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In this paper we propose to adopt a learning-based encoding method for age estimation under unconstrained
imaging conditions. A similar approach [Cao et al., 2010] is applied to face recognition in real-life face images.
However, the feature vectors are encoded in hard manner i.e. each feature vector is assigned to one code. The
face is divided into patches where a code histogram is built for each patch. However, the codebook is learned
using sample features from the entire face.
Therefore, we propose an approach to extract robust and discriminative facial features and use soft encoding.
Instead of learning a codebook from the entire face, we extract and learn multiple codebooks for individual
face patches. The encoding is done by a weighting scheme in which each pixel is softly assigned to multiple
candidate codes. Finally, orientation histogram of local gradients in neighborhood has been introduced as fea-
ture vector for code learning.
On a large scale face dataset which contains 2744 real-life faces, the age group classification using our method
achieves an absolute(relative) improvement of 3.6%(6.5%) over the best reported results [Shan, 2010].

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Automatic age estimation of a person is an interesting and challeng-
ing task, with many important applications in human–computer inter-
action, market intelligence and visual surveillance. Since human faces
provide most information to perceive the age, most previous research
efforts have focused on age estimation from face images [1].

Constructing a proper face image representation is a key component
for successful face age estimation systems. Typically two kinds of fea-
tures are extracted from face images: appearance features (e.g. wrin-
kles, skin roughness) and geometric features (e.g. shapes, ratios of
distances between facial landmarks). For applications where images
are acquired in unconstrained settings, it is difficult to automatically
detect a sufficient number of fiducial landmarks to compute the geo-
metrical features of the face.

As reviewed in [1], many approaches have been exploited to rep-
resent and model faces from images such as anthropometric models,
age subspace or manifold, and active appearance models. However,
each representation has its limitations and strengths. For example,
the anthropometric model is useful for young ages, but not appropri-
ate for adults; for age manifold learning, a large number of training
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versity of Amsterdam, Science
+31 20 525 7465; fax: +31

rights reserved.
samples is needed. The facial representation should not only be dis-
criminative but also robust to appearance variations and noise. In
recent years, local descriptor based approaches have been proven
to be effective for face image analysis [4–7]. Traditionally, Gabor-
wavelets have widely been exploited to model local facial appearance
[4,8]. Recently, the histogram of Local Binary Patterns [5] has been
adopted to describe the micro-structures of the face [9–11]. Tolerance
against monotonic illumination changes and computational simplici-
ty are the most important properties of LBP features. Scale-Invariant
Feature Transform (SIFT) [6] and Histogram of Oriented Gradients
(HOG) [7] are other types of local descriptors that have shown good
performance in face analysis [12] and object recognition.

More recently, Cao et al. [13] argued that these local descriptors
use manually designed encodings, and it is difficult to get an optimal
encoding method. As shown in [13], the existing handcrafted codes
are unevenly distributed, and some codes may rarely appear in face
images. This means that the resulting code histogram is less informa-
tive and less compact. They used a learning-based encoding method,
which adopts unsupervised learning methods to encode the local
micro-structures of the face into a set of discrete codes. With Principal
Component Analysis (PCA) and normalization, their learning-based
descriptor achieves superior performance on face verification. Instead
of face verification, in this paper, we consider learning-based encoding
in the context of age estimation.

We adopt the learning-based encoding method for age estimation
and propose an approach of extracting robust and discriminative
facial features and encoding. First, instead of learning a codebook
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from the entire face, we extract and learn multiple codebooks for in-
dividual face patches. The intuition behind this is that the features
histogram is computed for each patch. Second, the encoding is done
by a weighting scheme in which each pixel is softly assigned to mul-
tiple candidate codes. This is to alleviate ambiguity especially in noisy
real-life images. Aging effects are mainly observed as textural varia-
tions in faces such as wrinkles and other skin artifacts. Therefore,
we investigate the use of orientation histogram of local gradients to
describe faces for age estimation.

The rest of thepaper is organized as the following. In Section2wepro-
vide an overview on related work. Section 3 describes learning-based
encoding method. We outline our adaptations in Section 4. Experiments
are presented in Section 5. Section 6 concludes the paper.
2. Related work

In the last few years, many research efforts have been invested on
age estimation from face images. A thorough survey of the state of the
art can be found in [1].

Geng et al. [14] introduce the Aging Pattern Subspace for age es-
timation, where an aging pattern is defined as a sequence of face
images from the same person, sorted in the temporal order. This
approach is evaluated on the FG-NET aging database, achieving a
Mean Absolute Error (MAE) of 6.77 years. However, in general, it is
difficult to collect multiple face images of the same person at differ-
ent ages. Instead of learning a specific aging pattern for each individ-
ual, a common aging pattern could be learned from face images of
multiple people [15]. Manifold learning techniques are adopted to
embed face images into a low-dimensional aging manifold. The age
manifold based regression [16] produces a MAE of 5.07 years on
the FG-NET aging database.

Further, Yan et al. [17,18] propose to use Spatially Flexible Patches
as face representation. This technique considers local patches and
information about the position. Modeled by a Gaussian mixture model,
their approach achieves a MAE of 4.95 years on the FG-NET database.
Guo et al. [20] introduces the Biologically Inspired Features for age esti-
mation. Combined with SVM, the proposed features produce a MAE of
4.77 years on the FG-NET database. Recently Ni et al. [21] collected a
large web image database, and built a universal age estimator based on
multi-instance regression.

Yang and Ai [10] consider LBP features for age estimation. They
achieve the error rate of 7.88% on the FERET database and 12.5% on
the PIE database. Further, Gao and Ai [8] study the problem of age
estimation in consumer images. In their approach, Gabor features
are extracted and used with Linear Discriminant Analysis (LDA).
They consider four age categories: baby (0–1), child (2–16), adult
(17–50), and old (50+). Trained on 5408 faces, their age estimator
achieved an accuracy of 91% on 978 testing images. Gabor features
are demonstrated to be more effective than LBP features and pixel
intensities in their study. More recently, Shan [22] applies Adaboost
to learn local features, both LBP and Gabor features, for age estimation
on real-life faces acquired in unconstrained conditions.

Cao et al. [13] use a learning-based encoding method, which
adopts unsupervised learning methods to encode the local micro-
structures of the face into a set of discrete codes. The method achieves
high accuracy for face verification. It should be mentioned that other
previous works proposed learning local descriptor. Meng et al. [27]
used Local Visual Primitives (LVP) for face modeling and recognition.
LVP is a representative of a face patch which appears frequently. Xie
et al. [28] proposed to learn local Gabor Patterns for face representation
and recognition.

In the next section, we extend this method to age estimation. The
extension consists of three points: the codes are assigned in soft
manner, different codebooks for different face patches, and using
features more related to estimating the age.
3. Learning-based encoding

In this section, we briefly describe the learning-based encoding
method [13]. At each pixel, its neighboring pixel intensities are sam-
pled in a ring-based pattern to form a low-level feature vector. r∗8
values are sampled at even intervals on the ring of radius r. The
authors extensively varied the parameters (e.g. ring number, ring
radius, sampling number of each ring), and found that the differences
among patterns are not of influence on the face database they used.
Following [13], we use the second sampling method with two rings
(r=1, r=2, with center), that is, 25 values (8 from the first ring, 16
from the second ring, and the center value). After sampling, the sam-
pled feature vector is normalized into unit length, to make the feature
vector invariant to local illumination changes.

Then, the encoder is learned by applying unsupervised learning to
a set of training face images. The feature vectors are extracted at each
pixel. Different unsupervised learning methods are considered. In
[13], three methods are examined: K-means, PCA tree, and random-
projection tree [23]. Their experiments show that the difference
among these learning schemes is small. In this paper, the PCA tree
[23] is adopted. The largest principal component for the vectors at
each node is first computed. After projecting the vectors onto that
principal component, the vectors are split from the median value
and two children nodes are created; the principal component and
the median value are stored in the parent node. These children
nodes are further split until the leaf number is equal to the code
number, where each leaf represents one code. With the learned en-
coder, the input face image is encoded. Similar to LBP features, the
encoded face image is divided into a grid of patches (7×5 patches
used in [13]), and the code histogram computed at each patch is
concatenated to form the descriptor of the whole face image.

4. Our approach

In this section, the learning-based encoding method is transformed
to face age estimation.

4.1. Patch-based code learning

In Cao et al. [13], the code set is learned using the sampled vectors
from the whole face. However, the histograms are derived at the level
of regions (patches). The histogram is constructed from the sampled vec-
tors in each patch. These histograms are concatenated later to form the
global descriptor.

There are variations among different face patches. Each individual
patch may have different codes or code distributions, e.g. some codes
may appear frequently in one patch while they are rare for another
patch. To illustrate this point we build two code sets from 2080 training
images (used in Section 5). One code set is learned from the sampled vec-
tors extracted from thewhole face, and the other is learned from the sam-
pled vectors extracted from one face patch (the upper left). Later, we
extracted the sampled vectors from theupper left patch in 664 testing im-
ages (also used in Section 5), then we encoded the vectors using the two
code sets and constructed the frequency histograms. Fig. 1 shows the two
histograms. As can be observed, for this face patch, the codes learned from
the whole face are unevenly distributed (i.e., some codes rarely appear),
while the codes learned from the face patch aremore uniformly distribut-
ed (i.e., they are usedmore efficiently). Therefore, with different code set
for each individual patch, the code histogram is much more informative
and compact. However, learning multiple code sets introduces increase
in both time and memory complexities.

4.2. Soft encoding

When encoding the input image with the learned codebook, each
sampled vector (at each pixel) is assigned to the closest code. We call
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Fig. 1. The code frequency histograms in one face patch of 664 face images using two
different code sets; one learned from the whole face (top) and the other learned
from the corresponding face patch (bottom). 2080 face images are used for learning
both code sets.

2 3 4 5 7 9 16
0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

Block size

R
ec

og
ni

tio
n 

R
at

e

Fig. 2. The performance over different block sizes.
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this hard encoding. However, for face images (especially real-world
images), ambiguities always exist. That is, for a given sampled vector,
there are multiple candidate codes. Assigning to the closest code
makes the encoding sensitive to image noise and varying conditions
(e.g. illumination). These factors can distort the sampled vector,
resulting in different code assignments. We use soft encoding assigning
the given sample vector tomultiple codeswithweights. Soft encoding is
used in image classification [24].

When deriving the codes with the PCA tree, after dividing the train-
ing samples using the median value, a Gaussian distribution model is
estimated for each branch. For soft assignment, the probability that it
is from either branch is estimated using the Gaussian model. This is
used as the weight for that branch. The weight is multiplied with the
Table 1
The performance with different gradient filters.

Gradient Result(%) Gradient Result(%)

Sobel1-D 51.2 Gaussian (0.5) 51.8
Sobel2-D 50.9 Gaussian (0.75) 52.8
Cubic 46.1 Gaussian (1) 52.3
Diagonal 51.7 Gaussian (3) 47.9
Prewitt 49.2 Gaussian (5) 41.9
weight coming from the parent node. The new weight is passed to the
children. In this way, each code (leaf) is assignedwith aweight leafc(ri),
where c is the code, and ri is the feature vector i. The encoding is started
with the weight of 1 at the tree root. The weights of all the codes are
normalized. Thus the histogram bins are computed as follows:

Bin cð Þ ¼
Xn

i¼1

leafc rið Þ
Si

ð1Þ

Si ¼
XC

c¼1

leafc rið Þ ð2Þ

where C is the number of codes, n is the number of sampled vectors, and
Si is a normalization factor, i.e., the sum of weights of all codes (for the
given sampled vector).

4.3. Orientation histogram of local gradients

For each pixel, neighboring pixels are sampled in the ring-based
pattern to form a low-level feature vector. However, the extracted
local features are sensitive to image noise and illumination variations.
Furthermore, as aging effects in faces are mainly observed as texture
variations such as wrinkles and other skin artifacts, local gradients (or
edge responses) may be more effective. Following HOG [7], we ex-
tract the orientation histogram of local gradients in neighborhood as
the low-level feature vector for code learning.

Therefore, we use the following approach. Given a pixel, local gra-
dients in the neighborhood (i.e., local block) are computed, and a 1-D
histogram of gradient directions is accumulated over the pixels in the
block. The orientation bins are evenly spaced over 0°–360°. Each gra-
dient contributes to one or more bins, where the vote is weighted by
the magnitude of the gradient; the magnitude is added to the corre-
sponding bin. There are some parameters to choose in the implemen-
tation, including block size, gradient computing, and orientation
binning. Therefore, we aim to study the influence of the various on
the learning-based encoding. We use the dataset detailed in Section 5,
where 1000 face images are used for code learning. 2080 training
images and 664 testing images are used for age group classification
using linear SVM. All faces have a resolution of 61×49 pixels. Through-
out this section, results are obtained with the following default setting:
5×5 block size, 8 orientation bins (i.e., each bin covers angle of 45°),
gradient computing Sobel-1D [−1,0,1].



Fig. 3. Example faces in the dataset [25].
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4.3.1. Block size
We test the block sizes of 2×2, 3×3, 4×4, 5×5, 7×7, 9×9, and

16×16. Fig. 2 shows the results of different block sizes when using
256 codes. It seems that the block sizes of 4×4 or 5×5 are the best
choice for the dataset we use.

4.3.2. Gradient computation
We test different gradient filters, namely: Sobel-1D [-1,0,1],

Sobel-2D [-1,-2,-1; 0,0,0; 1,2,1], cubic [1,-8,0,8,-1], diagonal
[-1,0; 0,1], Prewitt [1,1,1; 0,0,0; -1,-1,-1] and Gaussian derivatives
with different sigma values. The best performance using 256 codes
is achieved using Gaussian derivatives with σ=0.75 (Table 1). It
seems that the smoothness of Gaussian helps, and fine scale deriv-
atives perform better for this task.

4.3.3. Orientation binning
We test different bin numbers (2, 3, 4, 6, 8, 12, 16) with Gaussian and

Sobel-1D gradients using 256 codes. The Gaussian derivative consistently
outperforms Sobel-1D for all bin numbers. The best results are achieved
using 6, 8 or 12 bins.

5. Experiments

5.1. Dataset and experimental settings

In most of the existing studies, face images with limited variations
are considered. Images are usually high-quality frontal faces, occlusion-
free, with clean background and limited facial expressions. However, in
real-world applications (e.g. collecting demographic statistics in shops),
age estimation needs to perform on real-life face images captured in
unconstrained environments. There are appearance variations in real-
life faces, which include facial expressions, illumination changes, head
pose variations, occlusion ormake-up, and poor image quality. Therefore,
age estimation on real-life face images is much more challenging.

The FG-NET dataset is used in many studies. It contains face
images with 68 facial landmarks. These landmarks are manually
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Fig. 4. The performance of image-based learning vs patch-based learning over different
code numbers.
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detected and often used by other methods to extract shape infor-
mation that helps in estimating the age [14,16,3]. However, under
unconstrained conditions these landmarks cannot be accurately
detected automatically. And using manually-annotated landmarks
is not plausible in real-life applications. So comparing our method
with other methods applied on FG-NET dataset is not feasible. To
analyze the contribution of the manually annotated landmarks,
Choi et al. [2] compared the performance of their method using
manually and automatically obtained landmarks on FG-NET dataset.
The MAE error increased around 20%.

Therefore, in this paper, we conduct experiments on real-life faces
using a face image set1 collected recently [25]. The dataset consists of
28,231 faces from 5080 Flickr images, 86% of which were detected by
a face detector, and others were manually added. Each face was la-
beled with the gender and age category. Seven age categories were
considered: 0–2, 3–7, 8–12, 13–19, 20–36, 37–65, and 66+, roughly
corresponding to different life stages. Example faces in the dataset
are shown in Fig. 3.

The dataset contains large diversity in race, pose, illumination
conditions, and facial expressions. Many faces in the dataset have
low resolution: the median face has only 18.5 pixels between eye
centers, and 25% of the faces have under 12.5 pixels. To study age
estimation on faces with reasonable resolution, Shan [22] considered
only faces with the eye distance more than 24 pixels. This results in a
collection of 12,080 faces. The author selected 2080 faces as the train-
ing set, and 644 faces as the testing set. The gender in the training/
testing data sets is evenly distributed. In our experiments, we select
another 1000 face images that are excluded from the training/testing
sets for code learning, and perform age group classification using the
training/testing sets. All face images are normalized to 61×49 pixels
based on eye centers. Linear SVM is used as the classifier for simplic-
ity. We used LIBSVM2 for training and testing.

5.2. Experimental results

5.2.1. Code learning: image vs patches
We first examine the learning-based encoding method for age esti-

mation. Fig. 4 shows the results. It is shown that the recognition perfor-
mance increases when the code number increases for most of the code
numbers. The performance decreases a bit when the code number is
higher than 512. This might be due to overfitting when learning the
codebook for large number of codes. The best performance of 56.2% is
obtained using 512 codes. Then we compare this default image-based
1 chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html.
2 www.csie.ntu.edu.tw/cjlin/libsvm.
learning with the patch-based learning. The patch-based learning pro-
vides comparable or better performance than the image-based learning
for most of the code numbers. The best performance is 56.5% with 128
codes. This suggests that code learning at the regional level leads to
more informative code histogram.

5.2.2. Soft encoding
We apply soft encoding for face image encoding. The results are

shown in Fig. 5. It is evident that soft encoding achieves better results
than hard encoding. This illustrates that soft encoding leads to a more
robust code histogram.

5.2.3. Orientation histogram of local gradients (OHLG)
We conduct experiments on code learning using the OHLG feature

extraction. Based on the study in Section 4, we select the following
setting: 5×5 block size, Gaussian derivative, and 8 orientation bins.
Fig. 6 compares the results of OHLG with the sampling method. It is
shown that the OHLG feature extraction produces comparable perfor-
mance as the ring-based sampling. It does not outperform the sam-
pling method. This might be due to the poor quality of the images
for which the textural patterns (e.g. wrinkles) are not obvious. To ver-
ify this, we further conduct experiments on the dataset with better
quality face images.

We conduct experiments on the FG-NET database [29] and MORPH
database [26], both of which have better quality faces. FG-NET contains
1002 face images fromCaucasian people, with the age ranging from 0 to
69 years. MORPH contains 1690 images from different ethnicities
(433 Caucasian-descendant faces), with the age ranging from 15 to 68.
Fig. 6. The performance of code learning using the OHLG feature extraction over differ-
ent code numbers.

mailto:chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html
http://www.csie.ntu.edu.tw/cjlin/libsvm
image of Fig.�4
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Weuse the FG-NET data with ages between 15 and 68 as the training set,
and use the 433 Caucasian images from MORPH as the testing set. The
code learning is done using the remaining non-Caucasian faces in
MORPH. Since we have exact ages instead of categories, we use the
Mean Absolute Error (MAE) as the criterion. Fig. 7 shows the results. It
can be derived that the OHLG feature extraction outperforms the sam-
plingmethod inmost of the code numbers.We further test soft encoding
with theOHLG feature extraction on theMORPH and FG-NET dataset. The
results are shown in Fig. 8. Soft encoding reduces theMAEwhenusing the
OHLG feature extraction for most of the codes, especially for larger codes.
Overall, soft encoding with OHLG feature extraction outperforms the
ring-based sampling for all code numbers. This illustrates the effective-
ness of our improvement.

5.2.4. Codebook discriminative power
Since the codebook is learned from a separate set, the discrimina-

tive power of the images in this set and how much they reflect the
differences between the age categories may affect the discriminative
power of the codebook. In the following experiment, we test different
sets for learning the codebook. Sets with sizes 500, 750, 1000, 1250,
and 1500 are taken. The larger sets contain the smaller ones. For each
setwe ran the experiment using soft encoding over different code num-
bers. The performance is evaluated by a 2-fold cross-validation over the
training set. This is to ensure that the learning code set does not fit the
test set. The results are shown in Fig. 9. We noticed that the 750-image
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Fig. 8. The MAE on the MORPH and FG-NET dataset using soft encoding with the OHLG
feature extraction.
set gave the best results. This suggests that the corresponding codebook
is the most discriminative. The codebooks learned from the larger sets
result in lower performances. It is possible that images outside the
750-image setmay contain noise negatively affecting the discriminative
power of the codebook. We reran the experiment using the codebook
learned from the 750-image set. Following the setup in [22], we train
the descriptors over all the training set images and reported the results
on the testing set in Fig. 10. The highest recognition rate of 59.5% was
achieved using 1024 codes. This is 3.6 point higher than the last
reported result in [22], where the recognition rate was 55.9%. The
results are still not high. This is due to the variety in the images
(see Section 5.1). People often have glasses, many faces are partially
occluded and non-frontal and have different facial expressions. Also
many images are taken outdoor with different lighting conditions.

5.2.5. Performance on FG-NET dataset
As we explained in 5.1, the landmarks in FG-NET database are

manually labeled and often used by other methods to extract shape
information that helps in estimating the age. In this paper, we try to
estimate the age for real life images. So we do not use the shape infor-
mation of the face since, in general, no landmarker can detect the
landmarks accurately enough for real-life images.

We conduct an experiment with FG-NET. The codebook is learned
from a separate dataset since the FG-NET dataset has only 1002 face
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Fig. 10. Soft encoding using 750-image learning code set. The red curve represents
Image-based encoding results while the black one represents patch-based encoding
results.
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images. 750 images are used for learning the codebook. The faces are
cropped to 61×49. Then LOPO (Leave One Person Out) protocol is
used for evaluating. For the estimation, we used linear support vector
regression without tuning any parameters (C equals 1). We did not
try different sizes of sub-datasets to learn the codebook. Fig. 11
shows the results using soft assignment.

The MAE obtained using 2048 codes is 6.14 years. The performance
degraded a lot using 32 codes. But the error decreasedwith the increase
of the code number. The lowest MAE with FG-NET and LOPO protocol
was obtained by Choi et al. [2] which is 4.66 years. However, the MAE
increased to 5.59 years when automatic landmarker is used.

5.2.6. Face verification
We apply soft encoding to the face verification problem. The LFW

benchmark [19] is used. The LFW test set consists of 10 subsets each
containing 300 same-person pairs and 300 different-persons pairs.
The evaluation is reported using 10 fold cross-validation. At each
fold, one subset is used for testing and other 9 are used for training.
The final results are the average of the 10 fold results. Another 1000
images are used for learning the codebook. The face size is 96×84.
As in [13], we apply a DoG preprocessing step and the codes are
learned once for all the 10-folds. The 1000 image identities, used for
learning the codebook, never appear in the 10 sets. Fig. 12 shows
the results.

Soft encoding achieves higher results than hard encoding formost of
the code numbers. This suggests that our method can be directed to
other face-related problems. The reported results in [13] are around
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Fig. 12. The performance of soft encoding vs hard encoding over different code num-
bers on LFW face verification dataset.
5% higher than our results. Cao et al. used another commercial software
for face alignment.3 This might explain the difference of the results. In
their paper, Cao et al. applied further dimensionality reduction and nor-
malization steps. Here we compare with the raw feature vectors.

6. Conclusions

In this paper, we adopted the learning-based encoding method for
age estimation. Instead of learning a set of codes from the entire face,
we extracted and learned multiple codebooks for individual face
patches. Soft encoding has been used. Orientation histogram of local
gradients in neighborhood has been introduced as feature vector for
code learning.

Experiments showed that our extensions produced better or com-
parable performance for most of the cases. Using discriminative code-
book, our method outperforms the best performing method reported
on Gallagher dataset [22]. We extend our method to face verification
and show improvements which suggests that our method can be di-
rected to other face-related problems.
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