Special functions and Lie theory

Exercises, week 11

Exercise 1 Let the Bessel function \mathcal{J}_{α} be defined as in Exercise 1 of Week 10. Show that

$$\left(\frac{d^2}{dr^2} + \frac{2\alpha + 1}{r} \frac{d}{dr}\right) \mathcal{J}_{\alpha}(\lambda r) = -\lambda^2 \, \mathcal{J}_{\alpha}(\lambda r) \qquad (\lambda, r > 0),$$

first for general α by using the defining power series, and second for $\alpha = \frac{1}{2}d - 1$ (d = 1, 2, ...) by using that the function $x \mapsto \mathcal{J}_{\frac{1}{2}d-1}(\lambda|x|)$ on \mathbb{R}^d is obtained by averaging $x \mapsto e^{i\lambda x_1}$ with respect to the group SO(d).

Exercise 2 Show that the group $G:=SL(2,\mathbb{R})$ acts transitively on the upper half plane $X:=\{z\in\mathbb{C}\mid \operatorname{Im} z>0\}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z := \frac{az+b}{cz+d},$$

and that the stabilizer of i in G equals K := SO(2). Determine the orbits of the subgroups $A := \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \right\}$ and $N := \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \right\}$ for this action.

Make X into a Riemannian manifold such that the line element is G-invariant. Find the corresponding volume element and Laplace-Beltrami operator.