Mizanur Rahman by Michael Hoare (pp. 26-27 in "Theory and Applications of Special Functions", Developments in Mathematics, Volume 13, Springer-Verlag, 2005; reproduced here with kind permission of Springer-Verlag) This is an outline of how we first met and how Mizan came to branch out on his extraordinary mathematical career. We first corresponded and eventually met at Bedford College, London University in 1971/72. He was then working on Neutron Transport Theory (singular integral equations), his Ph.D. subject, in which I had an interest from a more general statistical physics viewpoint. With a sabbatical coming up he had written to the outstanding English expert on neutron transport, Mike Williams at Queen Mary College Nuclear Engineering Department, with a view to spending a year there. For some reason Mike couldn't take him in and suggested that he come to me at Bedford instead. This worked splendidly, and I dare say the liberal arts atmosphere of the college, set idyllically in Regent's Park, was a distinct improvement on that of Nuclear Engineering in the East End. The only downside was that we were a very small Physics department and there was little resonance with the heavily algebraicized Math department under Paul Cohn. This hardly seemed to matter, since we were both to an extent outsiders from what were the fashionable subjects at the time. We started out on his home ground, the singular integral equation arising from the form of one-dimensional gas model known as 'Rayleigh's piston' and this led to the first calculations of its eigenvalue spectrum, with characteristic mixed discrete and continuum sets. In the course of this he admitted me to the faith, convincing me that Cauchy Principal Values and Hadamard finite parts could be made tangible and did not need to handled as though matters of higher metaphysics. About this time I happened to mention a problem in combinatorics that had been fascinating me for some time, in fact since my post-doc days at the University of Washington. This arose from a disarmingly simple model in chemical kinetics which involved the partitioning of energy quanta between different vibrational degrees of freedom in colliding polyatomic molecules. Reformulated as a 'urn model,' its iterations corresponded to a Markov chain for partitioning balls in boxes, with only a subset ran- domized at each event. My earlier eigenvalue solution for a continuum version of this had come out in Laguerre polynomials and led to probability transition kernels with action very similar to formulae of Erdélyi and Kogbetlianz in 1930s special function theory, though at the time without any probabilistic interpretation. (I was happily able to meet Erdélyi in Edinburgh shortly before his death and he was delighted to know that the formulae had a 'practical' side.) Mizan seized on the implications of this problem and its generalizations and before long was off and running with his first series of papers on special function theory, while my 'statistical physics' by-products followed at more leisurely intervals. I tended to keep cautiously within the bounds of 'physical' models, while Mizan was soon off into the never never land of q-theory. After he returned to Carleton we managed to strike lucky with grants from the NRC of Canada and the SRC in London, which kept us in funds for severalyears of visits to and fro as the work progressed. (Happy days of the '70s and beneficent Research Councils). Mizan even managed to come to Stuttgart in '77 when my turn for a sabbatical came round and it was here that we sorted out what I have ever since felt was the real 'gem' among our various generalizations. This was the discovery of a new take on Bernoulli Trials --- the idea of 'cumulative trials' in which one has the right to 'throw again' on the subset of trials that fail, in order to achieve complete success. That such a simple idea could have lain dormant for over 200 years still amazes me, but no trace of our results in the earlier literature has ever turned up.