is usually not com-
mutative.

For each π ∈ Ĝ choose an orthonormal basis e1, . . . , edπ of Vπ with corresponding matrix
elements πi,j (i, j = 1, . . . , dπ) of π. The functions (dπ)

1
2 πi,j (π ∈ Ĝ, i, j = 1, . . . , dπ) form an

orthonormal system in L2(G) (see Theorem 1.22), and they form an orthonormal basis of the
Hilbert space L2(G) by the Peter-Weyl theorem.

The Fourier transform of a function f ∈ L2(G) is defined as a “function” f̂ on Ĝ such that
f̂(π), for π ∈ Ĝ, is a linear operator on Vπ with matrix elements

〈f̂(π) ej , ei〉 =
(
f̂(π)

)
i,j

:=
∫
G
f(g)πi,j(g) dg. (2.58)

By elementary theory of general Hilbert spaces we can recover f from f̂ by

f(g) =
∑
π∈ bG

dπ∑
i,j=1

dπ (f̂(π)
)
i,j
πi,j(g) =

∑
π∈ bG

dπ

dπ∑
i,j=1

(f̂(π)
)
i,j
πj,i(g−1) =

∑
π∈ bG

dπ

dπ∑
i=1

(
f̂(π)π(g−1)

)
i,i

=
∑
π∈ bG

dπ tr
(
f̂(π)π(g−1)

)
(g ∈ G), (2.59)

where the sum is convergent with respect to the L2 norm.
We also see for f ∈ L2(G) (in particular for f ∈ C(G)) that f = 0 iff f̂(π) = 0 for all π ∈ Ĝ.

Proposition 2.36.

(f1 ∗ f2)̂(π) = f̂1(π) f̂2(π) (f1, f2 ∈ C(G), π ∈ Ĝ). (2.60)

Proof (
(f1 ∗ f2)̂(π)

)
i,j

=
∫
g∈G

∫
g1∈G

f1(g1) f2(g−1
1 g)πi,j(g) dg1 dg

=
∫
g1∈G

∫
g∈G

f1(g1) f2(g−1
1 g)πi,j(g) dg dg1

=
∫
g1∈G

∫
g2∈G

f1(g1) f2(g2)πi,j(g1g2) dg2 dg1

=
dπ∑
l=1

∫
g1∈G

f1(g1)πi,l(g1) dg1

∫
g2∈G

f2(g2)πl,j(g2) dg2

=
dπ∑
l=1

(
f̂1(π)

)
i,l

(
f̂2(π)

)
l,j

=
(
f̂1(π) f̂2(π)

)
i,j
,

where we used Fubini’s theorem in the second equality and made the substitution of inner
integration variable g2 = g−1

1 g in the third equality, also using there the left invariance of Haar
measure on G.
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Let C(K\G/K) denote the space of K-biinvariant continuous functions on G. It follows
from (2.57) together with the left invariance of Haar measure on G that

f1, f2 ∈ C(K\G/K) =⇒ f1 ∗ f2 ∈ C(K\G/K).

Theorem 2.37. (G,K) is a Gelfand pair iff f1 ∗ f2 = f2 ∗ f1 for all f1, f2 ∈ C(K\G/K).

Proof For π ∈ Ĝ we can choose the orthonormal basis e1, . . . , edπ of Vπ such that ej is K-fixed
if j ≤ cπ. Now consider ej with j > cπ. Then π(k) ej is orthogonal to ei (i ≤ cπ) for all k ∈ K.
Hence

∫
K π(k) ej dk is orthogonal to ei (i ≤ cπ), but this vector is also K-fixed. Hence, because

the dimension of the K-fixed vectors in Vπ equals cπ, we must have
∫
K π(k) ej dk = 0 (j > cπ).

Now let f ∈ C(K\G/K), π ∈ Ĝ. Then(
f̂(π)

)
i,j

=
∫
G
f(g)πi,j(g) dg

=
∫
G

∫
K

∫
K
f(k2gk

−1
1 )πi,j(g) dk1 dk2 dg

=
∫
K

∫
K

∫
G
f(k2gk

−1
1 )πi,j(g) dg dk1 dk2

=
∫
K

∫
K

∫
G
f(g)πi,j(k−1

2 gk1) dg dk1 dk2

=
∫
G

∫
K

∫
K
f(g) 〈π(g)π(k1) ej , π(k2) ei〉 dk1 dk2 dg

=
∫
G
f(g) 〈π(g)

∫
K π(k1) ej dk1,

∫
K π(k2) ei dk1〉 dg,

which is zero if i > cπ or j > cπ.
Now assume that (G,K) is a Gelfand pair. Then cπ = 0 or 1. Let f1, f2 ∈ C(K\G/K).

Then f̂1(π), f̂2(π) are zero matrices if cπ = 0 and they are matrices with all entries except
possibly the 1,1 entry equal to zero if cπ = 1. In both cases f̂1(π) and f̂2(π) commute. But then
(f1 ∗ f2 − f2 ∗ f1)̂(π) = 0 for all π ∈ Ĝ. Hence f1 ∗ f2 − f2 ∗ f1 = 0.

Conversely, assume that (G,K) is not a Gelfand pair. Then there is a π ∈ Ĝ such that
cπ > 1. For this π consider π1,2 and π2,1, which are both in C(K\G/K). Then

(π1,2 ∗ π2,1)(g) =
∫
G
π1,2(g1)π2,1(g−1

1 g) dg1 =
dπ∑
j=1

(∫
G
π1,2(g1)π2,j(g−1

1 ) dg1

)
πj,1(g)

=
dπ∑
j=1

(∫
G
π1,2(g1)πj,2(g1) dg1

)
πj,1(g) =

dπ∑
j=1

(dπ)−1δ1,j πj,1(g) = (dπ)−1 π1,1(g).

Similarly, (π2,1 ∗ π1,2)(g) = (dπ)−1 π2,2(g). Hence π1,2 ∗ π2,1 6= π2,1 ∗ π1,2. So the convolution
algebra C(K\G/K) is not commutative.

The following sufficient condition for (G,K) in order to be a Gelfand pair is often useful.
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Theorem 2.38. If there exists a continuous group automorphism σ : G → G such that σ(g) ∈
Kg−1K for all g ∈ G, then (G,K) is a Gelfand pair.

Proof By uniqueness of the normalized Haar measure on G, this measure is invariant under σ.
Also, f(σ(g)) = f(g−1) for f ∈ C(K\G/K), g ∈ G. Hence, for f1, f2 ∈ C(K\G/K) and g ∈ G
we have:

(f1 ∗ f2)(g−1) = (f1 ∗ f2)(σ(g)) =
∫
G
f1(g1) f2(g−1

1 σ(g)) dg1 =
∫
G
f1(σ(g1)) f2(σ(g−1

1 )σ(g)) dg1

=
∫
G
f1(g−1

1 ) f2((g−1
1 g)−1) dg1 =

∫
G
f1(g−1

2 g−1) f2(g2) dg2 = (f2 ∗ f1)(g−1).

So (G,K) is a Gelfand pair by Theorem 2.37.

Example 2.39. Let G := O(d), K := O(d − 1) and A the subgroup of G consisting of the
matrices

Aθ :=


cos θ − sin θ 0 . . . 0
sin θ cos θ 0 . . . 0

0 0 1 0
...

...
. . .

0 0 0 1

 (0 ≤ θ < 2π).

Then any x ∈ Sd−1 can be written as x = T1Aθe1 for some T1 ∈ O(d− 1), θ ∈ [0, π]. Hence any
T ∈ O(d) can be written T = T1AθT2 for some T1, T2 ∈ O(d− 1), θ ∈ [0, π]. So G = KAK. Let
J be the d× d diagonal matrix with diagonal elements −1, 1, . . . , 1, so J ∈ O(d) and J = J−1.
Define a continuous automorphism σ of O(d) by σ(T ) := JTJ . Then σ(T ) = T if T ∈ O(d− 1)
and σ(Aθ) = A−θ = (Aθ)−1. Hence, for T = T1AθT2 with T1, T2 ∈ O(d− 1) we have

σ(T ) = σ(T1AθT2) = T1(Aθ)−1T2 = T1T2T
−1T1T2 ∈ O(d− 1)T−1O(d− 1).

So (O(d), O(d− 1)) is a Gelfand pair by Theorem 2.38.
It can be similarly proved that (SO(d), SO(d − 1)) is a Gelfand pair if d ≥ 3. Of course, if

(G,K) is a Gelfand pair and K1 is a closed subgroup of G with K1 ⊃ K, then (G,K1) is also a
Gelfand pair. For instance, (O(d), O(1)×O(d− 1)) is a Gelfand pair.

Exercise 2.40. Let G be a compact group. The group G×G acts continuously and transitively
on G by (g1, g2) . g := g1gg

−1
2 .

a) Show that the stabilizer subgroup of e ∈ G in G × G equals the diagonal subgroup
G1 := {(g, g) | g ∈ G} of G×G.

b) Show that for each π ∈ Ĝ the span Wπ of the matrix elements πij is a G×G invariant
subspace of C(G) and that the subspace of G1-fixed functions in Wπ is one-dimensional
and spanned by the character χπ(g) := trπ(g).

c) Find the product formula for the characters χπ, as in (2.25) or (2.56).

d) Show that (G×G,G1) is a Gelfand pair. (Use for instance Theorem 2.38.)
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Exercise 2.41. Show that the following pairs (G,K) are Gelfand pairs.

a) (O(d1 + d2), O(d1)×O(d2))

b) (U(d1 + d2), U(d1)× U(d2))

c) (Sm+n, Sm × Sn), where Sn is the symmetric group in n letters.

2.9 Connecting the analysis on compact homogeneous spaces with the anal-
ysis on compact groups

We keep the notations of the beginning of §2.8. If π ∈ Ĝ and π = (πi,j)i,j=1,...,dπ with respect to
an orthonormal basis of Vπ then put

π∗i,j(g) := πi,j(g) = πj,i(g−1) (g ∈ G), (2.61)

where we used in the second equality that we are working with unitary matrices. Then π∗ is
again an irreducible unitary representation of G, called the contragredient or dual or complex
conjugate of π.

Define the left regular representation λ and right regular representation ρ of G on L2(G) by

(λ(g)f)(g1) := f(g−1g1), (ρ(g)f)(g1) := f(g1g) (f ∈ L2(G), g, g1 ∈ G). (2.62)

These are indeed unitary representations of G and they are weakly continuous: the functions
sending g to ∫

G
f1(g−1g1) f2(g1) dg1 and

∫
G
f1(g1g) f2(g1) dg1

are continuous (prove this first for f1, f2 in the dense subspace of continuous functions with
compact support).

Now let π ∈ Ĝ and π = (πi,j)i,j=1,...,dπ with respect to an orthonormal basis of Vπ. Then

(λ(g)πi,j)(g1) = πi,j(g−1g1) =
dπ∑
l=1

πi,l(g−1)πl,j(g1) =
dπ∑
l=1

π∗l.i(g)πl,j(g1).

Hence, for fixed j = 1, . . . , dπ we have

λ(g)πi,j =
dπ∑
l=1

π∗l,i(g)πl,j (i = 1, . . . , dπ). (2.63)

Note that the functions d
1
2
ππi,j (i = 1, . . . , dπ) form an orthonormal basis of the linear span Wj(π)

of the elements in the j-th column of the matrix (πi,j)i,j=1,...,dπ . Thus Wj(π) is an invariant
subspace of L2(G) under the representation λ of G and the restriction of λ to Wj(π) is equivalent
with π∗. We conclude that, corresponding to the orthogonal direct sum decomposition of Hilbert
space

L2(G) =
⊕
π∈ bG

( dπ⊕
j=1

Wj(π)
)
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we have a direct sum decomposition of unitary representation into irreducible representations:

λ =
⊕
π∈ bG

( dπ⊕
j=1

π∗
)

=
⊕
π∈ bG

dππ
∗.

For π ∈ Ĝ choose the orthonormal basis e1, . . . , edπ of Vπ such that ej is K-fixed if j ≤ cπ.
Let W (π) be the linear span of the πi,j (i, j = 1, . . . , dπ). Then f ∈ W (π) and right invariant
under K iff f ∈ ⊕cπj=1Wj(π) (see the proof of Theorem 2.37). Let L2(G/K) := {f ∈ L2(G) |
f ∈ L2(G) and right-K-invariant}. Then we have an orthogonal direct sum decomposition of
L2(G/K) and a corresponding direct sum decomposition of λ restricted to L2(G/K):

L2(G/K) =
⊕

π∈(G/K)b
( cπ⊕
j=1

Wj(π)
)
, (2.64)

λ|G/K =
⊕

π∈(G/K)b
( cπ⊕
j=1

π∗
)

=
⊕

π∈(G/K)bcππ
∗. (2.65)

We conclude that the following are equivalent:

a) (G,K) is a Gelfand pair.

b) cπ = 1 for all π ∈ (G/K) .̂

c) Each π ∈ Ĝ occurring in the direct sum decomposition of λ on L2(G/K) has multiplicity
1 in this decomposition.

Now let G,X, ω, x0,K be as in §2.3. Then the map

f 7→
(
g 7→ f(g . x0)

)
: L2(X)→ L2(G/K)

is an isomorphism of Hilbert spaces and it is intertwining for the action of G on L2(X) and
the representation λ on L2(G/K). Thus the decompositions (2.64), (2.65) can be rewritten as
decompositons for L2(X) and the representation of G on L2(X). We conclude that the following
are equivalent:

a) (G,K) is a Gelfand pair.

b) For all π ∈ Ĝ occurring in the direct sum decomposition of L2(X) into irreducible subspaces
under G we have cπ = 1.

c) Each π ∈ Ĝ occurring in the direct sum decomposition of L2(X) into irreducible subspaces
under G has multiplicity 1 in this decomposition.

An important class of compact Gelfand pairs is given by the compact symmetric pairs (G,K).
Here G is a compact connected semisimple Lie group and K is a closed subgroup of G which is
maximal in the following sense: if K1 is a closed subgroup of G such that K ⊂ K1 6= G then
the Lie algebras of K and K1 are isomorphic.
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A compact Lie group G is called semisimple if its Lie algebra g has the property that the
bilinear form (Killing form)

B(X,Y ) := tr
(
(adX) ◦ (adY )

)
(X,Y ∈ g)

is negative definite. Here the linear map adX : g→ g is defined by:

(adX)(Z) := [X,Z] (X,Z ∈ g).

For instance, the compact group SU(n) with Lie algebra su(n) is semisimple, but the compact
group U(n) with Lie algebra isomorphic to su(n)⊕ R is not semisimple.

For a compact symmetric pair (G,K) it can be shown that G has a closed connected abelian
subgroup A such that G admits the Cartan decomposition G = KAK and there is a continuous
group automorphism θ of G (Cartan involution) such that θ2 = id, θ|K = id and θ(a) = a−1

(a ∈ A). The group A is isomorphic with a torus Tr. Here r is called the rank of the symmetric
pair.

The following table gives a classification of the compact symmetric pairs of rank 1. As
already mentioned, compact symmetric pairs are special cases of compact Gelfand pairs. On all
compact symmetric pairs of rank 1 the spherical functions turn out to be Jacobi polynomials
R

(α,β)
n . The table also lists α, β for the Jacobi polynomials occurring as spherical functions.

G K α β

SO(d) SO(d− 1) 1
2d−

3
2

1
2d−

3
2

SO(d) S(O(1)×O(d− 1)) 1
2d−

3
2 −1

2

SU(d) S(U(1)× U(d− 1)) d− 2 0
Sp(d) Sp(1)× Sp(d− 1) 2d− 3 1
F4 Spin(9) 7 3

The first line gives for G/K the sphere Sd−1, which case we have extensively studied. For
the second, third and fourth line G/K is a real, complex and quaternionic projective space,
respectively. The case (F4, Spin(9)) is exceptional; for this case there is not an infinite family.
Here F4/Spin(9) is the Cayley elliptic plane.

2.10 Riemannian manifolds and invariant differential operators

A Riemannian manifold is a C∞ manifold X on which a line element ds is given which takes on
an open subset U of X with local coordinates (x1, . . . , xn) the form

ds2 =
n∑

i,j=1

gi,j(x) dxi dxj (x ∈ U), (2.66)

where gi,j ∈ C∞(U) and the matrix (gi,j(x))i,j=1,...,n is real symmetric positive definite for
each x ∈ U . Under a local change of coordinates (x1, . . . , xn) 7→ (y1, . . . , yn) the line element
transforms as

ds2 =
n∑

k,l=1

n∑
i,j=1

gi,j(x)
∂xi

∂yk
∂xj

∂yl
dyk dyl. (2.67)
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We call (gi,j) the metric tensor. A C1 curve γ : t 7→ x(t) : [0, 1]→ U has length

L(γ) :=
∫ 1

0

(∑n
i,j=1gi,j(x(t))

dxi(t)
dt

dxj(t)
dt

) 1
2
dt. (2.68)

In an evident way, this definition can be extended to curves not included completely within
one coordinate neighbourhood. A connected Riemannian manifold becomes a metric space by
defining d(a, b) as the infimum of all L(γ) with γ a curve connecting a and b.

Still for local coordinates put

|g| := det(gi,j), (gi,j)i,j=1,...,n :=
(
(gi,j)i,j=1,...,n

)−1
. (2.69)

Then a measure on X is obtained from the volume element

dσ := |g|
1
2 dx1 . . . dxn. (2.70)

Also a second order partial differential operator ∆ on X, the Laplace-Beltrami operator, is
defined by

∆ := |g|−
1
2

n∑
i,j=1

∂

∂xi
◦ |g|

1
2 gi,j

∂

∂xj
. (2.71)

We will use these concepts in the observation that a diffeomorphism Φ of X which preserves
the line element, also preserves the volume element, while the differential operator ∆ will be
invariant under Φ (i.e., Φ . (∆(f)) = ∆(Φ . f), where (Φ . f)(x) := f(Φ−1(x))).

Example 2.42. Consider Rd with elements x = (x1, . . . , xd). Then Rd becomes a Riemannina
manifold if we put for the line element ds2 = dx2

1 + · · ·+ dx2
d. Then clearly the volume element

is dx1 . . . dxd and the Laplace-Beltrami operator is ∆ = ∂2/∂x2
1 + · · · ∂2/∂x2

d. Let ds′ be the
restriction of the line element to the submanifold Sd−1. For 0 6= x ∈ Rd write x = rx′ (r > 0,
x′ ∈ Sd−1. Take (unspecified) local coordinates x′1, . . . , x

′
d−1 on Sd−1. Then use r, x′1, . . . , x

′
d−1

as local coordinates on Rd. Since ds is invariant under orthogonal transformations T and Sd−1

is also invariant under such T , the line element ds′ on Sd−1 will be invariant under T . Hence
also the volume element dσ′ and the Laplace-Beltrami operator ∆′ associated with ds′ will be
invariant under T .

Now we have

ds2 = dr2 + r2 ds′2, |g| = r2d−2 |g′|, dµ(x) = rd−1 dr dµ′(x′). (2.72)

Furthermore,

(gi,j) =
(

1 0
0 r2 (g′i,j)

)
, (gi,j) =

(
1 0
0 r−2 (g′i,j)

)
.

Hence,

∆ = r−d+1 |g′|−
1
2

( ∂
∂r
◦ rd−1 |g′|

1
2
∂

∂r
+
∑d−1

i,j=1

∂

∂x′i
◦ rd−1 |g′|

1
2 r−2 g′i,j

∂

∂x′j

)
=

∂2

∂r2
+
d− 1
r

∂

∂r
+

1
r2
|g′|−

1
2

d−1∑
i,j=1

∂

∂x′i
◦ |g′|

1
2 g′i,j

∂

∂x′j
.
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Hence

∆ =
∂2

∂r2
+
d− 1
r

∂

∂r
+

1
r2

∆′ (2.73)

Now let ∆ act on C∞ function f which is homogeneous of degree n, i.e.,

f(rx′) = rn f(x′) (r > 0, x′ ∈ Sd−1).

Then

∆f(x) =
( ∂2

∂r2
+
d− 1
r

∂

∂r
+

1
r2

∆′
)
rn f(x′)

= rn−2
(
∆′ + n(n+ d− 2)

)
f(x′).

In particular,
∆f(x) = 0 ⇐⇒ ∆′f(x′) = −n(n+ d− 2) f(x′). (2.74)

So a spherical harmonic of degree n, restricted to Sd−1, is an eigenfunction of ∆′ for the eigen-
value −n(n+ d− 2).

If (G,K) is a compact symmetric pair then it can be shown that X = G/K is a Riemannian
manifold with line element invariant under G (X is then called a compact Riemannian symmetric
space). Then the Laplace-Beltrami operator ∆ on X is G-invariant. Then it can be shown that
the spherical functions, considered as functions on X, are C∞ functions which are eigenfunctions
of ∆. If (G,K) is a compact symmetric pair of rank one then the spherical functions are, up to a
constant factor, characterized as the K-invariant eigenfunctions of ∆. If the rank is greater than
1 then it can be shown that the algebra of G-invariant differential operators on X (including
∆) is commutative and that the spherical functions are, up to a constant factor, characterized
as the K-invariant joint eigenfunctions of the G-invariant differential operators on X.
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