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This note gives a minor extension to Chap. 5 of the book Fourier analysis, an
introduction by E. M. Stein and R. Shakarchi.

Dense subspaces of LP(R)

By a simple function on R we mean a finite linear combination of characteristic
functions xg of measurable subsets F of R. In particular, a simple function
on R is integrable iff it is a finite linear combination of characteristic functions
X with A(E) < co.

The Lebesgue measure A on R is regular, i.e., for every measurable set £ C R
we have:

AME) =inf{\(V): ECV and V open},
AME) =sup{A\(K): K C E and K compact}.

This follows from Theorem 2.18 in Rudin, Real and complex analysis.

Proposition Let 1 < p < oo. The following spaces are dense in LP(R):
1. The space of integrable simple functions on R.

2. The linear span of the characteristic functions of bounded intervals in

R.

3. The space of continuous functions on R of compact support, i.e., which
vanish outside some bounded interval.

Proof We will prove these results for p = 1. The proof for other p is similar.

Proof of 1. Every f € L'(R) can be written as f = f1 — fo +if3 —ifs with
f1, f2, f3, f2 nonnegative L' functions. So it is sufficient to prove that every
nonnegative L' function f can be approximated in L' norm by integrable sim-
ple functions. There is an increasing sequence of nonnegative simple functions
tn(z) which tend pointwise to f as n — co. Then [ t, tends to [ f as n — oo,
so ||f —tn]l1 — 0.

Proof of 2. By 1. it is sufficient to prove that, if £ C R is measurable with
A(E) < oo then xg can be approximated in L! norm by finite linear combina-
tions of characteristic functions of bounded intervals. Let ¢ > 0. By regularity
of A there is an open set V O E such that A(V) < A(E) + 3¢ < oo. Since V is
a countable disjoint union of open intervals, there is a finite union W C V' of
bounded open intervals such that A(W) > A(V) — Se. Hence ||xg — xw|| < e

Proof of 3. Every characteristic function of a bounded interval can be ap-
proximated in L' norm by continuous functions of compact support. Now
use 2. O



We can use part 2. of this Proposition in order to prove the Riemann-
Lebesgue Lemma for the Fourier transform:

If f € LY(R) then f(ﬁ) — 0 as £ — Foo.

Just observe that the statement is true for f = x4

Exercises
Exercise 1. (For this exercise use results from both Fourier series and Fourier
integrals.) Below define z~!sinz for 2 = 0 by continuity.
a) Let t € R. Show that for each x € (—m,7) we have

[e.e] .

Z Sln(ﬂ-(t B n)) inr __ _ixt

— e =e¢
m(t —n)

n=—oo

with pointwise convergence. What is the evaluation of the sum on the
left-hand side for other real values of x?

b) Show that, for all n,m € Z, we have
* sin(7w(t —n)) sin(w(t —m))
dt = 5n ms
oo T(t—n) w(t —m) ’
where the integral converges absolutely.

¢) Does there exist f € L?>(R) with f # 0 such that

/ f(t) sin(r )))dt—O forallneZ?

d) Let f € L%(|—n,7]). Define fas a function on R by

= % /_7; f(z)e ™ da (t € R). (1)

(For t € Z this defines the Fourier coefficients of f; for general ¢ € R this

defines the Fourier transform of a function on R which vanishes outside
[-7,7].) Show that

sm —n)) R 5
n_zwf =re) gem )
with absolutely convergent sum.
(This shows in particular the following. Let g be an L? function on R
which is the Fourier transform g = ]/”\of an L? function f on R vanishing
outside [—7, 7] (see (1)). So g is also continuous. Then g is completely

determined by its restriction to Z, with reconstruction formula given by

(2).)



Hints to Problem 7 in Chapter 5 of Stein & Shakarchi
As for (b), show that, if f is continuous and of moderate decrease and if for
all & € Z>o we have

/_OO fly)e ™ ykdy =0 (3)

then we have for all z € R that
o0 2
/ fly)e ¥ ¥ dy =0,
—00

and hence, by Ch.5, Exercise 8, f = 0. Now try to go from the assumption in
(b) of Problem 7 to equation (3) above.
As for (c), a result from (a) is:

h() = (—1)%902/2(%)’“@—:02.

Show, by once differentiating this formula, that

hir1(z) = (z — £5) (). (4)

Use (4) in (c) in order to prove the result there by induction with respect to k.
Now show, by applying the operator = + % to both sides of (4) and by
using induction with respect to k, that

(7 + L) hpsr (z) = 2(k + Dhy (). (5)
Now it has to be proved in (d) that

(Lhy)(x) = (2 = L) hy(x) = (2k + 1)hy(2).

Show this by expressing the operator L in terms of x — % and x + % and by

using (4) and (5).



