Quantum measurement as driven phase transition: An exactly solvable model, Phys. Rev. A. 64 (2001) 032108.

Curie-Weiss model of the quantum measurement process, preprint 2002.

Armen Allahverdyan, Roger Balian, Theo Nieuwenhuizen

(Yerevan/Saclay/Amsterdam)

Setup

- Introduction
- The model
- Its dynamics
- Diagonal elements of density matrix
- Off-diagonal elements
- Result of measurement
- Summary, conclusion

The measurement

- Hermitean operator \widehat{S} : eigenvalue s_i , eigenfunction ψ_i .
- By measuring \widehat{S} , an eigenvalue s_i is observed.
- Pure state: If $\psi=\sum_i c_i\psi_i$, then the probability is $|c_i^2|$. After measurement: $\psi\to\psi_i$: collaps of wavefunction, reduction of wavepacket.
- General: density matrix $\rho = \sum \rho_{ij} \psi_i^* \psi_j$: prob. is ρ_{ii} .
- Grandmother's tale: collaps is instantaneous, no Schrödinger cats: $\rho_{i\neq j}=0$.
- von Neumann:
 collaps is non-unitary → Additional postulate needed:
 Full Quant Mech = Quant Mech + collaps postulate.
- Other fairy tales:
- Wigner, and his friend: Mind-body problems
 If I perform a measurement but do not look at the outcome, it is not finished.
 (But my friend could look at it, and then ...)
- Everett: multi-universe picture: In each measurement a collection of universes is opened; we go into one of them...

For adults only: van Kampen's 10 theorems (1988); Balian's requirements for quantum measurement (1989).

- Apparatus is macroscopic.
- At t = 0 density matrix total system uncorrelated:

$$D(0) = r(0) \otimes R(0)$$

system S: arbitrary r(0) apparatus A: in metastable state R(0)

- Apparatus reaches at end of measurement state R_i . The R_i are equally probable, to avoid bias.
- Each R_i is stable, for robust, permanent registration. Pointer variable \widehat{A} has negligible fluctuations around A_i .
- The observable s of S does not change much during the process (fast measurement).
- For ideal measurement: special type of decoherence, depending on measured observable \hat{s} , which reduces r(0) its diagonal block $r_i = r_{ii}(0)|i\rangle\langle i|$ associated with s_i .
- Special classical correlations between S and A,

$$D(0) \to D(\infty) = \sum_{i} p_i |i\rangle\langle i| \otimes R_i.$$

Probabilities: $p_i = r_{ii}(0)$ (Born's law). Final state S: $r_i = p_i |i\rangle\langle i|$ (von Neumann's reduction). • **ABN1**: Apparatus = ideal Bose gas+bath, measures position of test particle.

Apparatus initially close to Bose-Einstein transition; driven into it by the measurement process.

Picture confirmed. Drawback: initial state not metastable.

• **ABN2**: Measure s_z of spin- $\frac{1}{2}$ particle, using Curie-Weiss ferromagnet coupled to bath.

Full Hamiltonian:

$$\hat{H} = \hat{H}_{SA} + \hat{H}_{A} + \hat{H}_{AB} + \hat{H}_{B}$$

$$\hat{H}_{SA} = -gN\hat{s}_{z}\hat{m}, \qquad \hat{m} = \frac{1}{N}\sum_{n=1}^{N}\hat{\sigma}_{z}^{(n)}$$

$$\hat{H}_{A} = -\frac{1}{4}JN\hat{m}^{4}, \qquad \hat{H}_{AB} = \sum_{n=1}^{N}\sum_{a=x,y,z}\hat{\sigma}_{a}^{(n)}\mathcal{B}_{a}^{(n)}$$

Stationary, quasi-Ohmic bath:

$$\operatorname{tr}_{\mathsf{B}}[D_{B}(0)\mathcal{B}_{a}^{(m)}(t)\mathcal{B}_{b}^{(n)}(s)] = \delta_{a,b}\,\delta_{m,n}\,K(t-s)$$

$$K(t) = \gamma \hbar^2 \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{8\pi} e^{\mathrm{i}\omega t} \left[\frac{\omega}{\tanh\frac{1}{2}\beta\hbar\omega} - \omega \right] e^{-|\omega|/\Gamma}$$

 $\gamma \ll$ 1: dimensionless coupling constant Γ : large Debye cut-off frequency.

• T not too large, p > 2: Apparatus can start in metastable paramagnet (m = 0).

Dynamics:

- Consider full density matrix $\mathcal{D}(0) = r(0) \otimes R(0) \otimes D_B(0)$
- von Neumann eqn. $\mathrm{i} \, \overline{h} \, \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{D} = [\hat{H}, \mathcal{D}]$
- go to sectors with fixed $s_z = \pm 1$: $\mathcal{D}_{ij} = \langle i | \mathcal{D} | j \rangle$.
- Mean field: $\hat{m}^4 \to m_{ij}^4 + 4 m_{ij}^3 \hat{m}$; self-consistent m_{ij} .
- Weak coupling to bath: Expand to first order in γ . Trace over bath: $2^N \times 2^N$ matrix $D_{ij} = \operatorname{tr}_B \mathcal{D}_{ij}$
- ullet Solution: N apparatus spins equivalent,

$$D_{ij}(t) = r_{ij}(0) \times \rho_{ij}(t) \otimes \cdots \otimes \rho_{ij}(t).$$

• Result: Bloch equations for spins of apparatus.

Define
$$\sigma_{0,ij} = \operatorname{tr} \rho_{ij}$$
, $\sigma_{z,ij} = \operatorname{tr} \hat{\sigma}_z \rho_{ij}$.

Initial paramagnet:

$$\rho_{ij}(0) = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \rightarrow \sigma_{0,ij} = 1; \ \sigma_{z;ij} = 0.$$

No transverse components: $\sigma_{x,ij} = \sigma_{y;ij} = 0$ at all t.

- Evolution of the diagonal elements.
- $\sigma_{0,\uparrow\uparrow}(t) = \sigma_{0,\downarrow\downarrow}(t) = 1$ conserved;
- $\rightarrow r_{\uparrow\uparrow}(t) \equiv \operatorname{tr}_{\mathsf{A}} D_{\uparrow\uparrow}(t) = r_{\uparrow\uparrow}(0)$ conserved.
- magnetization $m_{\uparrow}=\sigma_{z,\uparrow\uparrow}$: $\dot{m}_{\uparrow}=\frac{2\gamma g_{\uparrow}}{\hbar}(1-\frac{m_{\uparrow}}{\tanh\beta g_{\uparrow}}),$ effective field: $g_{\uparrow}(t)=g+Jm_{\uparrow}^3(t).$
- ullet m_{\uparrow} goes to minimum of Curie-Weiss free energy in field:

$$\frac{F(m)}{N} = -gm - \frac{Jm^4}{4} + T\frac{1+m}{2} \ln \frac{1+m}{2} + T\frac{1-m}{2} \ln \frac{1-m}{2}$$

- T small enough, g large enough $\to m_{\uparrow}(\infty)$ near 1. Switch off g after measurement: m_{\uparrow} goes to solution of $m = \tanh \beta J m^3$ near m = 1. Keeps that value for ever.
- Characteristic time for measurement,

$$au_{
m meas} = rac{\hbar}{\gamma g}, \qquad rac{1}{\gamma} : {
m coupling \ to \ bath}.$$

Off-diagonal elements.

•
$$\dot{\sigma}_{0,12} = \frac{2ig}{\hbar} \sigma_{z,12}$$
; $\dot{\sigma}_{z,12} = \frac{2ig}{\hbar} \sigma_{0,12} - 2\Lambda \sigma_{z,12}$.

Damping coefficient:

$$\Lambda(t) = \frac{1}{\pi} \gamma \Gamma^2 t$$
 (small t); $\Lambda(\infty) = \frac{\gamma g}{\hbar \tanh \beta g}$

Time needed for collaps of wavefunction: (Fate of Schrödinger cats)

• $N \gg \frac{1}{\gamma}$: $r_{\uparrow\downarrow}(t) \sim r_{\uparrow\downarrow}(0) \exp[-(t/\tau_{\rm collaps})^2],$

$$au_{
m collaps} = rac{\sqrt{\pi}}{\sqrt{\gamma N}} \, rac{1}{\Gamma} \ll au_{
m meas}$$
 :

Collaps solely due to coupling to apparatus.

•
$$N \ll \frac{1}{\gamma}$$
: $r_{12}(t) = r_{12}(0) \, e^{-N \wedge t} \left(\cos \frac{2gt}{\hbar} + \frac{\hbar \Lambda}{2g} \sin \frac{2gt}{\hbar} \right)^N$, $au_{\text{collaps}} = \frac{1}{N} \frac{\hbar}{\gamma a} \tanh \beta g \sim \frac{1}{N} au_{\text{meas}}$,

Result of the measurement.

Proper description of the measurement process: Common state of tested system and apparatus

$$D(\infty) = p_{\uparrow} \times |\uparrow\rangle\langle\uparrow| \otimes \rho_{\uparrow\uparrow}(\infty) \otimes \cdots \otimes \rho_{\uparrow\uparrow}(\infty)$$
$$+p_{\downarrow} \times |\downarrow\rangle\langle\downarrow| \otimes \rho_{\downarrow\downarrow}(\infty) \otimes \cdots \otimes \rho_{\downarrow\downarrow}(\infty),$$

Born rule: $p_{\uparrow} = r_{\uparrow\uparrow}(0)$, $p_{\downarrow} = r_{\downarrow\downarrow}(0)$.

 $\rho_{\uparrow\uparrow}(\infty)$ and $\rho_{\downarrow\downarrow}(\infty)$: Gibbsian density matrix for apparatus spin in classical field $\pm h$:

$$\rho_{ii}(\infty) = \frac{1}{2} \begin{pmatrix} 1 + m_{ii} & 0 \\ 0 & 1 - m_{ii} \end{pmatrix}, \qquad i = 1, 2.$$

• Further tests.

Let this setup be input for larger measurement (possible in spintronics?).

Observing collaps of test particle: $\langle \hat{s}_x \rangle(t) = 2\Re r_{12}(t)$.

Observation of test particle & apparatus spin: $\langle \hat{s}_y \hat{\sigma}_z \rangle(t) \approx \tan(2gt/\hbar) \langle \hat{s}_x \rangle(t)$.

Summary

- To measure s_z of test spin, it is coupled to Curie-Weiss ferromagnet, coupled to a bath.
- Initial state of apparatus is metastable paramagnet.
- Collaps of wavefunction is short but finite time; due to coupling to apparatus, which is noisy due to bath.
- Proper common state of test spin and apparatus.
- Born rule obeyed.

Conclusion

- The quantum measurement described by statistical thermodynamics of the test system and apparatus.
- Good measurement occurs for macroscopic apparatus.
- Collaps of wavefunction is not instantaneous.
- No other explanations (friends, multi-universes) needed.