Thermodynamics of black holes

Bekenstein 1973: Black hole has entropy $S_{BH}=\frac{A}{4L_P^2}$ (L_P is Planck length= $\sqrt{\hbar G/c^3}$)

Hawking 1975: Black holes have temperature $T_H = \frac{\hbar G}{2\pi c^3} \kappa$ (κ =surface tension)

The four laws of black hole dynamics (Bardeen, Carter, Hawking, 1975)

- $0: T_H$ is constant at the horizon
- 1: $dU = T_H dS_{BH} + dW$
- 2: Total entropy $S = S_{BH} + S_m$ cannot decrease
- 3: Maximally charged (rotating) black holes, with $T_H = 0$, unattainable

Are these the laws of black hole thermodynamics?

Thermal bath = cosmic microwave background

First law: System=black hole +Gedanken sphere

Try:
$$dQ = T_H dS_{BH} + T_{mcb} \underbrace{dS_m^{\text{Gedanken sphere}}}_{=0}$$

$$dU = dQ + dW = T_H dS_{BH} + dW QED$$

Second law Clausius:

$$dQ \leq T_{cmb}d[S_{BH} + S_m^{Gedanken sphere}]$$
?

Yes, because there is also absorption of CMB $\begin{cases} \text{small BH:large } T_H, \text{more evaporation} \\ \text{large BH:small } T_H, \text{more absorption} \end{cases}$

 \rightarrow heat goes from high T to low T QED

Third law: System = Universe with BH in it.

$$\rightarrow S = 0 \text{ if } T_{cmb} = 0, \text{ not } T_H = 0.$$

 $T_{cmb} < t^{-1/3} \rightarrow \text{all BH's finally evaporate}$ $\rightarrow S = 0 \text{ at } T_{cmb} = 0 \text{ QED}$

(deviates from third law of dynamics)