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von Neumann's additional postulate:

For the wavefunction |¢) = ) culxn), the measured
value of the operator z is x, with probability p, = |cx|?.

Collaps of wavefunction or reduction of wavepacket:
After measurement |¢) is replaced by the eigenstate |zy).

Today’s view: No extra postulate needed.
The apparatus is also subject to quantum mechanics.

The game: find a (realistic) model where various steps
of the measurement process can be derived.

Our approach: Quantum statistical mechanics of a
system close a phase transition; it is driven into the
condensed phase by the measurement process.



The quantum measurement problem
e System has hermiten operator =z with eigenvalues z;.

e Apparatus has pointer variable X, which takes value
X} in correspondence with z.

p = density operator of system,
R = density operator of apparatus,
R = global density operator

Begin measurement: R(t = 0) = p(0) ® R(0).
End: R(t =0) ~ >, prRi With tr(RyR;) ~ 6.
Exclusive events: negligible statistical fluctuation:
tr(ReX) = Xy, tr(RpX?) ~ X?.

Probability: pi = trs{p(0)M}, Mg = |xk){zk|.

Ideal measurement: system weakly perturbed.

Ri:(0) = pr ® R,. Stronger condition: tr(RiR;) =~ 6,
robustness of apparatus as information-storing device.

Reduction of wave-packet or collapse of wavefunction:
after measurement system is in state |xzx): pr = Z%kl‘lkp(O)l‘lk



¢ Requirements for a good apparatus
1) Has degree of freedom X that can relax to X,.
2) Is macroscopic to ensure irreversible relaxation.

3) Relaxation selectively triggered by the interaction of
X with x.

4) No bias by apparatus: The X, are equally probable;
the R, have the same entropy.

5) The apparatus is a stable and robust information
storing device: the states R, are nearly in equilibrium;
X is a nearly conserved collective variable (after the
measurement).

5') Take a macroscopic system that can undergo a
phase transition, with order parameter X;,. — robust
and (meta)stable; ergodicity breaking

6) x is coupled to X and the apparatus should amplify
this signal. Possible near phase transition: =z is small
source coupling to order parameter.

7) Relaxation of order parameter ensured by coupling of
apparatus to a bath.



Our setup
Apparatus: ideal Bose gas coupled to particle reservoir:

Ha =Y. eiala;, g = %, =Y. ala;
pa(0) = 2 exp(—=BHA+BuN), Z = trexp(—BHa+BuN).
System: 1-d particle in potential: Hg = % + V(x)

Interaction: Hi=—gx X, X = \/g (ag + ao)

Bath: Hapg = "h Zi’m (Qm f;rm Eim + Cma;rfim + C;Engjma’@
allows relaxation of apparatus modes at temperature T..

Bose-Einstein condensation of apparatus

Ha+ Hi =), Eia;rai — J(ao + a:r)) with J = gz\/h/2.

So at given u: {(ag) = —i, (aga()) = efﬁi—l -+ i—z
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Then z =+ 2%2;} follows from measuring N. and (aq).



Dynamics of the apparatus in its bath

a; = —i(w; + a)a; —ya; + /27 bi(t) (i # 0),

with w; = %,

«
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~ is damping rate, b;(t) Gaussian white noise from bath.

Thermal occupation: (bf(t)bk(t’)) = §;ixd(t — t') n3d

q — __1
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Exact solution:

ni(t) = (a;r(t)ai(t)) = e=21n,(0) + (1 — e=21)p%d

Dynamics of order parameter

Let a =ap, b=0by. Then wg =0 and
a = —iaa —va + /27 b(t) + \/LQ_TL g x(t).

Exact solution when z(t) ~ constant:

n(t) — n®d 4 e_27t[n(0) _ neq] + 1+e—22;:(—7%i;t2c)05atg2m2



Dynamics of the tested particle:
t=21p, p=-V'(x)+ [ddsx(t—s)z(s) + n(t),
with x(t) = ¢? e " sin at.

Noise 7(t) = no(t)+mn1(t), from bath and from apparatus:
no(t) = vhy g fg ds e~ 75[bi (¢t — s)ei®s 4 b(t — s)e—ias],

m(t) = /I ge~"[a(0)e™ + a(0)e~1],
Noise autocorrelation:

K(t,t) = 3(n®n®) +n)nt)) = Ko(t,t') + K1(t, 1),
Ko(t,t') = g:Tﬁ cos[a(t — t')] cothZa (e=lt=tl — e=7(t+1)),
K1 (t,t') = 2P cosa(t — t')] cothle e=(+),

K (t,t') is time-translation invariant, but Kp1 are not.

Brownian motion

mi = —V'(z)— [y dsf(t—s)a(s)+n(t) - (#)z(0)+%(0)x(t),

Oscillating ‘damping kernel’ %(t) = e—Wacosgfijfi“at.
Weak coupling to bath —» v K «a.

Measurement time larger than bath relaxation time:
0 > % — many oscillations.



Wigner function of condensate and particle
— 1 ; t— 1 —
a==(X +iP), al = (X —iP),
Wigner fion condensate + particle: W(X, P, z,p);
Wigner fion condensate: W (X, P) = [ L2W(X, P, z,p)

Wigner fion particle: w(z,p) = [ d¢ e~iP/* (z+5|plz—5)

Intermediate Wigner function: particle in coordinate-
representation (useful when z discrete, e.g. spin)

V(X,Pz,2') = [dp e?PlE=a)/RW(X, P, 21 p)



Ideal measurement: Postmeasurement states
Asssume m large, so x not changed during measurement
Apparatus
Probability that particle at x:

P2 w(w, po; 0) = (z[p(0)|x)

Wigner function is an average over events at fixed x

W (X, P;0) = [dz (z]p(0)|z) W.(X, P),
W, is a shifted Gibbsian:

2
W (X, P) = Lexp [—%(X—%) —%Pﬂ, r=-I8

[a,al shifted; X « a + a' shifted; P « i(a — a') not.]

Amplification and registration

Before measurement the apparatus is close to phase
transition.

Small coupling term H; = —gx X brings apparatus in con-
densed phase: apparatus amplifies the measured signal.

After the final time 6 the coupling between apparatus
and system is switched off, and also the exchange of
apparatus with the bath. The apparatus will then stay
in this state, and can be read off.



Robustnhess and accuracy of the measurement

What is the probability that aparatus will leave its state
spontaneously?

Assume apparatus has density matrix R characterized by

(xy == (1)

«

Transition probability to state R’ associated with 2’7
If states are pure, Pr(z — 2’) = tr(RR').
For mixed states we use

dX dP
2mh
g°(z —a')?
4 a2 ]'

Pr(zx — ) < tr(RR)) = / W (X, PYW. (X, P)

exp [—

e Above the phase transition, it is O(1), so non-robust.
e Below phase transition: robustness for large IN:
Pr(x — z’) ~ exp [—\/N(x — CE/)2]

e Different positions of pointer variable constitute
exclusive events.

e Accuracy of measurement is good:

i _to-noise-ratio: {Xa—{{X)%} , 1
signal-to-noise-ratio: X2 T~

averages: (...) over apparatus; {...}av over {(z|p(0)|x)




Tested particle after measurement
Collaps of wavefunction = Reduction of wavepacket

The density matrix in the x-basis is given by

(lp(0)]a') = (xlp(0)|s) exp [—22(x — #')? + E2(a2 —a?)].

AA large — only =’ very close to = survives.

Decoherence time of the off-diagonal elements:

h

~ TN T K 0 = duration of measurement.

T

Einstein-Podolsky-Rosen experiment

Our approach also works when x stands for a discrete
variable, such as a spin.

EPR-setup: object with angular momentum O decays in
two spins in singlet state. Initial density operator :

1
<8132|p(0)|8/18/2> — 55514—52,0 (531,3’1552,3’2 - 551,3’2532,3’1)-

Measurement only of z-component of spin 1. For large
N reduction s; = s} after time 7. This automatically
implies s> = s5:

1
<8182|,0(7')|3/13/2> = 5 551—|—32,0 581,3'1 532,5’2-



“Speed of quantum signals”
For T~1K, N~10%: 1 =101 N-14s~ 10" '7s.
Distance between spins = 1 m — speed ~ 10" m/s.

No energy transfered yet from apparatus to spin 1.

Fate of Schrodinger cats & Kkittens
t = 0: superposition of two eigenvectors, ¢i1|x1)+ ¢2|x2).

classical probabilities 4+ quantum interference

After measurement:
W(X7 P,%,p, 9) — 222:1 9012 sz(X7 P) 5($—$Z)+W|f(X, P,%,p, 9)
Wis o< 20120 (CE — %) exp[—vON3/2(zs — 21)?]

Discrete spectrum: z1 — x> = O(1): Wif K 1.
Schrodinger cats are automatically suppressed,

Continuous spectrum, |xo—x1| K x1: Schrddinger kitten.

Can be detected iff Pr(z; — z2) < 1. But then Wif < 1:
Schrbdinger kittens are also automatically suppressed.



Summary
e apparatus should be macroscopic. Here: Bose gas.

decoherence — definite result in the measurement;
robust and accurate registration of the observable.

e initial state apparatus extremely sensitive to interac-
tion with microscopic system. Here: near transition.

e duration of the measurement larger than relaxation
time of apparatus.

e coupling constant g finite: Macroscopic effect on con-
densate though interaction Hamiltonian not extensive.

e statistical distribution of measured quantity (position
of the tested particle) should remain constant during
measurement process.

e Two-step process: 1) collaps of wavefunction;
2) adjustment of apparatus.

1) Decoherence time 7 ~ much smaller than dura-

tion measurement 2).

1
TN1/4
e EPR setups: ‘“speed of quantum information transfer”
can exceed speed of light.

e Schrodinger cats and kittens donot survive
robust measurement.



