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Wemeasure the color fidelity of visual scenes that are rendered under different (simulated) illuminants and shown
on a calibrated LCD display. Observers make triad illuminant comparisons involving the renderings from two
chromatic test illuminants and one achromatic reference illuminant shown simultaneously. Four chromatic test
illuminants are used: two along the daylight locus (yellow and blue), and two perpendicular to it (red and green).
The observers select the rendering having the best color fidelity, thereby indirectly judging which of the two test
illuminants induces the smallest color differences compared to the reference. Both multicolor test scenes and
natural scenes are studied. The multicolor scenes are synthesized and represent ellipsoidal distributions in
CIELAB chromaticity space having the same mean chromaticity but different chromatic orientations. We show
that, for those distributions, color fidelity is best when the vector of the illuminant change (pointing from neutral
to chromatic) is parallel to the major axis of the scene’s chromatic distribution. For our selection of natural scenes,
which generally have much broader chromatic distributions, we measure a higher color fidelity for the yellow and
blue illuminants than for red and green. Scrambled versions of the natural images are also studied to exclude
possible semantic effects. We quantitatively predict the average observer response (i.e., the illuminant probability)
with four types of models, differing in the extent to which they incorporate information processing by the visual
system. Results show different levels of performance for the models, and different levels for the multicolor scenes
and the natural scenes. Overall, models based on the scene averaged color difference have the best performance.
We discuss how color constancy algorithms may be improved by exploiting knowledge of the chromatic
distribution of the visual scene. © 2013 Optical Society of America

OCIS codes: (330.1715) Color, rendering and metamerism; (330.1720) Color vision; (330.5510)
Psychophysics.
http://dx.doi.org/10.1364/JOSAA.30.001871

1. INTRODUCTION
The background of this paper lies in our desire to improve our
understanding of the relationship between performance
measures of the human and computational color constancy
approaches. As explained hereafter, these performance
measures relate to very different aspects of color constancy.
Here we study a new psychophysical method that yields
observer judgments of the color fidelity of scenes under
changing illumination. We expect these measurements to
be more easily related to the outcome of color constancy al-
gorithms and that they may help to tune such algorithms to
accommodate the results from perceptual studies.

Color constancy is the property of a visual system (either
human or machine) to maintain stable object color appearan-
ces despite considerable changes in the spectral composition
of the illuminant. For quite some time it has been recognized
as one of the central themes in color research. The key issue
is how to disentangle the wavelength-by-wavelength product
of the illuminant spectral power distribution (SPD) and the
object reflectance function that is sampled by the visual
system. Yet, the methodological approaches and performance
measures in perception (human vision) studies and
computational (computer vision) studies are very different.
In computer vision, the main approach to solving the color

constancy problem is by estimating the illuminant from the
visual scene after which reflectance may be recovered [1–5]
or the color balance of images may be corrected for display or
to support object recognition [6]. The performance of such
color constancy algorithms is usually quantified by the angu-
lar error [7], a measure for the chromatic mismatch between
the estimated illuminant and the true illuminant, which is
assumed to be known. So, the performance of computational
color constancy algorithms that rely on illuminant estimation
is quantified by a number relating to a global illuminant.

The degree of constancy exhibited by human observers is
often quantified by a color constancy index [8]. A common
finding in the many psychophysical studies on color con-
stancy is that human color constancy is not perfect. It depends
on the experimental method employed and the observer’s
state of adaptation, among other things. The main techniques
are color matching, color naming, nulling to maintain neutral
appearance, discriminating between a change in illumination
and a change in surface reflectance (operational approach),
and identification of surfaces across illuminants [9,10]. What
these techniques have in common is that each measurement
(i.e., each observer response) relates to the appearance of a
single object or patch in the scene. This poses a problem
for our desired comparison of color constancy performance
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measures: the psychophysical measurement relates to a single
(local) object, whereas the computational measure relates to
a single (global) illuminant.

To solve this, we study a method for assessing human color
constancy, featuring two new methodological elements. First,
the observers are asked to judge the color fidelity of the whole
scene, instead of a judgment on the appearance of a single
color or object. Second, in each experimental trial the observ-
ers deal with a scene rendered under three illuminants (one
reference and two test illuminants) instead of the usual two
(one reference and one test illuminant). We denote this by
the term “triad illuminant comparison”. The advantage of this
method is that an observer measurement is obtained relating
to the scene as a whole and relating the color rendering
properties of one illuminant to another. The downside of this
is that, with the simultaneous display of the illuminant condi-
tions, the state of adaptation is also affected. The extent that
our results are influenced by this, and differ from fully natural
viewing conditions, is unknown. We refer to Foster [10] for an
overview and discussion of the many studies that employ
different variants of simultaneous presentation. All we can say
is that our measurements most probably arise from the fast
components underlying the time dependency of chromatic
adaptation [11].

Using our method, we measure the color fidelity on three
image data sets. The first data set is composed of multicolor
images, collections of colored rectangles with elliptical chro-
matic distributions having the same average (neutral) chroma-
ticity, but with different orientations in color space. We have
previously shown that these different chromatic orientations
lead to different perceptual estimates of the color fidelity [12].
To investigate whether this effect is also found in natural im-
ages, we compose a second data set from natural images that,
similar to the first data set, has specific ratios and orientations
of the first and second principal components in chromaticity
space. The natural images introduce an artifact that cannot
be ignored: image semantics might bias observers toward
responses that have no direct relation with the low-level con-
tents of the image. Therefore, we use a third data set that is
composed of pixelated and scrambled versions of the natural
images in the second data set. In this way, the third data set
has the same chromatic distribution as the second set, and the
same granularity as the first data set. This allows us to inves-
tigate whether image semantics will have a major effect on the
assessments of the global image fidelity.

We then proceed by quantitative modeling to account for
the average observer data. Since there is no model for human
color constancy available that handles images of visual scenes
as a whole, we present four different models that take the
spatio chromatic scene content into account. These four mod-
els differ in the extent to which they incorporate processing
of the human visual system. Our first model predicts on the
basis of the reflected light signal, a purely physical signal that
we introduce in this paper. The second model predicts on the
basis of the calculated overlap in rendered color gamut for the
test and reference illumination. The third model predicts on
the basis of the scene averaged ΔE color difference metric
[13–15] between corresponding image parts under the test and
reference illumination. The fourth model takes into account
spatial information of the scene and of the visual system,
either in the form of the S-CIELAB model [16] or as an image

quality metric [17]. Finally, we discuss how color constancy
algorithms may be improved by exploiting knowledge of the
chromatic distribution of the visual scene.

2. METHODS
A. Triad Illuminant Comparison
The triad illuminant comparison method involves a test
scene rendered under three illuminants (Fig. 1). One of these
illuminants is the reference (R) while the other two are the
test illuminants (T1 and T2). An observer has to select the test
image (test illuminant) having the best color fidelity in com-
parison to the reference image shown above each test image.
They do this by visually comparing the colors of the test scene
rendered under the test illuminants with the colors rendered
under the reference illuminant. In essence, the observer’s
task is to judge the differences between two image pairs,
the first pair of images (T1, R) being the scene rendered under
test illuminant T1 and under the reference illuminant R, the
second pair (T2, R) being the scene under test illuminant
T2 and R.

Although three images would, in principle, suffice here we
deliberately use four images to maintain symmetry in eye
movement patterns (see the Instructions section), anticipating
a potential follow-up study employing eye tracking. Once an
image pair is selected by the subject, the associated test
illuminant is ranked higher by means of a scoring mechanism,
hence is likely to give better color constancy. Here, we
describe experiments in which we use four test illuminants
to form six unique illuminant pairs (1 versus 2, 1 versus 3,
1 versus 4, 2 versus 3, 2 versus 4, 3 versus 4). The measure-
ments from these six pairs allow a relative ranking of the four
illuminants. This paper reports on the measurement from
three image data sets, described below.

B. Data Set 1: Multicolor Test Scenes with Specified
Chromatic Distributions
We synthesized multicolored images composed of 900 square
color patches, arranged as a 30 × 30 matrix of adjacent
patches (see Fig. 2), whose distribution in CIELAB color
space was under control. In our reference condition, the
900 patches follow a Gaussian distribution, with standard
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illuminant (R)
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under second 
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Fig. 1. Triad illuminant comparison method involves a test scene
rendered under a reference illuminant (R) and two different test
illuminants (T1 and T2). The visual differences between the scene
rendered under reference and the two test illuminants are denoted
by Δ1 and Δ2. Global color fidelity of the test scenes under T1 and
T2 is measured by observers indicating which of the two differences
(Δ1 or Δ2) appears smaller.
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deviations along the L� axis twice the standard deviations
along the chromatic a� and b� axes. This is done to match
the distribution of RGB derivatives of the Corel image data-
base, which contains 40,000 images representative of the “real
world” [18]. So, the chromatic distribution of our reference
condition approximately conforms to the statistics of natural
images. In addition to the reference distribution, we study four
chromatic distributions having a 5∶1 ratio in the standard de-
viations along the major and minor axes of the distribution in
the a�, b� plane. These four distributions differ in the orien-
tation of the major axis, denoted by θ (the angle between the

distributions’ major axes and the positive a� axis) in Fig. 3.
Table 1 shows the parameters of the five chromatic distribu-
tions discussed above. It shows that the mean L� value lies
around 49 and that the standard deviation in L� is larger than
that of the chromatic components a� and b�. Also, the skew-
ness and kurtosis values of the L�, a�, b� vary around 0 and 3,
respectively. Skewness is an indicator for the asymmetry in
the distribution, with a value of 0 for a normal distribution.
The kurtosis is a measure for the peakedness of a distribution,
with a value of 3 belonging to a normal distribution. Distribu-
tions 2–4 have a 5∶1 ratio of the standard deviations along the
major and minor axis in the a�, b� chromaticity plane. Angle θ
denotes the orientation of the major axis. See Fig. 3 also.

C. Data Set 2: Natural Images with Selected Chromatic
Distributions
The second image data set consists of 25 images that we
selected from the gray ball image data set (11,346 images)
described in [19]. The idea behind these selected images is
that their chromatic distributions are oriented similarly to
those of the synthesized images shown in Fig. 3, except that
the scene averaged chromaticity is not restricted to coincide
with the neutral point. Images from the data set were first
transformed to CIELAB space using D65 as the white point,
after which a principal component analysis was performed
in the a�b� chromaticity plane. We selected images based
on two criteria. First, we search for images having an approxi-
mate 5∶1 ratio of the eigenvalues from the first and second
principal components. This is inspired by the 5∶1 ratio in
the standard deviations along the major and minor axes of
the chromatic distributions of Data Set 1. Second, we
searched for images having target angles Φ � 0, 45, 90, and
135° where Φ is the angle (in CIELAB a�b� chromaticity
space) between the axis of the first principal component
and the horizontal line passing through the average chroma-
ticity (a line parallel to the a� axis). For each of the four target
anglesΦ, we selected 5 images. Another 5 images are selected
that have a 1∶1 ratio of the eigenvalues from the first and

Fig. 2. Screenshot of an experimental trial for Data Set 1. The multi-
color test scene on the top row represents a chromatic distribution
specified in CIELAB color space. For each color element we derive
a spectral reflectance function that is used to simulate the effect of
illuminant changes. A greenish and a reddish test illuminant is used
in this trial to render the bottom left and right images, respectively.
Observers indicate which of these two renderings has the best
color fidelity compared to the rendering under neutral reference illu-
mination (in the top row). The size of the background is a 39.6° × 30.2°
visual angle. Images are 16.6° × 16.6° each in Data Set 1, and 6.2° × 6.2°
in Data Sets 2 and 3. Horizontal and vertical separation is 2.0° and 0.9°,
respectively.

Fig. 3. Multicolor stimuli of Data Set 1 under D65 reference illumination (top row) and density plots of their chromatic distributions plotted in the
CIELAB a�, b� chromaticity plane (bottom row, a� on the horizontal axis). The numbers above the top images label the distributions described in
Table 1. Angle θ denotes the angle between the positive a� axis and the major axis of the distribution in the a�b� plane of CIELAB color space.
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second principal components. So, for each of the five chro-
matic distributions defined in Data Set 1, we selected 5 natural
images with similar (but not exactly equal) distributions.
These images are 240 pixels × 240 pixels in size and shown
in Fig. 4. Density plots of their distributions in CIELAB
a�b� chromaticity space are shown in Fig. 5 and statistical
parameters of the distributions are given in Table 2. To inter-
pret the values of this Table, a positive skewness value indi-
cates that the distributions’ tail on the right side is longer than
the tail on the left side, and vice versa for a negative skewness
value. Kurtosis values larger than 3 indicate sharper peaked
distributions, while values lower than 3 indicate a more flat-
tened distribution. By comparing the graphical and statistical
representations of the chromatic distributions (Figs. 3 and 5,
and Tables 1 and 2) it is clear that the chromatic distributions
of the natural images are different from the well-defined dis-
tributions of the multicolor images in Data Set 1, most notably
perhaps in the tail of the distributions and the non-neutral
average chromaticity. This is not a problem per se, since

our model predictions make use of the actual image statistics.
In Table 2,Φ is the angle (in CIELAB a�b� chromaticity space)
between the axis of the first principal component and the
horizontal line passing through the average chromaticity.

D. Data Set 3: Scrambled Natural Images
The third data set is composed of pixelated and scrambled
versions of the images of Data Set 2. Pixelation causes each
8 × 8 pixel block to get the average color of the original 64
pixels in the block. This results in lower resolution images
of 30 × 30 blocks, just like the synthesized images of Data
Set 1. Scrambling of the images causes the blocks to be
spatially reorganized (randomly). In this way, the chromatic
distributions of the corresponding images in Data Sets 3
and 2 are the same, but the image semantics are destroyed.
In addition, the images of the third data set have the same
granularity as the synthesized images in Data Set 1. Fig. 6
shows the scrambled images, and Table 3 presents the statis-
tical parameters of their chromatic distributions. In Table 3,
Φ is the angle (in CIELAB a�b� chromaticity space) between
the axis of the first principal component and the horizontal
line passing through the average chromaticity.

From a comparison of Tables 2 and 3, it becomes clear that
scrambling does have an effect on the chromatic distribution,
albeit small.

Table 1. Specification of the Five Chromatic Distributions (900 Samples) under D65 Reference Illumination

Mean Standard Deviation Skewness Kurtosis

Distribution θ L� a� b� L� a� b� L� a� b� L� a� b�

1 — 48.71 −0.01 0.09 16.18 7.93 7.80 −0.08 0.02 −0.02 2.69 2.82 3.24
2 0° 49.13 −0.14 0.13 15.70 7.79 1.67 0.08 0.00 0.01 2.93 2.92 3.06
3 45° 49.04 −0.08 0.15 16.15 5.65 5.68 −0.11 0.13 0.06 2.78 2.96 2.92
4 90° 48.76 −0.15 0.05 15.76 1.66 7.98 −0.09 0.05 0.02 2.75 3.06 3.02
5 135° 48.90 −0.06 −0.01 15.47 5.58 5.56 −0.03 −0.05 0.01 3.00 2.84 3.10

Fig. 4. Image Data Set 2, containing 5 natural images per chromatic
distribution. Angle Φ denotes the angle in CIELAB a�b� chromaticity
space between the axis of the first principal component and the
horizontal line parallel to the a� axis. Numbers below the images
are labels and correspond to the image numbers in Table 2.

Fig. 5. Density plots of the chromatic distributions in CIELAB
a�b� chromaticity space of the natural images shown in Fig. 4. Labels
below the images correspond to those in Fig. 4 and the image numbers
in Table 2.
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E. Simulation of Illuminant Changes
The usual way to simulate object colors under different illu-
minants is to calculate XYZ tristimulus values according to

X � k
Z
λ
E�λ�ρ�λ�x̄�λ�dλ;

Y � k
Z
λ
E�λ�ρ�λ�ȳ�λ�dλ;

Z � k
Z
λ
E�λ�ρ�λ�z̄�λ�dλ; (1)

in which E�λ� represents the SPD of the illuminant, ρ�λ� is the
spectral reflectance function of the object and x̄, ȳ, z̄ re-
present the 1931 color matching functions for the 2° standard
observer. The factor k is defined as

k � 100R
λ E�λ�ȳ�λ�dλ

; (2)

and serves to normalize Y at 100 for a perfect white reflec-
tance. However, our object colors are defined in terms of
CIELAB values rather than spectral reflectance functions.
This poses a problem since an infinite number of reflectance
functions can result in identical XYZ tristimulus values (and
hence identical CIELAB values) under one illuminant. There-
fore, a selection criterion for picking one reflectance function
is needed. We apply Van Trigt’s method [20] to estimate the
smoothest reflectance function from a set of tristimulus val-
ues, where the smoothness measure is defined as the square
of the derivative of the reflectance function with respect to

Fig. 6. Image Data Set 3. These images were obtained by first
pixelating the images of Data Set 2 (8 × 8 pixel blocks receiving
the average color) and then scrambling (spatial relocation). This
leaves the global chromatic distribution intact but destroys image
semantics.

Table 2. Parameters of the Chromatic Distributions of the 25 Images Shown in Fig. 4 (Data Set 2), under D65

Reference Illumination

Mean Standard Deviation Skewness Kurtosis

Image Φ L� a� b� L� a� b� L� a� b� L� a� b�

1 — 52.41 5.62 17.76 18.85 5.71 6.88 −0.95 0.00 −0.56 3.25 3.07 5.07
6 — 49.74 −5.68 27.45 26.65 15.45 16.93 0.09 0.71 0.44 1.75 3.46 3.24
11 — 35.49 12.25 19.67 19.70 16.31 15.43 0.59 0.75 0.45 2.99 3.11 4.42
16 — 34.28 0.70 8.41 28.56 10.66 10.99 0.86 1.84 1.03 2.61 9.01 6.32
21 — 62.85 1.11 11.56 23.52 4.46 5.95 −0.60 −2.11 1.67 2.64 15.48 22.58
2 0° 47.33 −9.95 26.03 19.79 13.61 7.39 −0.17 0.78 −0.23 2.42 2.72 3.94
7 0° 42.56 3.98 23.90 18.88 13.33 9.18 0.52 0.54 0.29 2.85 3.57 2.43
12 0° 39.32 4.33 21.94 20.14 20.16 9.94 0.37 0.85 0.82 2.33 2.76 3.24
17 0° 41.87 −14.31 29.51 11.84 9.93 5.29 1.30 2.51 −1.87 6.92 9.68 10.93
22 0° 29.94 3.56 13.72 21.56 13.85 8.12 0.78 0.76 0.03 3.45 2.87 2.80
3 45° 34.05 7.44 4.34 26.38 10.88 13.51 0.72 0.56 −0.09 2.61 3.46 4.41
8 45° 24.83 0.10 2.85 16.78 5.54 7.63 1.00 3.68 0.42 3.27 22.12 3.90
13 45° 20.99 −0.65 0.36 20.20 6.11 7.50 1.84 −1.13 −1.03 6.56 5.59 6.38
18 45° 47.56 8.78 19.81 12.85 5.32 5.72 0.07 −1.28 −0.42 4.30 6.46 5.34
23 45° 33.01 11.04 21.54 11.97 10.28 7.84 1.30 −0.36 −1.35 8.83 2.53 5.69
4 90° 32.36 −7.00 5.68 27.81 6.23 15.06 0.55 −0.37 −0.20 2.12 3.04 3.23
9 90° 33.12 −6.93 12.19 28.14 4.97 13.60 0.40 −0.12 0.11 1.71 3.48 2.43
14 90° 39.85 −6.12 27.19 21.08 7.60 16.31 0.17 −0.05 0.08 2.51 2.86 2.82
19 90° 47.81 −16.64 25.72 24.56 7.67 14.83 0.05 0.00 0.05 2.16 3.08 2.43
24 90° 43.35 0.92 −10.58 13.88 2.12 5.58 0.51 0.37 −0.82 2.42 3.80 4.14
5 135° 47.77 −3.92 17.62 23.86 11.58 8.33 0.30 −0.27 1.09 2.34 1.92 4.39
10 135° 44.47 −5.69 12.24 27.00 10.05 10.51 0.48 −0.13 0.54 2.02 1.75 2.77
15 135° 46.76 −12.57 25.47 19.57 9.78 10.85 0.33 −0.22 0.13 3.17 1.87 2.06
20 135° 46.84 −3.41 15.33 31.34 8.43 10.88 0.03 −1.33 1.57 1.56 4.52 5.05
25 135° 43.77 −8.34 21.46 21.92 9.67 11.49 0.56 −0.19 0.48 3.08 1.63 2.24
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wavelength, integrated over the visual range. We thus as-
sume that the CIELAB values of our object colors in the
reference condition result from illumination of the estimated
reflectance functions by D65, our reference illuminant. Con-
version of the resulting XYZ values to RGB drive values for
displaying the colors on the color monitor is done using the
sRGB profile (our monitor is calibrated to sRGB). Since the
simulated illuminant changes may shift object colors out of
the monitor’s color gamut, we used Data Set 2 (the natural
images) to calculate the percentage of pixels that are out
of gamut under the chromatic illuminants. Averaged over
the 25 images, these percentages are 3.2, 4.0, 1.0, and 2.0
for the red, green, yellow, and blue illuminants. For these
pixels, the average color difference between the target color
(what it should be) and actual color (what was displayed on
the monitor) is ΔE00 � 0.092, 0.040, 0.003, and 0.064, respec-
tively. These color differences (reproduction errors) are very
small and below visual threshold so that we may safely as-
sume that the restrictions of the color gamut have no effect
on the outcome of the experiments presented here.

F. Illuminants that Induce Equal Changes in the
Reflected Light Signal Distribution
In line with previous studies [21,22] we select a neutral refer-
ence illuminant (D65) and four chromatic illuminants, all
composed with the CIE basis functions for spectral variations
in natural daylight. In [21] it is investigated whether color
constancy would be better for illuminant changes along the
daylight locus than for illuminant changes perpendicular to
it, but no experimental evidence was found that unambigu-
ously supports this hypothesis. Here, we use the same para-
digm with the yellow and blue illuminants along the daylight

locus, and another two (red and green) perpendicular to it, but
without the constraint that they are perceptually equidistant
from the neutral reference point. Perceptual equidistance of
object colors rendered under these illuminants would only be
guaranteed for spectrally nonselective (achromatic) samples
seen in isolation, but it does not necessarily imply perceptual
equidistance for individual chromatic samples or a distribu-
tion of chromatic samples. Therefore, we modify the purity
of the chromatic illuminants such that when changing the
illumination from neutral to one of the four chromatic illumi-
nants, equal distributions of physical shifts in the reflected
light signal are obtained, as explained below. In Fig. 7 the
positions of the illuminants are plotted in the CIE 1931 x, y
chromaticity diagram and the CIE 1976 a�b� space together
with the daylight locus, and Fig. 8 shows the SPDs of the
illuminants.

We define the reflected light signal L as the wavelength-
by-wavelength product of the illuminant SPD E and the
reflectance function ρ:

L �
Z
λ
E�λ�ρ�λ�dλ: (3)

This signal does not include the sensitivity of the visual
system and is therefore regarded as a pure physical signal.
When changing the illuminant from E1 (neutral) to E2

(chromatic), the associated change in the reflected light signal
is given by

ΔL � L2 − L1 �
Z
λ
�E2�λ� − E1�λ��ρ�λ�dλ: (4)

Table 3. Parameters of the Chromatic Distributions of the 25 Images Shown in Fig. 6 (Data Set 3), under D65

Reference Illumination

Mean Standard Deviation Skewness Kurtosis

Image Φ L� a� b� L� a� b� L� a� b� L� a� b�

1 — 52.92 5.51 17.97 12.47 5.18 5.57 −0.85 −0.16 −0.40 3.39 2.40 5.30
6 — 50.17 −6.15 28.36 22.00 13.75 14.36 0.19 0.63 0.56 1.95 2.99 3.45
11 — 35.67 12.61 20.23 14.78 14.28 13.79 0.38 0.71 0.46 2.84 3.10 4.10
16 — 34.75 0.58 9.42 23.23 9.73 9.58 0.98 1.54 0.65 3.18 6.76 4.67
21 — 63.07 1.11 11.54 21.12 3.74 5.02 −0.46 −1.83 1.33 2.54 13.42 19.15
2 0° 47.68 −10.06 26.25 14.88 12.06 5.90 −0.61 0.77 −0.38 3.03 2.52 3.78
7 0° 42.82 4.01 23.97 16.00 12.33 8.30 0.41 0.51 0.28 2.86 3.47 2.23
12 0° 39.54 4.45 22.01 16.65 19.18 8.88 −0.01 0.76 0.93 1.88 2.56 3.31
17 0° 41.94 −14.22 29.48 9.88 9.04 4.92 1.44 2.46 −2.33 8.27 9.36 13.11
22 0° 30.20 3.32 14.22 17.35 12.93 6.77 0.64 0.75 0.13 3.73 2.73 2.74
3 45° 34.32 7.34 4.15 23.31 9.50 11.91 0.53 0.72 −0.02 2.61 3.49 3.67
8 45° 25.01 0.01 2.79 14.67 5.11 6.67 0.75 3.82 0.50 2.72 22.80 3.75
13 45° 21.06 −0.79 0.53 19.40 5.66 6.48 1.79 −1.09 −0.95 6.32 5.19 3.67
18 45° 47.74 8.68 19.78 10.84 4.79 5.11 0.45 −0.98 −0.47 4.05 4.70 4.20
23 45° 33.03 10.94 21.56 10.53 9.85 6.48 1.15 −0.36 −1.48 9.58 2.34 5.78
4 90° 32.84 −7.92 6.64 22.08 4.87 13.96 0.40 −0.41 −0.28 2.36 2.77 3.08
9 90° 33.43 −7.43 12.70 25.52 3.99 12.82 0.34 0.15 0.03 1.67 3.55 2.27
14 90° 40.31 −6.77 29.09 15.68 5.95 13.74 0.13 −0.11 0.10 3.13 2.47 3.56
19 90° 48.34 −17.53 27.19 19.98 6.24 12.04 −0.05 0.06 −0.04 2.74 3.17 2.56
24 90° 43.46 0.81 −10.63 12.16 1.15 3.24 0.51 0.36 −0.71 2.15 2.59 4.03
5 135° 47.89 −4.05 17.80 21.85 10.94 7.31 0.46 −0.09 1.05 2.53 1.72 3.86
10 135° 44.90 −5.81 12.63 23.63 9.29 9.78 0.38 −0.16 0.49 1.97 1.59 2.29
15 135° 47.05 −12.60 25.59 16.89 9.24 10.35 0.51 −0.28 0.19 3.99 1.80 1.96
20 135° 47.85 −3.58 15.90 25.17 7.73 10.04 −0.07 −1.56 1.70 1.94 4.34 5.20
25 135° 44.24 −8.61 22.34 15.49 9.22 10.86 0.48 −0.11 0.48 3.83 1.50 1.96
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We tune the purity of the four chromatic illuminants to
arrive at almost identical cumulative distributions of �ΔL�2 by
adjusting the mixture of the SPD of the original four chromatic
illuminants with the SPD of the neutral illuminant D65. This
process is described by

E0�λ� � E�λ� � xED65�λ�
1� x

; (5)

where E0�λ� represents the spectral power of the adjusted
illuminant at wavelength λ, E�λ� is the spectral power of
the original illuminant, ED65�λ� is the spectral power of illumi-
nant D65, and x is the mixing factor that regulates the mixing
of E�λ� and ED65�λ�. We derived mixing factors of 3.55, 2.54,
2.0, and 2.71 for the red, green, yellow, and blue illuminants,
respectively. The similarity in the cumulative distributions of
the reflected light signal for the chromatic illuminants, ob-
tained for the first chromatic distribution defined in Table 1,

is shown in Fig. 9. For the other chromatic distributions of
Data Set 1, similar cumulative distributions are obtained.

To summarize, we have defined four chromatic illuminants
that induce equal physical shifts for the test scenes of Data
Set 1. The advantage of using these illuminants is that they
enable us to separate perceptual effects from physical effects
when changing the illuminant from neutral to one of the
chromatic illuminants. For a vision system without any spec-
tral preference, i.e., a flat spectral sensitivity profile, these
illuminant changes would be indistinguishable.

G. Color Calibration of the Monitor
The images are presented on a calibrated LCD monitor (Eizo,
ColorEdge CG211) operating at 1600 pixels × 1200 pixels
(0.27 mm dot pitch) and with a 24-bit color resolution. Using
a spectrophotometer (GretagMacbeth, Eye-one) the monitor
is calibrated to a D65 white point of 80 cd∕m2, with a gamma
of 2.2 for each of the three color primaries. CIE 1931 x, y
chromaticity coordinates of the primaries were �x; y� �
�0.638; 0.322� for red, (0.299, 0.611) for green and (0.145,

Fig. 7. Daylight locus and positions of the neutral illuminant and the four chromatic illuminants in CIE 1931 x, y chromaticity space (left) and CIE
1976 a�b� space (right).

Fig. 8. Relative SPD (in arbitrary units, a.u.) of the neutral reference
illuminant and the four chromatic illuminants used in the experi-
ments. The illuminants were created with the CIE basis functions
for spectral variations in natural daylight, and were modified in purity
such that they elicit equal distributions of changes in the reflected
light signal (see Fig. 7 also and text for explanation).

Fig. 9. Cumulative distributions of the squared changes in the re-
flected light signal (ΔL), due to a change from neutral illumination
to one of the four chromatic illuminants (indicated in the legend).
The change in the reflected light signal is defined in Eq. (4). The figure
shows that the distributions are very similar, which was achieved by
adjusting the purity and distance of the chromatic illuminants to the
neutral point, as described in the text.
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0.058) for blue, respectively, closely approximating those of
the sRGB standard monitor profile (IEC, 1999). Spatial uni-
formity of the display, measured relative to the center of the
monitor, was ΔE�

ab < 1.5, according to the manufacturer’s cal-
ibration certificates. This type of displaywas previously shown
to provide an average color reproduction error of about
ΔE00 � 0.6, in the order of one just noticeable difference
[23], accurate enough for the type of experiment described
in this paper.

H. Subjects
The subjects that participated in the experiments all have
normal color vision and normal or corrected-to-normal visual
acuity. Screening on color vision deficiencies was done by
testing on the HRR (Hardy Rand and Rittler) pseudoisochro-
matic plates (4th edition), which were shown under the pre-
scribed illumination. Eight subjects (including the first three
authors) participated in the experiment with images from
Data Set 1, and six subjects for Data Sets 2 and 3. All subjects
were male, ranging in age from 27 to 45 years (average 32).
They worked in our laboratory, and did not receive a separate
financial reward for their participation.

I. Instructions and Procedure
In each trial four images are shown, as illustrated in Fig. 2. The
subjects had to indicate which vertical image pair (left or
right) had the highest color fidelity. The subjects were told
that in each trial the two upper images were identical refer-
ences. They had to visually compare the colors of the lower
images with the reference on top by making vertical eye move-
ments. Both global and local aspects of color comparison had
to be taken into account. They did this for one vertical image
pair (test-illuminant) and subsequently for the other image
pair, and they were instructed not to compare the two test
images (test illuminants) horizontally. So, they switched from
making vertical comparisons on the left side of the screen to
making vertical comparisons on the right side of the screen,
until they came to a decision. In our implementation, the
observers pressed “Q” on the computer keyboard to indicate
their choice for the image pair on the left, “P” for the image
pair on the right, and spacebar when they could not choose
left or right. In the latter case it meant that the observer judged
the color fidelity of the left image pair to be as good or as bad
as the right image pair. The subjects were encouraged to se-
lect an image pair, and only indicate “no selection” when they
really could not decide. In between trials, the neutral back-
ground was shown for 5 s. Apart from the authors, the sub-
jects did not know that the lower test images were
obtained by simulated illuminant changes.

3. RESULTS
We first provide amore qualitative account of the results. In the
section on data modeling a quantitative analysis of the data in
terms of the predicted illuminant probability is presented.

A. Visual Scores
We recall that in each experimental trial our observers
selected one of two competing illuminant renderings. The
illuminant associated with the rendering that was indicated
as having higher color fidelity received 1 point, the other re-
ceived no points in that trial. In cases where the observer

could not choose one or the other, meaning that the two
illuminant renderings were considered equally good or bad,
both test illuminants received 0.5 points. Given that each test
illuminant appeared three times in competition against the
other illuminants, the maximum visual score for an illuminant
to obtain was 3. For Data Set 1, trials were replicated, leading
to a maximum visual score of 6 per illuminant. On average,
in 73% of the trials the repetition resulted in the same re-
sponse. For Data Sets 2 and 3 we used 5 images per chromatic
distribution, leading to a maximum visual score of 15 per
illuminant.

The results obtained on the three image data sets are pre-
sented in Fig. 9. Shown are the visual scores per illuminant,
labeled in the corresponding illuminant color, for the five
chromatic distributions. Visual scores are averaged across
observers, and error bars represent the standard error of the
mean (SEM). As a rule of thumb, nonoverlapping standard
errors indicate a statistically significant difference. Plots in
the left column show the visual scores averaged across
observers, and the plots in the right column show these scores
normalized to the scores of the first chromatic distribution
(the Gaussian distribution without preference of the chro-
matic orientation). As a result, all scores equal 100% for the
first chromatic distribution.

B. Data Set 1: Multicolor Scenes
Results for the first data set (the synthesized chromatic distri-
butions) are shown in the top row of Fig. 10. Two aspects are
salient: the unequal scores for the first chromatic distribution,
and the change in the scores for the distributions with varying
chromatic orientation (chromatic distributions 2–4). The
data for the first chromatic distribution clearly shows a large
difference between the visual score for the red illuminant and
the other illuminants. Apparently, our multicolor test scene
under the red illuminant results in a higher color fidelity than
the other illuminants. Second best is the blue illuminant, and
green and yellow have the lowest fidelity scores. Why do the
red and the blue illuminants lead to higher color fidelity than
yellow and green? Recall that we deliberately adjusted the
purity of the chromatic illuminants to get identical distribu-
tions of the changes in the reflected light signal, when the
illumination changed from neutral to chromatic. The mixing
factors for red (3.55) and blue (2.54) mentioned in the pre-
vious section are larger than for yellow (2.0) and green
(2.71), resulting in lower purity of the first two illuminants.
When comparing, for example, the scene rendered under red
and green illumination to the scene rendered under the refer-
ence illumination, as illustrated in Fig. 2, one may notice the
slightly lower purity of the red illuminant, resulting in higher
color fidelity. So, although the chromatic illuminants induce
similar distributions of physical light changes, they lead to per-
ceptually different estimates of color fidelity. As will be shown
in the section on data modeling, these different estimates are
only partly explained by perceptual color difference metrics.

The results for the other four chromatic distributions are
best explained using the right hand side of Fig. 10, showing
the visual scores normalized to those of the first distribution.
The fact that the visual scores change compared to those
of the first distribution indicates that color fidelity depends
on the shape of the chromatic distribution. In addition, the
visual scores change with the chromatic orientation. For
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the second chromatic distribution, having its major axis along
the a� axis of CIELAB color space (roughly the red–green
axis), the color fidelity for the red and green illuminants in-
crease, and decrease for yellow and blue. In opposition, for
chromatic distribution number 4, having its major axis along
the b� axis of CIELAB color space (roughly the yellow–blue
axis), the color fidelity for the yellow and blue illuminants in-
creases while it decreases for red and green. For chromatic
distributions 3 and 5, having their major axes in between
the a� and b� axes, color fidelity for red and blue takes on
values in between those for distributions 2 and 4. However,
the relative scores for yellow and green illumination do not
follow this systematic pattern. These findings are summarized
as follows:

1. The shape of the chromatic distribution affects the
color fidelity.

2. The orientation of the chromatic distribution affects
the color fidelity.

3. When the vector of the illuminant change (pointing
from neutral to chromatic) is parallel to the orientation of

the chromatic distribution, color fidelity of the rendered scene
is judged better than when the direction of the illuminant
change is orthogonal to it.

C. Data Set 2: Natural Images
Compared to the visual scores of Data Set 1, the data for
the natural images (middle row in Fig. 10) are different in
three ways. First, the average visual scores for the first chro-
matic distribution show a much lower value for the red illu-
minant, and a higher value for the yellow illuminant. Second,
the change in the pattern of these values for the other chro-
matic distributions is much smaller. Third, illuminant blue has
the highest visual scores for all chromatic distributions, fol-
lowed by the yellow (with the exception of the green illumi-
nant in the second chromatic distribution). It is remarkable
that the yellow and blue illuminants lead to a higher color
fidelity structure for the natural images. This might indicate
a preference for illuminant changes along the daylight locus.
We comment on this topic in more detail in the Discussion
section.

Fig. 10. Visual scores per chromatic illuminant (red, green, yellow, blue), averaged across subjects, obtained for the five different chromatic
distributions. The plots in the left column show the visual scores for the three image data sets, and the plots in the right column show the same
data normalized to the visual scores for the first chromatic distribution. The higher the visual score, the more often the illuminant was (indirectly)
judged as having higher color fidelity. Error bars denote �1 SEM.
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D. Data Set 3: Scrambled Natural Images
The data for the scrambled natural images (bottom row in
Fig. 10) are quite similar to those of the second data set, ex-
cept for the green illuminant in chromatic distributions 2 and
5. Here, also, the yellow and blue illuminants are dominating
the visual score. Taking out image semantics by scrambling
the natural images does not have a strong effect on the color
fidelity of the renderings of the visual scenes.

E. Modeling the Illuminant Probability
In Fig. 10 the visual scores were shown as having been ob-
tained by summing the number of times that each illuminant
rendering was selected by the observers as having the best
color fidelity. Here, we model the data in terms of illuminant
probability, i.e., the observed probability that an illuminant is
selected in a given combination of test illuminants. To illus-
trate, Table 4 shows these observed probabilities for Data
Set 1 across observers. According to the choice modeling
theory, we model these probabilities using binary logistic
regression, in which the predicted illuminant probability P
is given by

P � eη

1� eη
; (6)

η � c�vari − varj�; (7)

where c is a coefficient to be estimated and var is an indepen-
dent variable characterizing the experimental trial according
to some sort of “model”. Subscripts i and j on var label the two
test illuminants in the trial. Actually, we use four different
types of models to feed var in Eq. (7), as discussed below.

Our first model predicts based on the reflected light signal
that we introduced in this paper. The second model predicts
based on the calculated overlap in the rendered color gamut
for the test and reference illumination. The third model pre-
dicts based on the scene averaged color difference between
corresponding image parts (pixels) under the test and refer-
ence illumination. The fourth model predicts based on two
image quality metrics. These four models differ in the extent
to which they incorporate information processing by the
human visual system.

We first describe each of the models before presenting the
results.

1. Model 1: Reflected Light Signal
The reflected light signal L is described by Eq. (3) and cap-
tures the product of the SPD of the illuminant and the spectral
reflectance of an object. The change in L, described by ΔL in
Eq. (4), is a purely physical measure that we use to describe
the change in the light reflected from an object when the SPD
of the illuminant is changed. For a scene in which each image
pixel is considered as an individual object having an individual
spectral reflectance, a cumulative distribution of �ΔL�2 can be
calculated as shown in Fig. 9. In general, the four distribution
curves (referring to the four illuminants) will not be identical,
as illustrated in Fig. 11 for scene 1 from Data Set 2.

These distributions can be fitted by a model using two
parameters, c and d,

cdf � 1 − ce�−d bin�; (8)

in which cdf is the cumulative distribution function and bin is
the bin number in Fig. 11 encoding the square of the change
in the reflected light signal, �ΔL�2. The ratio d∕c is indicative
of the speed with which the cumulative distribution function
saturates, with the highest d∕c value belonging to the upper
curve. Higher values of d∕c indicate higher frequencies in

Table 4. Observed Probability of Test Illuminants R,

G, Y, B as Being Selected by the Observers, for Each of

the Five Chromatic Distributions and Six Illuminant

Combinations of Data Set 1

Chromatic
Distribution

Illuminant
Combination P [R] P [G] P [Y] P [B]

1 R–G 0.9375 0.0625 0 0
R–Y 0.875 0 0.125 0
R–B 0.625 0 0 0.375
G–Y 0 0.375 0.625 0
G–B 0 0.625 0 0.375
Y–B 0 0 0.1875 0.8125

2 R–G 0.9375 0.0625 0 0
R–Y 0.9375 0 0.0625 0
R–B 1 0 0 0
G–Y 0 0.6875 0.3125 0
G–B 0 0.6875 0 0.3125
Y–B 0 0 0.625 0.375

3 R–G 0.8125 0.1875 0 0
R–Y 0.6875 0 0.3125 0
R–B 0.5625 0 0 0.4375
G–Y 0 0.25 0.75 0
G–B 0 0.375 0 0.625
Y–B 0 0 0.3125 0.6875

4 R–G 0.625 0.375 0 0
R–Y 0.3125 0 0.6875 0
R–B 0.1875 0 0 0.8125
G–Y 0 0.3125 0.6875 0
G–B 0 0.125 0 0.875
Y–B 0 0 0.25 0.75

5 R–G 0.375 0.625 0 0
R–Y 0.9375 0 0.0625 0
R–B 0.875 0 0 0.125
G–Y 0 0.75 0.25 0
G–B 0 0.5 0 0.5
Y–B 0 0 0.375 0.625

Fig. 11. Cumulative distribution of �ΔL�2 for image 1 of Data Set 2
(see Fig. 4 also). The line colors code the illuminant color (blue,
yellow, green, red from top to bottom).
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the lower bins, which belong to smaller differences. Illumi-
nants that are characterized with higher d∕c values are thus
expected to have a higher probability of being selected in our
experimental trials.

2. Model 2: Chromatic Overlap
The Chromatic Overlap model calculates the overlap in a test
scene’s chromatic distribution (in the a�, b� chromaticity
plane of CIELAB color space) when rendered under the test
and reference illumination. The idea is that, when a change in
illumination is small, the associated change in rendered color
gamut is also small. Likewise, a large change in illumination
will result in a larger change in the color gamut. Hence, the
overlap between the two gamuts may act as a predictor for
the color fidelity. The assumption is that the larger the over-
lap, the higher the color fidelity of the scene under the test
illuminant. We compute the chromatic overlap as the normal-
ized histogram intersection, a measure for the similarity of
two histograms [24]. When there is no overlap between two
histograms, the normalized histogram index NHI � 0. When
the two histograms are identical, NHI � 1. The index is
calculated as follows:

NHI �
Pn

j�1 min�Rj; Tj�Pn
j�1 Tj

; (9)

in which R and T represent the histograms of n bins each of
the scene under the reference and test illumination, respec-
tively. The numerator in Eq. (9) is the intersection between
R and T , and the denominator is the number of pixels in
the image (scene). In our case the histogram bins represent
a quantization of the a�, b� chromaticity plane in CIELAB
color space, which has been shown to be the preferred color
space for evaluating image similarities using the histogram
intersection (Lee et al. 2005). For each a�, b� cell (having
Δa� � 1 and Δb� � 1) within the a�, b�-plane we count the
number of colors present in that cell and construct a histo-
gram of these counts. We compute the normalized histogram
intersections with Eq. (9) for the image pair formed by the
scene under the reference illumination and the test illuminant.

3. Model 3: Scene Averaged Color Difference
The scene averaged color difference, ΔEavg, is calculated as
the average of N (indicating the number of pixels) color
differences, each color difference ΔEj obtained from two cor-
responding scene pixels under reference and test illumination:

ΔEavg �
1
N

XN
j�1

ΔEj . (10)

Three color difference models are tested: CIELAB [13],
CIE94 [14], and CIEDE2000 [15]. The first, CIELAB, is based
on the Euclidian distance between two color points in L�a�b�

space. The second and third (CIE94 and CIEDE2000) use
differences in L�, C�, and h (C� stands for chroma and h for
hue angle) which are weighted by scaling factors that
depend on the location in CIELAB space and by parametric
scaling factors that account for deviations from the preferred
(reference) viewing conditions. The equations required for the
computation of ΔEj are presented in the given references and
in many textbooks on color. An online overview of these

equations is given in [25]. For the CIE94 and CIEDE2000
models the standard values for the parametric scaling factors
kL � kC � kH � 1 were used.

4. Model 4: Color Image Quality
Many image difference metrics have been proposed in the last
decade. Recently, in [26] 29 metrics were evaluated using 6
image databases. It was shown that metric performance is still
dependent on the image data set, and therefore selecting one
metric is not straightforward. We selected two of them, de-
scribed below as models 4a and 4b, both incorporating spatial
processing of the test scene.

5. Model 4a: Spatial CIELAB (S-CIELAB)
The first is the well-known S-CIELAB metric [16], which fea-
tures a spatial extension of the standardized ΔEab color differ-
ence metric. Prior to calculating color differences between
corresponding parts in two images, spatial filtering on the
(achromatic) luminance channel and the two chrominance
channels is performed, with filter specifications that mimic
the spatial sensitivities of the human visual system. For large
uniform patches this spatial preprocessing has no effect and
S-CIELAB results in identical calculations as the CIELAB
color difference ΔEab. We customized the publicly available
S-CIELAB MATLAB routines with the spatial and spectral
characterizations of our color monitor. On output, S-CIELAB
has a computed image difference map from which we calcu-
late the average ΔEab value.

6. Model 4b: Toet–Lucassen Color Image Fidelity
The second metric we selected is the color image fidelity met-
ric developed by Toet and Lucassen [17]. It is the color analog
of a gray scale image fidelity metric, introduced by Wang and
Bovik [27], capable of quantifying a wide range of local distor-
tions in image pairs. The gray scale metric of [27] is indicated
by symbol Q and is calculated as

Q �
�
σxy
σxσy

��
2x̄ ȳ

x̄2 � ȳ2

��
2σxσy
σ2x � σ2y

�
; (11)

in which the three terms between parentheses represent loss
of correlation, luminance distortion, and contrast distortion,
respectively. The symbols x̄ and ȳ represent averages in image
x and y, σx and σy represent the variance in image x and y, and
σxy is the covariance. The values of Q lie between −1 and 1.
The optimum value of 1 is obtained when the original image
and test image are identical, and the worst value of −1 is ob-
tained when the test image is twice the mean of the original
image subtracted by the original image. The Q value for an
image is obtained from averaging the Q-values for a window
of 8 pixels × 8 pixels, sliding over the image. The color fidelity
metric by Toet and Lucassen [17] first computes three such Q
values, one for each of the separate L, α, and β channels of a
decorrelated color space [28]. This leads to the three quality
metrics QL, Qα, and Qβ. Then, to obtain a single overall quality
measure, the three metrics are combined into a weighted
vector mean,

Qcolor �
�������������������������������������������������
wLQ2

L �wαQ2
α �wβQ2

β

q
; (12)

where wL, wα and wβ are the weighing coefficients for the
three channels. The fidelity metric Qcolor is computed for
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the image pair formed by the test illuminant and the reference
illuminant.

To summarize, the models and their output used as the
variable var in Eq. (7) are listed in Table 5.

F. Comparison of Model Performance
Using the models described above, we estimated the coeffi-
cients of Eq. (7) for each of the three image data sets
separately. Shown in Table 6 are the results in terms of %
OK, which is the percentage of experimental trials for which
the predicted probability with Eq. (6) is on the same side of 0.5
as the observer data, i.e., higher or lower than 0.5.

For the TL-Image Fidelity model, the parameters wL, wα,
and wβ in Eq. (12) were optimized to obtain the maximum
%OK. The optimum values are wL � 1, wα � 0.01, and
wβ � 2 for all three data sets, indicating that for our experi-
ments the importance of the quality metric is amplified in the
β-channel and suppressed in the α-channel.

From a comparison of the values in Table 6 it can be seen
that, for Data Set 1, the Gamut Overlap model leads to the
highest percentage of correct trial predictions (82%), followed
by the TL-Image Fidelity model (73%) and S-CIELAB (68%).
The Reflected Light Signal model is clearly the worst (55%),
and the scene averagedΔE models (60%–65%) are in between.
This is different for Data Sets 2 and 3, where the Reflected
Light Signal model and the Gamut Overlap model have com-
parable performance levels and outperform S-CIELAB. Also,
the scene averaged ΔE models have higher performance lev-
els, with ΔE00 being the best model for these two data sets.
Averaged over the three data sets, the ΔE00 model performs
best (%OK � 77), followed by the ΔE94 and the TL-Image
Fidelity model (%OK � 73). Surprising, perhaps, is the lowest
performance of the S-CIELAB model, which may be related to
the fact that the images being compared (under reference and
test illumination) are different in chromatic content only and
are not spatially disturbed.

Finally, we note that the performance increase of the three
color difference models (in the order from ΔEab to ΔE94 to
ΔE00) is in line with the historical progress in the development
of the color difference formulas.

4. DISCUSSION
We have shown that when multicolor scenes are rendered
under different (simulated) illuminants, the perceived color
fidelity of the rendered test scenes depends on the shape and
orientation of the chromatic distribution. Distributions having
the same mean chromaticity but different chromatic orienta-
tions are judged differently in terms of their color fidelity.
How does this finding relate to other studies? It is clear that
a model based on the gray world assumption (e.g., [1]) would
fail to predict the effect of chromatic orientation, since it only
relies on the mean chromaticity in the scene. There are a num-
ber of studies, however, in which the chromatic distribution of
the visual scene is probed to derive information about the
chromaticity of the illuminant (e.g., [2,29–32]). But even if
we suppose that this would result in the correct estimation
of the exact illuminant color, it would still not predict that
one illuminant leads to a higher color fidelity than another.
From our attempts to model the data of this study, it is not
completely clear, either, what mechanism is responsible for
the effects reported here. The best performing three models
differ completely in the way they are related to information
processing in the visual system. The Chromatic Overlap model
is a computational measure that has nothing to do with the
visual system. The ΔE00 is an advanced model for the percep-
tion of color differences, but spatially averaged in a straight-
forward manner, and the TL-image Fidelity model is more
specialized, incorporating a decorrelated color space and spa-
tial sampling. The fact that these three different models give
such comparable performance levels leaves us with the ques-
tion of what mechanism is involved in the image quality com-
parison. Perhaps more data from more test images and/or
illuminants is needed here to make that distinction. The fact
is that all models leave a considerable amount of data variance
unexplained. We should not forget, however, that the models
try to describe the average observer response, which itself has
some uncertainty. To quantify this, we calculated for each
observer the correlation with the group average, while first
removing the subject in question from the group. For the eight
observers we obtained correlations of 0.82, 0.36, 0.85, 0.71,
0.79, 0.77, 0.87, and 0.46, with an average of 0.70. This serves
to illustrate that we may expect an upper limit to the corre-
lation coefficient that is set by the interobserver variability.

A. Preference for Natural Illuminant Changes?
The idea that the human visual systemmay be better equipped
for compensating for illuminant changes along the locus of
natural daylight variations has been studied several times,
but so far without convincing evidence in support of that idea.
Lucassen and Walraven [33], using successive haploscopic
color matching on a computer display, studied color con-
stancy for six colored illuminants equidistant from the neutral

Table 5. Overview of Models and Output Variables

Used for Predicting the Illuminant Probability with

Eqs. (6) and (7)

Model Var in Eq. (7)

1. Reflected light signal d∕c
2. Gamut overlap NHI
3. Scene averaged delta E dEab, dE94, dE00

4a. S-CIELAB Average dE of image difference map
4b. TL-image fidelity Qcolor

Table 6. Model Performances (in %OK) for the Three Data Sets Separately and as Weighted Average

Scene Averaged ΔE

Data Set RLS (Reflected Light Signal) CO (Chromatic Overlap) ΔEab ΔE94 ΔE00 S-CIELAB TL-Image Fidelity

1 55.1 81.7 60.0 65.0 63.3 68.3 73.3
2 65.3 68.0 68.7 73.3 78.7 63.3 74.7
3 74.7 72.7 76.0 78.0 80.7 63.3 71.3
avg 67.5 72.2 70.3 73.9 77.0 64.1 73.1
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point, including a red, green, yellow and blue illuminant. From
a reanalysis of the data from their Experiment 1, it follows that
constancy indices were found (averaged across samples),
descending in the order of blue (0.74), green (0.66), red (0.61),
and yellow (0.58) illumination. In Lucassen and Walraven
(1996), again higher constancy indices for blue (4000 K)
illuminant changes were found (average constancy index �
0.74) than for yellow (25,000 K) illuminant changes
(average index � 0.64). Using more natural viewing condi-
tions and objects illuminated by real light sources, Brainard
[34] investigated achromatic appearance settings of a test
patch under varying illumination, and reported no depend-
ency on the chromaticity of the illuminant change. Delahunt
and Brainard [21], using yellow and blue illuminants along the
daylight locus and red and green perpendicular to it, reported
color constancy indices descending in the order of blue
(0.82), green (0.76), yellow (0.69), and red (0.67) illumination.
Brainard et al. [35] investigated a Bayesian model of human
color constancy, capable of testing whether a prior daylight
for the illumination would optimally predict experimental
data. Better results, however, were obtained for a prior broad
illumination. Hansen et al. [36] used color naming of color
patches under simulated illuminant changes. They obtained
color constancy indices that were similar across illumination
conditions, so without any clear preference for a certain illumi-
nation change. In studies with (rapid) temporal changes in
which observers have to discriminate between a change in illu-
mination and a change in surface material, it is found that color
constancy is best for blue and green, and less for yellow and red
[37], although this order may vary for individual observers.

The pattern that seems to emerge from the pooled results of
these experimental methods is that highest constancy indices
are found for illuminants blue and green, and lower indices for
yellow and red. But how do the results of our study relate to
this? From Fig. 10, it is easily seen that for Data Sets 2 and 3,
the visual scores for illuminants yellow and blue are higher
than for red and green. For Data Set 1, however, this is not
the case. To quantify, the pooled visual scores for red and
green, and for yellow and blue, expressed as a percentage
of the sum of the visual scores are 55% (R� G) and 45%
(Y� B) for Data Set 1, and 36% (R� G) and 64% (Y� B) for
both Data Sets 2 and 3. Apparently, these figures are strongly
dependent on the data set. Also, from a small experiment
using the scenes in Fig. 5 of [21], presented as images in
our experimental paradigm, the results for 3 observers indi-
cate a strong preference for yellow and blue (83% of the visual
score) over red and green (17%). These findings shed some
new light on the issue and seem worthwhile to further inves-
tigate. Again, it shows that scenes rendered under perceptual
equidistant illuminants may result in completely different
judgments about color fidelity. Another interesting detail to
mention here is that the illuminants used in this study have
different values for the light source quality measure known
as the color rendering index (CRI) [38], being the maximum
value of 100 for D65, 89 for red and green, 99 for yellow, and
96 for blue. This would predict better color fidelity for yellow
and blue as compared to red and green, as generally measured
for our Data Sets 2 and 3, but cannot explain the strong visual
scores for the red illuminant in the chromatic distributions in
Data Set 1. It should be noted, however, that the CRI is deter-
mined from a very limited number of test samples (8 to be

precise). In contrast, in the ΔE models all pixels are consid-
ered as test samples that constitute a much stronger quality
indicator for the color rendering properties.

B. Improvements in Methodology
Color fidelity was measured using the triad illuminant
comparison method. In this study we employed 4 colored
test illuminants from which 6 unique pairs can be created.
Increasing the number of illuminants is an obvious way to fur-
ther improve on the method, but at the cost of measurement
time [n illuminants lead to n!∕�2!�n − 2�!� unique pairs]. We
have previously used the triad comparison method in studies
for perceptual evaluation of color constancy algorithms
[22,39]. In those studies, the observers had the same task
as in our study, namely, to indicate which of the two images
in the bottom row best resembled the image on the top row.
However, those images were color corrected images from
different color constancy algorithms, instead of renderings
under different illuminants.

Another way for possible improvement is the presentation
mode. Foster et al. [40] showed that with successive presen-
tation the degree of color constancy obtained with surface
color matching is higher and leads to less variance between
observers. Whether this would also apply to the color fidelity
judgments remains to be investigated.

The images containing the chromatic distributions in Data
Set 1 were generated with software that contains a random
component used for sampling the Gaussian distribution and
for assigning the spatial location to a color patch. It is thus
possible that one instance of a chromatic distribution is vis-
ually very different from another instance of that same distri-
bution. We therefore ran a control experiment in which we
checked ten instances of the same chromatic distribution,
but did not find systematic differences in the visual scores.

C. Improvements to Color Constancy Algorithms
We started this paper by noting that performance measures of
human color constancy and color constancy algorithms are
quite different. Here, we discuss how the current findings of
this paper may help to narrow that gap. Most color constancy
algorithms in computer vision are directed at estimating the
unknown illuminant from the scene. After estimating the illu-
minant, which is assumed to be spatially uniform across the
visual scene, the images are color corrected to compensate
for the effect of the color of the illuminant. Any mismatch
in the illuminant estimation will thus show up as a global color
cast in the corrected image, whose color fidelity can be mea-
sured with the triad comparison method used in this study.
That would help to perceptually evaluate the different algo-
rithms, as reported previously [22]. We have shown in this
paper that, for ellipsoidal chromatic distributions, illuminant
changes are perceptually less well noticed when the direction
of the illuminant change is parallel to the major axis of the
chromatic distribution. Since many color constancy algo-
rithms are available, selecting one with a mismatch along the
major axis in the chromatic distribution would be preferable.

Another application concerns the color correction of im-
ages of outdoor scenes. The success rate of the classification
of a scene as indoor or as outdoor is above 90% [41]. Once a
daylight scene is classified as “outdoor,” we know that the
true illuminant lies somewhere along the daylight locus in
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chromaticity space. The estimated illuminants from different
color constancy algorithms will scatter around this locus.
Here, also, there will be a preference for an algorithm,
depending on the chromatic distribution of the scene, and the
positions of the estimated illuminants in chromaticity space.
Likewise, when a scene is classified as indoor, the range of
possible illuminants is also restricted and this situation may
also ask for a preferred algorithm.
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