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Road Geometry Classification by
Adaptive Shape Models
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Abstract—Vision-based road detection is important for different
applications in transportation, such as autonomous driving, vehi-
cle collision warning, and pedestrian crossing detection. Common
approaches to road detection are based on low-level road appear-
ance (e.g., color or texture) and neglect of the scene geometry
and context. Hence, using only low-level features makes these
algorithms highly depend on structured roads, road homogeneity,
and lighting conditions. Therefore, the aim of this paper is to
classify road geometries for road detection through the analysis of
scene composition and temporal coherence. Road geometry classi-
fication is proposed by building corresponding models from train-
ing images containing prototypical road geometries. We propose
adaptive shape models where spatial pyramids are steered by the
inherent spatial structure of road images. To reduce the influence
of lighting variations, invariant features are used. Large-scale ex-
periments show that the proposed road geometry classifier yields
a high recognition rate of 73.57% ± 13.1, clearly outperforming
other state-of-the-art methods. Including road shape information
improves road detection results over existing appearance-based
methods. Finally, it is shown that invariant features and tem-
poral information provide robustness against disturbing imaging
conditions.

Index Terms—GIST, holistic representation, illuminant invari-
ant, image classification, road detection, scene classifier, scene
recognition, spatial pyramids, support vector machine.

I. INTRODUCTION

V ISION-BASED road detection aims at the detection of
the free road surface ahead the ego-vehicle and is an

important research topic in different areas of transportation
systems such as autonomous driving [1], [2], vehicle collision
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Fig. 1. Road models are discrete prototypical road geometries. The main
challenge in recognizing road shapes is dealing with (a) interclass versus
(b) intraclass variability.

warning [3], and pedestrian crossing detection [4]. Detecting
the road in images taken from a mobile camera in uncon-
trolled cluttered environments is a challenging problem. The
appearance of the road varies, depending on the time of the
day, road type, illumination, and acquisition conditions. Many
road detection algorithms have been proposed since the first au-
tonomous vehicles were released. Common approaches to road
detection use pixel-level features (such as color [2], [5]–[8] or
texture [9], [10]) to characterize the appearance of the road and
group pixels in two different groups, namely, drivable road and
background. The performance of these algorithms is commonly
improved considering temporal information based on heuris-
tic rules [5] or temporal smoothing [11], [12]. For instance,
in [11], Michalke et al. averaged past detection results to con-
straint the analysis of the current image. In [12], Alvarez et al.
used time series analysis to predict the expected results instead
of simple averages over past results. However, algorithms based
on low-level features reach their limitations in situations where
color or texture information is not reliable (e.g., severe lighting
variations such as strong shadows and highlights). In these
situations, the analysis of the context is more valuable for road
detection algorithms.

Contextual information provides relevant information regard-
ing the location of the road. For instance, in [13], Kong et al.
exploited the perspective effect in an image to locate the
vanishing point and provide a rough segmentation of the road.
In [14], contextual information was exploited to recover the 3-D
scene layout of a scene. Then, road detection was performed
assuming that the road lies within horizontal regions. Another
approach consists in estimating the composition of the road
ahead the ego-vehicle to provide relevant information regarding
the location of road regions. In fact, common road layouts can
be divided in discretized prototypical versions, as shown in
Fig. 1. An image of a road could be then assigned to one of
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the discrete classes determining the possible locations of the
road. We follow this paradigm and propose a road geometry
classification system to improve road detection by exploiting
road information provided by the analysis of the scene.

The aim of this paper is to classify road geometries for road
detection by exploiting road information through the analysis
of scene composition and temporal coherence. Road geome-
tries are discretized versions of prototypical road compositions,
including strong turns (left and right), soft turns (left and
right), straight roads, and different traffic compositions (e.g.,
junctions or tunnels). Road geometry classification is based on
learning corresponding models (hereafter, road shape models)
from training images containing the different road geometries.
These road shape models are defined as descriptions of images
exhibiting aspects of typical road geometries (e.g., left turn,
straight, right turn) to provide relevant semantic information
regarding the position of the road in an image. Surprisingly,
road shape models via scene classification have been largely
ignored so far. A pioneer approach has been proposed in [15].
In this algorithm, images are globally described (i.e.,
using dense sampling) using scale-invariant feature transform
(SIFT) in the opponent color space to reduce the influence
of lighting variations. However, the algorithm discards all
the information about the spatial layout of the features and
exhibits limited performance to distinguish between different
road models. Furthermore, the algorithm assumes that con-
secutive frames are independent without exploiting the pos-
sible correlation between adjacent images in a road image
sequence.

Therefore, in this paper, we propose a novel road classifi-
cation system for the purpose of road detection. The classi-
fier is derived from the bag-of-words approach using spatial
pyramids [16], that is, a global image description based on
aggregating statistics of local features over fixed subregions.
As spatial pyramids with fixed subregions fail to encapsulate
road segments, we propose an adaptive shape model where
spatial pyramids are steered by the inherent spatial structure
of road images. In particular, we consider the horizon line to
steer the spatial pyramid layout. This way, the spatial pyramids
adapt their tessellation grids to the image layout. Hence, the
proposed classification system uses adaptive shape models that
are derived by the inherent structure of road images. Further,
robustness to lighting variations is achieved by using (physics-
based) illuminant–invariant feature space. Moreover, we in-
corporate temporal information into the road shape models to
enforce coherence among road geometries in image sequences
(i.e., a strong right turn cannot be immediately preceded by a
strong left turn) using a probabilistic framework. In particular,
coherence between images is learned by a hidden Markov
model (HMM).

In summary, the main contributions of this paper are the
following: 1) road geometry classification based on scene ge-
ometry using 2) illuminant–invariant features to minimize the
influence of lighting variations; 3) dynamic spatial pyramids to
extract features from relevant (road) segments; and 4) temporal
context using a probabilistic framework. Finally, we propose a
5) road detection algorithm based on road shape models and
low-level image features.

Fig. 2. Spatial pyramids capture the spatial layout of the scene by dividing the
image into fixed regions. However, using fixed regions may fail to encapsulate
relevant road geometry information.

The rest of this paper is organized as follows: Section III
describes the algorithm to estimate road shape models. Then,
the algorithm to detect roads based on adaptive road shape
models is described in Section V. Experimental results and
discussion are presented in Section VI. Finally, in Section VII,
conclusions are drawn.

II. RELATED WORK

Road scene classification aims to assign a semantic label
according to the geometry of the road in the scene. Road scene
classification is a challenging problem that is mainly due to
intraclass and interclass variability. A common approach to
scene classification consists in extracting features from training
images and training a classifier for subsequent labeling of
new images. A number of features have been proposed for
scene classification [16]–[19]. For instance, in [19], Oliva and
Torralba encapsulated the dominant spatial structure of the
image using a GIST descriptor based on a Gabor filter bank. A
different approach consists in using local descriptors based on
the bag-of-words method using either dense sampling or salient
point detection. These methods discard the information about
the spatial layout of image features. Therefore, image pyramid
representations are proposed [16], [18]. In [16], Lazebnik et al.
proposed a global image description based on aggregating
statistics of local features over fixed subregions. In particu-
lar, local features are estimated using SIFT [17]. Although a
number of color descriptors have been proposed (HSV-SIFT,
C-SIFT, OpponentSIFT, and HueSIFT, among others [20]),
the performance of these algorithms is effected by changes
in the illumination of a scene (particularly a road scene [8]).
That is, descriptors based on transformed color spaces are, to
a certain degree, still sensitive to lighting variations such as
strong shadows and highlights.

As aforementioned, a way to incorporate spatial information
is to use spatial pyramids such as in [18], which uses a spatial
pyramid and the Histogram of Gradient Orientation (HoG)
proposed in [21]. However, spatial pyramid schemes use fixed
region subdivision (e.g., 2 × 2, 3 × 3, or 1 × 3). Fixed
subregions may fail to encapsulate relevant road information,
as shown in Fig. 2, where fixed regions do not align with
road segments. Therefore, in the following section, we propose
describing road images using adaptive road shape models. The
main novelty of these models relies on steering spatial pyramids
by the underlying structure of road data. For example, a horizon
detector is used for initializing spatial pyramids.

III. ADAPTIVE ROAD SHAPE MODEL: A VISUAL

DESCRIPTOR FOR ROAD SCENES

Road shape models are descriptions of images exhibiting
aspects of typical road geometries such as left turn, right turn,
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Fig. 3. Schematic of road image representation using adaptive road shape models (e.g., descriptions of images exhibiting aspects of typical road geometries
such as left turn, straight, and right turn). The input image is first converted into illuminant–invariant feature space to minimize the effects of lighting variations.
Then, the spatial partition is based on the horizon line to deal with the dynamic nature of road images and to encapsulate all the relevant information in the lower
partitions.

straight road, or junctions. These models are learned from
training images, and then, given a new image, the appropriate
model is assigned by a scene classifier [15]. Learning and clas-
sifying road images is challenging due to the interclass versus
intraclass variability (see Fig. 1). That is, there is a smaller
variation between images in different classes than within a
class itself. An important source of intraclass variability is
shadows and lighting variations [see Fig. 1(a)], whereas the
lower interclass variability arises from similar images exhibit-
ing different road shapes that vary only local areas of the images
[see Fig. 1(b)].

Here, we propose a novel algorithm to describe road images
using steered spatial pyramids (see Fig. 3). The algorithm
consists of three main stages: image characterization, image
partitioning, and image description.

A. Image Characterization

The first stage aims to minimize the influence of light-
ing variations and shadows by characterizing pixels using
illuminant–invariant feature space. In particular, in this paper,
we focus on the illuminant–invariant feature space introduced
by Finlayson et al. [22] and successfully applied to road
detection in [8]. The algorithm obtains an almost shadow-
free image under the assumption of Planckian source of light
(e.g., the sun), narrow-band imaging sensors, and Lambertian

surfaces. The illuminant–invariant image I(X) is a grayscale
image obtained by projecting log-chromaticity values onto an
invariant-direction θ as follows (see Fig. 4):

I(X) = r(X) cos θ + b(X) sin θ (1)

where X = {x1, . . . , xN} is the set of pixels in the image,
r(X)= log(R(X)/G(X)) and b(X)= log(B(X)/G(X)) being
R(X), G(X), B(X) the red, green, and blue color planes of
the input image. The invariant-direction θ is device dependent,
and it does not correlate with the lighting conditions. Hence,
the calibration process for each camera need only to be done
once using the calibration procedure described in [22].

B. Image Partition

The second stage aims to capture the spatial layout of the
image by using dynamic image partitions. Common scene
recognition approaches use spatial pyramids with fixed regions.
However, using fixed regions may lead to image partitions that
do not contain relevant information to describe the geometry
of the road (see Fig. 2). Therefore, we propose an adaptive
partitioning process to capture relevant road geometry informa-
tion in each partition (see Fig. 3). Hence, we first divide the
image in two parts based on the position of the horizon line.
This line provides important information for inferring where
the road is located in each image, and thus, the lower partition
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Fig. 4. Illuminant–invariant image I is a grayscale image that is obtained from projecting the log(R/G), log(B/G) pixel values of the incoming data onto the
direction orthogonal to the lighting change lines, i.e., invariant-direction.

encapsulates all the information on the road geometry. Then,
an additional partition is performed to distinguish between left
and right turns (see Fig. 3). That is, the image located below
the horizon is partitioned into two characteristic road regions.
In particular, for the first partition, we consider the horizon line
estimation approach1 proposed by Sivic et al. [23]–[25]. This
method describes the image using GIST descriptors [19] and
then estimates the horizon line by applying nonlinear mixtures
of linear regressors to the description of the image. Example
results of the horizon line detection algorithm are shown in
Fig. 5. As shown, the position of the horizon line is correctly
detected in different scenarios. Further, the lower partition
encapsulates all the information about the geometry of the road.
For the second partition, we divide the lower part of the image
in half, as shown in Fig. 6.

C. Image Description

Finally, the third stage aims to obtain a compact and consis-
tent representation of the image. This way, we consider global
image descriptors applied to each partition. The strength of
the approach relies on capturing information independent of
specific objects present in each image block. Hence, we con-
sider, for each partition, its holistic representation, as proposed
in [19]. The idea of this holistic approach is characterizing
images without explicitly detecting or recognizing objects in
the scene. Following that approach, the holistic representation
of each partition is obtained in three steps (see Fig. 3). First,
the spectral information (edges) is extracted using a bank of
Gabor filters. Second, each partition is described using a GIST
vector [19] by dividing each region into a nonoverlapping 4 ×
4 grid and averaging the spectral responses. Finally, the global
description of the image is obtained by aggregating descriptors
of each partition. As a result, we obtain an image descriptor
with 1600 components: 320 × 5 (i.e., 1 for the whole image,
2 parts at level 1, and 2 parts at level 1, since the invariant image
is a grayscale image).

1code available at http://labelme.csail.mit.edu/LabelMeToolbox/index.html

Fig. 5. Example horizon line estimation results. These results show the
robustness of the algorithm to different situations such as lighting variations
and road types.

Fig. 6. Partition of the image is steered by the position of the horizon line to
encapsulate all the road information, and then, the part below the horizon is
divided in half to distinguish between left and right turns.
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Fig. 7. Proposed algorithm for road geometry classification based on adaptive
road shape models. Road models are learned in a training stage and then
inferred in the classification stage.

IV. ROAD GEOMETRY CLASSIFICATION VIA

ADAPTIVE ROAD SHAPE MODELS

Here, we propose an algorithm for road geometry classifica-
tion based on adaptive road shape models. The outline of the
algorithm is devised in Fig. 7. During training, adaptive road
models are extracted from different images, and a multiclass
support vector machine (SVM) classifier is trained using these
descriptions and their manual geometry annotations. Then, in
the testing process, the adaptive road model description is
computed for each incoming image and used as input to the
multiclass SVM classifier. The output of the classifier is a
confidence (in the range [0, 1]) for each possible geometry in
the database (e.g., left turn, right turn, straight road, and so on).
Finally, a semantic geometry label (e.g., straight road, left turn,
right turn) is assigned by selecting the highest scoring class.

For video sequences, we use a probabilistic framework to
exploit the temporal coherence between road models computed
in consecutive frames. In particular, in this paper, we consider
an HMM to model this temporal coherence. The hidden states
of the model are the true class of the incoming image, and the
observed evidence is the confidence provided by the multiclass
classifier. Then, edges between hidden states are the temporal
dependence values between classes (see Fig. 8). Then, the goal
of the algorithm is

argmax
C

P (C|M) = argmax
C

P (M |C)P (C) (2)

where C = {C1 . . . CN} is the classification vector of a se-
quence of N images. This vector contains the true class label.
Further,M = {M1 . . .MN} is the evidence vector (real valued)
for these images [26]. To perform the system online, that is,
without considering the complete sequence of images, we use
a fixed-lag smoothing approach [27]. Furthermore, transition
probabilities are learned by manually counting class transitions
in the training set.

Fig. 8. HMM is used to exploit the inherent correlation between geometry
classes in consecutive frames. Class transition probabilities are learned by
counting transitions in the training set.

Fig. 9. Proposed road detection algorithm based on adaptive road shape
models and low-level road information.

Fig. 10. Road detection via geometry classification is performed by associat-
ing a road confidence map to each semantic label.

Fig. 11. Road confidence map providing a rough detection of the road is as-
sociated to each road model. These confidence maps are learned by combining
manual segmentations of images in the training set of each model.

V. ROAD DETECTION VIA ADAPTIVE

ROAD SHAPE MODELS

A direct application of road geometry classification using
adaptive road shape models is detecting the road surface ahead
of a moving vehicle. Inferring the road geometry provides
strong prior information regarding the location of the road
in an image. Therefore, here, we propose a road detection
algorithm based on adaptive road shape models (see Fig. 9). As
shown, the algorithm combines the road information provided
by road geometry classification with the pixel-level information
provided by low-level road detection algorithms.

The first part of the approach consists in extending the road
geometry classifier algorithm to obtain road confidence maps.
The main idea behind this extension is associating a road
confidence map to each semantic label (e.g., left turn, right turn,
straight road, strong left turn) available (see Fig. 10). These
confidence maps provide a rough description of the road ahead
the moving vehicle and are learned from training images as
follows (see Fig. 11): First, road areas in each training image
are manually segmented. Then, binary annotations for each
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Fig. 12. Example road detection results by road geometry classification. (a) Original images. (b) Road confidence maps assigned by the algorithm considering
the max-scoring class. (c) Binarized result overlapping the original image. These binary masks are obtained using 0.5 as threshold. That is, a road label is assigned
to a pixel if that pixel is a road pixel in at least half of the training images for that class.

Fig. 13. Pipeline used to obtain a road confidence map based on pixel-level features. This pipeline is based on the illuminant–invariant algorithm proposed in [8].

semantic class are pixelwise averaged to obtain the confidence
map associated to each class. Finally, given a new image, we
perform road geometry classification and assign the confidence
map associated to the semantic label exhibiting the highest
score.

Example road detection results by road geometry classifi-
cation are shown in Fig. 12. Each image is classified, and a
road confidence map is assigned according to the max-scoring
class. As shown, the algorithm provides a rough detection of the
road in different lighting conditions and road types. However,
this rough detection does not provide the required pixel-level
accuracy. Therefore, the proposed algorithm combines this
result with a pixel-based approach.

The second block consists in obtaining a road confidence
map based on low-level (e.g., pixel-level) features. We consider
the illuminant–invariant approach [8], as shown in Fig. 13.
Following this approach, images are first converted into the
illuminant–invariant feature space [see (1)]. Then, a training set
is used to build a model that provides insight for predicting the
label (road or background) of each image pixel. The training set
consists of the surrounding areas of several pixels placed at the
bottom part of the image, and the model is the normalized his-
togram of these pixels. Hence, the histogram is used as a likeli-
hood function indicating the support of each bin (possible pixel
values) depicting road surface. Finally, a confidence map is
computed by mapping each pixel value to this road likelihood.

Finally, the last step consists in combining the confidence
map associated with the road shape model and the confidence
map obtained using a pixel-based road detection algorithm (see
Fig. 9). The former provides a general view of the road geom-
etry, whereas the latter provides the accuracy required. These

confidence maps are continuous valued and can be interpreted
as the pixel potential for being a road pixel. Then, these outputs
are combined using a weighted harmonic mean as follows:

RP (x) =
∑
i

wi

(
1

2

∑
i

wi

si(x)

)−1

(3)

where RP is the final road confidence, si is the road con-
fidence assigned by the ith classifier (i ∈ {geometry model,
appearance}), and wi is the weight (relevance) assigned to each
of these classifiers. RP (x) ranges from 0 to 1. The higher the
value, the more likely the pixel x belongs to the road. Finally,
the road mask is obtained by thresholding RP (x) using a fixed
threshold λ.

VI. EXPERIMENTS

Experiments to validate the proposed method are conducted
on a large-scale data set of road image sequences acquired using
an onboard camera with the Sony ICX084 sensor. This is a
charge-coupled device chip of 640 × 480 pixels and 8 bits
per pixel that makes use of a Bayer pattern for collecting
color information. Standard Bayer pattern decoding (bilinear
interpolation) is used to obtain RGB color images. The camera
is equipped with a microlens of 6-mm focal length. The frame
acquisition rate is 15 ft/s. The data set consists of thousands
of images taken on different days, at different times of the
day, and in different scenarios. Thus, images exhibit different
backgrounds, different lighting conditions and shadows, and the
presence of other vehicles due to different traffic situations.
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Fig. 14. Road models (see Fig. 10) are extended with two road models
containing different traffic situations.

Fig. 15. Confusion matrix for S1 (training/testing subset) including the
illuminant–invariant feature space in the pipeline. The average recognition rate
is 73.57% ± 13.1. Each road model has the same occurrence.

TABLE I
SUMMARY OF ROAD SCENE CLASSIFICATION METHODS USED

IN THE FIRST EXPERIMENT

A. Road Geometry Classification in Still Images

The first experiment consists in evaluating the road clas-
sification system. To this end, a first subset of 2000 images
is annotated into one of the seven different prototypes. Five
of these shapes refer to typical road geometries: strong left
turns, left turns, straight roads, right turns, and strong right
turns, as shown in Fig. 1(a). The other two types refer to
common traffic situations (see Fig. 14). The subset of images
is subdivided again into two parts: S1, where 700 images are

TABLE II
AVERAGE CLASSIFICATION RATE OF DIFFERENT ALGORITHMS AND

DIFFERENT INSTANTIATIONS OF OUR APPROACH. OMITTED NUMBERS

REFER TO ALGORITHMS WITH VERY LOW PERFORMANCE

TABLE III
CONTINGENCY TABLE USED TO COMPUTE MCNEMAR’S TWO-SIDED

SIGNIFICANCE TEST (GIVEN SIGNIFICANCE OF 0.025) IN THE S1 SUBSET

OF IMAGES. THE TEST IS USED TO COMPARE THE EFFECT OF INCLUDING

THE ILLUMINANT–INVARIANT FEATURE SPACE. THE RESULT REVEALS

THAT THE DIFFERENCE IN PERFORMANCE SHOWN IN THE FIRST TWO

ROWS IN TABLE II ARE NOT SIGNIFICANT. SUCCEEDED REFERS TO

IMAGES CORRECTLY CLASSIFIED, AND FAILED REFERS TO

CLASSIFICATION ERRORS

Fig. 16. Example of images correctly classified using the proposed approach.
These images are miss-classified if the illuminant–invariant feature space is not
considered.

used as training/testing set, and S2, where the rest of the images
are considered for extended testing. Multiclass classification is
performed with an SVM. In particular, we use the LibSVM im-
plementation [28]. The position of the horizon line is estimated
using the approach by Sivic et al. [23].

The performance of the algorithm to recognize road ge-
ometries is evaluated using S1 (700 images). Evaluations are
repeated ten times by randomly selecting the same number of
images from each class providing the same relative occurrence
(i.e., prior probability) for each model in the subset. We record
the average per-class recognition rate for each run, and the
final result is reported as their mean and standard deviation.
Classification rates given by the total number of correctly
classified images divided by the total number of images are
shown in Fig. 15. These results indicate that a number of
classes are robustly detected. This contingency table suggests
that miss-classifications are mainly located in straight and soft
left and right turns due to strong similarity between these types
of images. Further, the algorithm exhibits lower performance in
classifying traffic images due to the higher intraclass variability
in these two classes.
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Fig. 17. Example of miss-classified images. The upper right part of each image shows the ground truth. The predicted label is shown at the bottom right part of
the image. These particular examples show unclear road classes.

B. Comparison to State of the Art

Now, the performance of the proposed algorithm is compared
with other state-of-the-art algorithms. The summary of these
methods is listed in Table I. The first scene classification
algorithm adapted to roads is from [15]. This approach extracts
SIFT features using dense sampling in the opponent color
space. The second approach uses SIFT-based spatial pyramids
[16]. The third and fourth approaches are based on GIST
descriptors using a single level (i.e., the entire image). The
third approach uses a gray-level image, and the fourth approach
uses illuminant–invariant feature space. The fifth algorithm
is based on the global Pyramid of Histogram of Gradient
Orientation (PHoG) descriptor, as described in [18]. Finally,
two different instances of the proposed pipeline are evaluated.
The first instance uses the steered pyramid on a grayscale im-
age (i.e., without considering the illuminant–invariant feature
space). The second instance uses the steered pyramid on the
illuminant–invariant feature space. Pairwise comparisons be-
tween algorithms are conducted using McNemar’s test [29]. For
completeness, additional comparisons between algorithms are
performed. The comparison consists in training these classifiers
using all 700 images in the S1 subset. Then, images in the S2
subset are used as a testing set. These images contain more
lighting variability than the images in S1. Classification rates
of each algorithm are shown in Table II. The results reveal poor
performance for state-of-the-art methods. In the case of dense
sampling, the poor performance is mainly due to variation of
spatial information. That is, these algorithms require road edges
located in the same grid position.

For the S1 subset, the illuminant–invariant feature space pro-
vides similar performance as using a gray-level image. In fact,
the differences in performance are not significant according to
McNemar’s test (see Table III). However, there is a significant
difference when the algorithm is applied to the extended testing
set (S2). The drop-off in performance is mainly due to more
challenging situations (shadows and lighting variations). In
this case, using the illuminant–invariant feature space clearly

Fig. 18. Average classification rate when temporal information is considered.
Average consists in averaging the output of the classifier over a period of time.
Decay consists in using a decay factor to provide more relevance to recent
observations than distant observations. HMM off is the proposed framework
using a uniform transition matrix. HMM on is the proposed method.

outperforms the gray-level instantiation of the algorithm. The
invariant feature space reduces the influence of shadows and
lighting variations, thus improving the robustness against real-
world driving situations. Example results of correctly classi-
fied images using the illuminant–invariant but miss-classified
images for gray-level are shown in Fig. 16. Finally, examples
of miss-classified images are shown in Fig. 17. These images
reveal situations with which it is difficult to associate a specific
class.

C. Temporal Information

Here, the evaluation consists in quantifying the effect of
including temporal information. To this end, the proposed
approach is compared with two different methods based on
integrating the obtained probabilities for each class over periods
of time. The former uses uniform weighting to consider each
previous frame. The latter uses a decay factor that weights the
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Fig. 19. Example road detection results. From left to right in each column: original image; result using the pixel-based classifier; final result combining road
shape models and appearance-based information.

contribution of each past frame. Hence, more recent observa-
tions receive higher weights than older observations. Finally,
two different instances of our method are considered: using a
uniform transition matrix (e.g., without HMM) and learning
the transition matrix of the HMM from training sequences. The
parameters of the HMM (i.e., the transition matrix) are learned
from labeled data by counting the number of transitions from
one road geometry to another. Fig. 18 shows the effects of
including temporal information into the classifier. As shown,
using the proposed probabilistic framework, the performance
increases up to 62%.

D. Road Detection Using Adaptive Road Shape Models

The goal of the last experiment is to evaluate the proposed
road detection algorithm based on temporal road models (see
Section V). The weights of the combination are fixed to 0.6
for the road shape and 0.4 for the pixel-based information.
Example results are shown in Fig. 19. As shown, including
road shape information improves road detection results pro-
vided by appearance-based algorithms. Further, an evaluation
is performed on 500 randomly selected images. Ground truth
for each image is manually generated. As a result, combining
shape and appearance increases the effectiveness by 15% over

appearance alone. From these results, it can be derived that road
shape models provide relevant information for road detection.

VII. CONCLUSION

In this paper, a road geometry classification system has been
proposed. The system uses adaptive shape models in which
spatial pyramids are controlled by the inherent spatial structure
of road images. To further reduce the influence of lighting
variations, invariant features and temporal information have
been used.

Large-scale experiments show that the proposed road geom-
etry classifier yields the highest recognition rate of 73.57% ±
13.1, clearly outperforming other state-of-the-art methods. In-
cluding road shape information improves road detection results
over existing appearance-based methods. Invariant features and
temporal information provide robustness against disturbing
imaging conditions.
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