The pictures show the quadratic character and a picture of prime numbers and units for some real quadratic fields whose domain of integers is a unique-factorization domain, namely, for radicands <32,
the fields of discriminant congruent 0 modulo 4:

$$
Q(\sqrt{ } 2), Q(\sqrt{ } 3), Q(\sqrt{ } 6), Q(\sqrt{ } 7), Q(\sqrt{ } 11), Q(\sqrt{ } 14), Q(\sqrt{ } 19),(\sqrt{ } 22), Q(\sqrt{2} 3), Q(\sqrt{ } 31)
$$

and the fields of discriminant congruent 1 modulo 4 :

$$
Q(\sqrt{ } 5), Q(\sqrt{ } 13), Q(\sqrt{ } 17), Q(\sqrt{ } 21), Q(\sqrt{ } 29)
$$

At the top, each picture mentions the field, $\mathbb{Q}(\sqrt{ } \mathrm{r})$, and displays its quadratic character (as far as space allows).
In the pictures, rational integers are placed on the x-axis and numbers of the form $\sqrt{ }$ times rational integers on the y-axis. When $\mathrm{d} \equiv 0$ modulo 4 , we use a square grid, otherwise a staggered grid, where the grid points form roughly equilateral triangles.

$Q(\sqrt{21})$ chi prime numbers units
$0+-0++00-0--0-00++0-+$

