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This note gives a minor extension to Chap. 5 of the book Fourier analysis, an
introduction by E. M. Stein and R. Shakarchi.

Dense subspaces of Lp(R)

By a simple function on R we mean a finite linear combination of characteristic
functions χE of measurable subsets E of R. In particular, a simple function
on R is integrable iff it is a finite linear combination of characteristic functions
χE with λ(E) < ∞.
The Lebesgue measure λ on R is regular, i.e., for every measurable set E ⊂ R
we have:

λ(E) = inf{λ(V ) : E ⊂ V and V open},
λ(E) = sup{λ(K) : K ⊂ E and K compact}.

This follows from Theorem 2.18 in Rudin, Real and complex analysis.

Proposition Let 1 ≤ p < ∞. The following spaces are dense in Lp(R):

1. The space of integrable simple functions on R.

2. The linear span of the characteristic functions of bounded intervals in
R.

3. The space of continuous functions on R of compact support, i.e., which
vanish outside some bounded interval.

Proof We will prove these results for p = 1. The proof for other p is similar.
Proof of 1. Every f ∈ L1(R) can be written as f = f1 − f2 + if3 − if4 with
f1, f2, f3, f4 nonnegative L1 functions. So it is sufficient to prove that every
nonnegative L1 function f can be approximated in L1 norm by integrable sim-
ple functions. There is an increasing sequence of nonnegative simple functions
tn(x) which tend pointwise to f as n →∞. Then

∫
tn tends to

∫
f as n →∞,

so ‖f − tn‖1 → 0.

Proof of 2. By 1. it is sufficient to prove that, if E ⊂ R is measurable with
λ(E) < ∞ then χE can be approximated in L1 norm by finite linear combina-
tions of characteristic functions of bounded intervals. Let ε > 0. By regularity
of λ there is an open set V ⊃ E such that λ(V ) < λ(E) + 1

2ε < ∞. Since V is
a countable disjoint union of open intervals, there is a finite union W ⊂ V of
bounded open intervals such that λ(W ) > λ(V )− 1

2ε. Hence ‖χE − χW ‖ < ε.

Proof of 3. Every characteristic function of a bounded interval can be ap-
proximated in L1 norm by continuous functions of compact support. Now
use 2.
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We can use part 2. of this Proposition in order to prove the Riemann-
Lebesgue Lemma for the Fourier transform:

If f ∈ L1(R) then f̂(ξ) → 0 as ξ → ±∞.
Just observe that the statement is true for f = χ[a,b].

Exercises

Exercise 1. (For this exercise use results from both Fourier series and Fourier
integrals.) Below define x−1 sinx for x = 0 by continuity.

a) Let t ∈ R. Show that for each x ∈ (−π, π) we have

∞∑
n=−∞

sin(π(t− n))
π(t− n)

einx = eixt

with pointwise convergence. What is the evaluation of the sum on the
left-hand side for other real values of x?

b) Show that, for all n, m ∈ Z, we have∫ ∞

−∞

sin(π(t− n))
π(t− n)

sin(π(t−m))
π(t−m)

dt = δn,m,

where the integral converges absolutely.

c) Does there exist f ∈ L2(R) with f 6= 0 such that∫ ∞

−∞
f(t)

sin(π(t− n))
π(t− n)

dt = 0 for all n ∈ Z ?

d) Let f ∈ L2([−π, π]). Define f̂ as a function on R by

f̂(t) :=
1
2π

∫ π

−π
f(x) e−ixt dx (t ∈ R). (1)

(For t ∈ Z this defines the Fourier coefficients of f ; for general t ∈ R this
defines the Fourier transform of a function on R which vanishes outside
[−π, π].) Show that

f̂(t) =
∞∑

n=−∞
f̂(n)

sin(π(t− n))
π(t− n)

(t ∈ R) (2)

with absolutely convergent sum.
(This shows in particular the following. Let g be an L2 function on R
which is the Fourier transform g = f̂ of an L2 function f on R vanishing
outside [−π, π] (see (1)). So g is also continuous. Then g is completely
determined by its restriction to Z, with reconstruction formula given by
(2).)
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Hints to Problem 7 in Chapter 5 of Stein & Shakarchi
As for (b), show that, if f is continuous and of moderate decrease and if for
all k ∈ Z≥0 we have ∫ ∞

−∞
f(y) e−y2

yk dy = 0 (3)

then we have for all x ∈ R that∫ ∞

−∞
f(y) e−y2

e2xy dy = 0,

and hence, by Ch.5, Exercise 8, f = 0. Now try to go from the assumption in
(b) of Problem 7 to equation (3) above.

As for (c), a result from (a) is:

hk(x) = (−1)kex2/2
( d

dx

)k
e−x2

.

Show, by once differentiating this formula, that

hk+1(x) =
(
x− d

dx

)
hk(x). (4)

Use (4) in (c) in order to prove the result there by induction with respect to k.
Now show, by applying the operator x + d

dx to both sides of (4) and by
using induction with respect to k, that(

x + d
dx

)
hk+1(x) = 2(k + 1)hk(x). (5)

Now it has to be proved in (d) that

(Lhk)(x) :=
(
x2 − d2

dx2

)
hk(x) = (2k + 1)hk(x).

Show this by expressing the operator L in terms of x− d
dx and x + d

dx and by
using (4) and (5).
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