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T he measurement

e Hermitean operator S: eigenvalue s;, eigenfunction ;.

_

e By measuring S, an eigenvalue s; is observed.

- Pure state: If ¢y = > ¢iep;, then the probability is |c?|.
After measurement: ¢ — ;: collaps of wavefunction,
reduction of wavepacket.

- General: density matrix p =) pieoi1;: prob. is p;.

e Grandmother’s tale: collaps is instantaneous,
no Schrodinger cats: p;«; = 0.

e von Neumann:
collaps is non-unitary — Additional postulate needed:
Full Quant Mech = Quant Mech 4 collaps postulate.

e Other fairy tales:

- Wigner, and his friend: Mind-body problems

If I perform a measurement but do not look at the out-
come, it is not finished.

(But my friend could look at it, and then ...)

- Everett: multi-universe picture:
In each measurement a collection of universes is opened:;
we go into one of them...



For adults only: van Kampen's 10 theorems (1988);
Balian’s requirements for qguantum measurement (1989).

e Apparatus iS macroscopic.

e At t = O density matrix total system uncorrelated:
D(0) =r(0) ® R(0)

system S: arbitrary r(0)

apparatus A: in metastable state R(0)

e Apparatus reaches at end of measurement state R;.
The R; are equally probable, to avoid bias.

e Each R; is stabAIe, for robust, permanent registration.
Pointer variable A has negligible fluctuations around A;.

e T he observable s of S does not change much during
the process (fast measurement).

e For ideal measurement: special type of decoherence,
depending on measured observable 5, which reduces r(0)
its diagonal block r; = r;;(0)|:)(i| associated with s;.

e Special classical correlations between S and A,

D(0) — D(o0) = sz- 3)(i| ® Ri.

Probabilities: p; = r;(0) (Born’s law).
Final state S: r; = p; |7)(¢|] (von Neumann’s reduction).



e ABN1: Apparatus = ideal Bose gas—+bath,
measures position of test particle.

Apparatus initially close to Bose-Einstein transition;
driven into it by the measurement process.

Picture confirmed. Drawback: initial state not metastable.

e ABN2: Measure s, of spin—% particle,
using Curie-Weiss ferromagnet coupled to bath.

Full Hamiltonian:
H = Hsp + Ha + Hpg +

an

B
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e Stationary, quasi-Ohmic bath:
trg[ Dp(0)BI™ (1)BI ()] = S0 Smm K (t — 5)

*® dw . w
K(t) = TL2 iwt . —|w|/T
(t) =1 /_oo 5= ¢ Gann 13w wle

~v <K 1: dimensionless coupling constant
™. large Debye cut-off frequency.

e 7' not too large, p > 2:
Apparatus can start in metastable paramagnet (m = 0).



Dynamics:

e Consider full density matrix D(0) = r(0)®R(0)®Dpg(0)
e von Neumann eqn. iASD = [H, D]

e go to sectors with fixed s, = £1: D;; = (i|D|j).

e Mean field: m* — mfj + 4m;.°’jfr“n; self-consistent m;.

e Weak coupling to bath: Expand to first order in ~.
Trace over bath: 2V x 2V matrix D;; = trgD;;

e Solution: N apparatus spins equivalent,

D;j(t) = rij(0) x pij(t) ® -+ ® pij ().

¢ Result: Bloch equations for spins of apparatus.
Define 00,ij — tr Pij Oz,ij — tr 5‘Zp¢j.
Initial paramagnet:

1 O

No transverse components: o, ;; = o4;5; = 0 at all £.



e Evolution of the diagonal elements.
° UO,TT(t) = 00,¢¢(t) = 1 conserved,

— r4(t) = tra Dyy(t) = 7+4(0) conserved.

e magnetization my = o, 41 My = 2%%(1 - tannrleﬂm)y

effective field: gy(t) = g + Jm3(¢).

e my goes to minimum of Curie-Weiss free energy in
field:

F — Jm* 1 1 1-— 1-—
Em) — _gm — Im* 4 plimnldm 4 plom g lom

e 7' small enough, g large enough — my(co0) near 1.
Switch off g after measurement: m4 goes to solution of
m = tanh SJm3 near m = 1. Keeps that value for ever.

e Characteristic time for measurement,

1
Tmeas = —, — : coupling to bath.
g Y



e Off-diagonal elements.

: 2i . 2
® 00,12 = Tgaz, 12, 0z12 = 7900,12 — 2N o, 12.

Damping coefficient:

A(t) = 2472t (small t);  A(oo) = 28— tanh Bg

Time needed for collaps of wavefunction:
(Fate of Schrodinger cats)

o N> % : r4+.(t) ~ r4,(0) eXD[—(t/TcoIIaps)Q]a

7w 1
VT — K Tmeas -

Tcollaps — \/’Y—N r

Collaps solely due to coupling to apparatus.

N
o N K % ; r12(t) = r12(0) e VA (cos 29t —sm 2%) ,

1 %
Teollaps = — — tanh Bg ~ —Tmeas,
PS = N g N



¢ Result of the measurement.

Proper description of the measurement process:
Common state of tested system and apparatus

D(o0) = pp X [T) (T ® prp(00) ® - - - ® prp(00)
+p, X [ @ py(00) ® -+ - ® pyy(00),

Born rule: py = r44(0), p, = r 1 (0).

ptr(o00) and py (c0): Gibbsian density matrix for appara-
tus spin in classical field +h:

pii(c0) = 3 ( 1o+ i D ) : i=1,2.

1 —my;

e Further tests.
Let this setup be input for larger measurement
(possible in spintronics?).

Observing collaps of test particle: (s;)(t) = 2R r12(¢t).

Observation of test particle & apparatus spin:
(8,5:) (t) ~ tan(2gt/T) (32)(2).



Summary

e TOo measure s, of test spin, it is coupled to Curie-Weiss
ferromagnet, coupled to a bath.

e Initial state of apparatus is metastable paramagnet.

e Collaps of wavefunction is short but finite time;
due to coupling to apparatus, which is noisy due to bath.

e Proper common state of test spin and apparatus.

e Born rule obeyed.

conclusion

e The quantum measurement described by statistical
thermodynamics of the test system and apparatus.

e Good measurement occurs for macroscopic apparatus.
e Collaps of wavefunction is not instantaneous.

e No other explanations (friends, multi-universes) needed.



