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I. Introduction

Content-based image retrieval from digital image li-
braries is a difficult but interesting problem. Recently,
a large number of image databases have been created
in various narrow domains such as flowers, fish, pills,
and tiles. Also more general image databases are be-
ing published such as photo-stocks of consumer pho-
tography and the WWW [2], [14].

In this paper, we aim for content-based image re-
trieval of non-uniformly textured objects in natural
scenes under varying illumination and viewing condi-
tions. Non-uniformly textured objects are specified
as objects composed of irregularly distributed texture
elements such a sand, wood, brick, and grass.

It is known that texture can be described by its
color primitives and their spatial layout. The spatial
layout can be periodic, quasi-periodic or random [3],
[7]. As the goal is to retrieve images containing objects
having irregular texture organization, in this paper,
the spatial organization of these texture primitives is,
in worst case, random. Therefore, we focus on sta-
tistical texture measures. It has been demonstrated
that for irregular texture, the comparison of gradient
distributions achieves satisfactory accuracy [10], [11]
as opposed to fractal or wavelet features. Therefore,
most of the work on texture image segmentation are
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stochastic from nature [1], [8], [16]. However, these
methods rely on grey-value information which is very
sensitive to the imaging conditions.

Therefore, in this paper, computational methods
are proposed to measure texture similarity based on
comparing feature distributions derived from color
constant ratio gradients. To cope with object clut-
tering, region-based texture segmentation is applied
on the target images prior to the actual image re-
trieval process. The region-based segmentation al-
gorithm computes image regions having roughly the
same texture content as the query texture image. Af-
ter segmenting the target images, the retrieval process
is based on comparing color ratio gradient distribu-
tions of query texture image and target regions.

This paper is organized as follows. In Section II,
related work is discussed. In Section III, robust color
constant gradients are presented. In Section IV, tex-
ture measures are given. Further, in Section V, the
segmentation and retrieval methods are presented. Fi-
nally, the proposed segmentation and retrieval meth-
ods are tested in Section VI.

II. Related Work

Various color-based image search systems have been
proposed based on various representation schemes
such as color histograms, color moments, color edge
orientation, color texture, and color correlograms [2],
[14]. In general, these retrieval systems are based on
comparing global color feature distributions computed
from the query image and target images in the im-
age database. However, a drawback of global image
matching is object cluttering and occlusion, introduc-
ing and discarding respectively color feature values.
To cope with this, it has been shown [5] that com-
paring color distributions based on histogram inter-
section is to some degree robust to object occlusion
and cluttering. However, mismatches still occur when
the color feature values are coming from different non-
connected regions, corresponding to different objects
in an image, producing together roughly the same
color distribution as that of the query object. Mis-
matches may decrease when only color feature dis-
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tributions of connected pixels (i.e. blobs) in images
are considered during the retrieval process [1]. To
this end, our approach is to segment target images
into textured regions or blobs prior to the actual re-
trieval process. In fact, image segmentation is based
on finding connected regions with similar color fea-
ture distributions as the query object image. After
segmentation, these regions are then used for image
retrieval.

For both segmentation and image similarity, color
features are required which are robust to a change
in illumination as well as a change in object pose.
Therefore, in the next section, color ratio gradients
are computed. These color ratio gradients are derived
from the RGB channels from a color ccd camera.

III. Color Ratio Gradients

In this section, various color ratio gradients are pre-
sented. These color ratio gradients are independent
of the spectral power of the light source (color con-
stancy) and object geometry (normalization). First,
in Section III-A, we discus the image formation
model. Then, in Section III-B, color ratio gradi-
ents are presented robust to a variation in the spectral
power distribution of the light source. In Section III-
C, we tighten the restriction on the SPD of the light
source by assuming that the SPD is relatively smooth.

A. Image Formation

Consider the body reflection term of the dichro-
matic reflection model with narrow-band filters [12]:

Ck(~x) = GB(~x, ~n,~s)E(~x, λk)B(~x, λk), (1)

giving the measured sensor pulse response of a matte,
infinitesimal surface patch of an inhomogeneous di-
electric object under unknown spectral power distri-
bution of the illumination. Although standard video
cameras are not equipped with narrow-band filters,
spectral sharpening could be applied [4] to achieve this
to a large extent. Note that the material is matte ig-
noring specular or surface reflection. GB(~x, ~n,~s) is the
geometric term dependent on the surface orientation
~n and illumination direction ~s. For example, assum-
ing Lambertian reflection we have cos(~n · ~s). Further,
E(~x, λk) is the illumination and B(~x, λk) is the surface
albedo at wavelength λk. The aim is to derive expres-
sions only based on B(~x, λk) discounting dependencies
on object geometry GB (i.e. normalization) and illu-
mination E (i.e. color constancy).

B. Color Constant Ratio Gradients

Illumination-independent color ratios have been
proposed by Nayar and Bolle [9]. A drawback, how-
ever, is that these color ratios might be negatively
affected by the geometry and pose of the object.

We propose the following color constant color ratio:
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(2)
ranging from [−1, 1] expressing the color ratio be-
tween two neighboring image locations, for C1, C2 ∈
{C1, C2, ..., CN} giving the measured sensor pulse re-
sponse at different wavelengths, where ~x1 and ~x2 de-
note the image locations of the two neighboring pixels.

For a standard RGB color camera, we have:

M1(R
~x1 , R~x2 , G~x1 , G~x2) =

R~x1G~x2 − R~x2G~x1

R~x2G~x1 + R~x1G~x2

, (3)
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, (4)
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. (5)

The color ratio difference is independent of the illu-
mination intensity and color, and also to a change in
viewpoint, object geometry, and illumination direc-
tion as shown by substituting equation (1) in equation
(2):
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The gradient of the color constant color ratio is given
by:
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where the locations (x − 1, y), (x + 1, y), (x, y −
1), (x, y + 1) are image locations with respect to ~x =
(x, y).

C. Color Invariance and Normalization

Color ratio gradient ∇CM requires narrow-band fil-
ters to achieve full color constancy. Although, general
purpose color CCD cameras do not contain narrow-
band filters, spectral sharpening could be applied [4]
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to achieve this to a large extent. An alternative way
is to assume that the illumination has a smoothly
distributed spectral power over the wavelengths (e.g.
white light). Therefore, in Section III-C.1, color ra-
tios are discussed which are independent of the imag-
ing conditions assuming a smooth SPD. In Section
III-C.2, gradients are computed from these color ra-
tios.

C.1 Color Invariant Ratios

Reconsider the body reflection term of the dichro-
matic reflection under a smooth SPD such as white
illumination but without narrow-band filters:

βk(~x) = GB(~x, ~n,~s)E(~x)

∫

λ
B(~x, λ)Fk(λ)dλ, (8)

giving the kth sensor response of an infinitesimal
matte surface patch.

Let’s focus on the 3-dimensional RGB-space given
by:

Cb = GB(~n,~s)E

∫

λ
B(λ)FR(λ)dλ, (9)

leaving out the spatial dependency ~x, where Cb =
{Rb, Gb, Bb} i.e. Rb, Gb, and Bb denote the red, green,
and blue sensor response of an infinitesimal matte
surface patch under the assumption of a white and
smooth SPD of the light source.

To parameterize, the color invariant model is based
on the polar coordinates θ1θ2 derived from RGB given
by [5]:

θ1 = arctan(
R

G
), (10)

θ2 = arctan(
R

B
), (11)

which are insensitive to surface orientation, illumina-
tion direction and illumination intensity derived by
substituting equation ( 9) in equation ( 10) - ( 11):

θ1(Rb, Gb, Bb) = arctan(
GB(~n,~s)E

∫

λ B(λ)FR(λ)dλ

GB(~n,~s)E
∫

λ B(λ)FG(λ)dλ
) =

arctan(

∫

λ B(λ)FR(λ)dλ
∫

λ B(λ)FG(λ)dλ
), (12)

only dependent on the sensors and the surface albedo.
Equal argument holds for θ2.

As θ1θ2 is computed from the same position and
consequently do not contain any local (spatial) infor-
mation, in the next section, we present a way of taken
gradients in the θ1θ2 domain.

C.2 Color Invariant Ratio Gradients

If each color channel is considered separately, the
amount of color change can be estimated by summing
up the gradient magnitudes. For notational simplic-
ity, in this paper, the color channels of an image are
differentiated in the x and y direction using the Pre-

witt filter giving the gradient as
(

∂ci

∂x , ∂ci

∂y

)

. Here, ci is

the notation for a particular color channel. The mod-
ulus of the gradient ∇F of the color planes is obtained
by taking the Euclidean distance:
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, (13)

where N is the dimensionality of the color space (i.e.
N = 3 for a RGB camera).

Often false gradients are introduced due to sensor
noise. These false gradients are usually eliminated
by using a threshold value determining the minimum
acceptable gradient modulus. We aim at providing a
computational framework to automatically determine
a local threshold value.

Let the result of a measurement of a quantity u be:

û = uest ± σu, (14)

where uest is the average value and σu the stan-
dard deviation. Suppose that u, · · · , w are measured
with corresponding uncertainties σu, · · · , σw, and the
measured values are used to compute the function
q(u, · · · , w). If the uncertainties in u, · · · , w are inde-
pendent, random and relatively small, then the pre-
dicted uncertainty in q̂ [15] is:
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)2

, (15)

where ∂q/∂u and ∂q/∂w are the partial derivatives of
q with respect to u and w.

In any case, the uncertainty in q is never larger than
the city block distance

σq ≤

∣
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∣

∣
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∣

∣

∣

∣

∂q

∂w

∣

∣

∣

∣

σw. (16)

Substitution of ( 10) - ( 11) in (15) gives the uncer-
tainty for the θ1θ2 coordinates

σθ1
= sec2 RGσ2

R − R2σ2
G

G3
,

σθ2
= sec2 BGσ2

B − B2σ2
G

G3
, (17)
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where σR, σG and σB denote the uncertainties in
RGB-space. Further, to propagate the uncertain-
ties from these color components through the gradient
modulus, the uncertainties are determined using (16)
because the transformed color components are depen-
dent. Using (16), the propagation of uncertainty of
the Prewitt filter can be implemented by filtering the
uncertainty planes of the different color spaces with
the absolute masks yielding the uncertainties in the
gradient σ∂c/∂x and σ∂c/∂y. Then, the uncertainty in
the gradient modulus is determined using (16) as

σ∇F ≤

∑

i

[

(∂ci/∂x) · σ∂ci/∂x + (∂ci/∂y) · σ∂ci/∂y

]

√

∑

i [(∂ci/∂x) + (∂ci/∂)]
,

(18)
where i is the dimensionality of the color space. In
this way, the effect of measurement uncertainty due to
photon noise is propagated through the color invariant
gradient.

If the average number of counts is large, then the
photon counting noise (Poisson distribution) is well-
approximated by the Gaussian distribution [15]. For
a Gaussian distribution, 99% of the values fall within
a 3σ margin. If a gradient modulus is detected which
exceeds 3σ∇F , we assume that there is 1% chance that
this gradient modulus corresponds to a non-color tran-
sition. Therefore, for the θ1θ2 color model, we have
the following gradient

∇Cθ1θ2
(~x) =

{

∇Fθ1θ2
(~x) if ∇Fθ1θ2

(~x) > 3σ∇F θ1θ2
(~x)

0 otherwise

(19)
and for the standard RGB color space we obtain

∇CRGB(~x) =

{

∇FRGB(~x) if ∇FRGB(~x) > 3σ∇F RGB
(~x)

0 otherwise

(20)
The novelty of our approach is that the threshold
value is automatically and locally adapted to the
amount of uncertainty of the color (invariant) gradi-
ent.

IV. Texture Measures

Color ratio gradient histograms are created for each
image in the image database by counting the num-
ber of times a discrete color ratio gradient occurs in
the image. The color constant histogram from the
query image is created in a similar way. Then, im-
age retrieval is reduced to the problem to what ex-
tent histogram HQ derived from the query image Q
is similar to a histogram HIk constructed for each im-
age Ik in the image database. A similarity function

D(HQ,HIk) is required returning a numerical measure
of similarity between HQ and HIk .

Firstly, D is expressed by histogram intersection
[13]:

Da(H
Q,HIi) =

∑Nd

~k=1
min{HQ(~k),HIi(~k)}
∑Nd

~k=1
HQ(~k)

, (21)

where ~k denotes the bin index and Nd the number of
bins.

Alternatively, histogram matching can be defined
by normalized cross correlation:

Dx(HQ,HIi) =

∑Nd

~k=1
HIi(~k)HQ(~k)

∑Nd

~k=1
(HIi(~k))2

, (22)

The property of histogram intersection, as opposed
to histogram normalized cross correlation, is that the
measure is robust to a large degree of object occlusion
and cluttering [5], [13].

V. Image Retrieval

Our approach is to segment target images into re-
gions prior to the actual retrieval process for two rea-
sons: 1. To reduce the number of false matches; and 2.
To cope with object occlusion and cluttering. There-
fore, in Section V-A, the region-based segmentation
method is presented. In Section V-B, the image re-
trieval process is described.

A. Segmentation into Texture Regions

In this paper, we focus on quadtree-based split-and-
merge segmentation [6]. The steps of the texture
segmentation algorithm are the following.
Initialization: The input of the segmentation algo-
rithm is the query object image Q and the target im-
age Ik. Then, from the query and target image, the
color ratio gradients are computed. Color ratio gra-
dient distributions are represented by histogram HQ

derived from query image Q and histogram HIk de-
rived from target image Ik.
Splitting: The second step will split a quadrant of
the target image Ik into four quadrants if the quadrant
does not satisfy the similarity measure. The similarity
measure, during splitting, is given by the histogram
intersection Da cf. eq. ( 21). When the histogram
intersection is below a given threshold, then the quad-
rant is considered to contain roughly the same texture
as the query. Above the threshold, the region will be
split up. The threshold is application dependent. The
splitting phase continues until all quadrants satisfy
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the similarity measure or until a minimum block-size
is reached. A minimum block size is required to ensure
enough pixels to enable the derivation of meaningful
gradient information. To achieve this, the minimum
block size has been fixed to 8 x 8 pixels. This mini-
mum block size has been derived empirically through
experimentation. It has been proven to be useful for
our application.

Merging: Once the image Ik has been split into
squared regions of roughly the same texture as the
query image, the merging phase will join regions un-
til a stopping criterion is achieved. Grouping of ad-
jacent regions is necessary because textured objects
might not exactly fit within a squared region. We al-
low adjacent regions to merge if their resulting region
is below a threshold for the normalized cross corre-
lation Dx cf. eq. ( 22) with respect to the query
image. The merging phase starts by computing the
start block from which the merging process will begin.
To determine the start block, various adjacent blocks
are considered. The neighboring blocks with highest
similarity with the query image are taken as starting
point. By considering adjacent blocks, the method is
more robust to noise. After selecting the start block,
adjacent regions are merged until all adjacent regions
of the growing block violate the similarity expressed
by the normalized cross correlation Dx. Again this
threshold is application dependent.

Region Growing: Because there are many small
regions on the borders of texture elements, the re-
gion growing method allows large texture regions to
grow simultaneously, meeting each other somewhere
in the middle of it. Hence, the method allows large
regions to group simultaneously with their neighbor
regions, if their resulting regions satisfy the texture
measure. This process continues until there will be
no more neighbor regions that can be grouped. If no
large regions can grow any further, the region growing
process stops.

Output: A labeled image is constructed by assigning
a label to each pixel according to the label of the re-
gion where the pixel belongs to. Each region has an
unique label j, 1 ≤ j ≤ (number of final regions).

B. Color Constant Texture Retrieval

As stated above, we focus on image retrieval by im-
age example, where an example query image is given
by the user on input. Further, we consider the applica-
tion of retrieving images containing a specific textured
object. Then, the query is specified by an example
image taken from the object at hand.

As the image segmentation algorithm is computa-
tionally expensive, we propose a two-step retrieval
process. First, the images in the image database are
filtered to obtain proper candidate images. Then,
these candidate images are taken as input to the image
retrieval algorithm. Hence, only a limited number of
images within the image database are considered for
blob-based retrieval as follows.

During the filtering stage, images are pre-selected
to get to the most similar images with respect to the
query image on the basis of global histogram inter-
section. Global histogram intersection is, to a large
degree, robust to object cluttering and occlusion [5].
To refine the retrieval process, only highly ranked can-
didates are used during the region-based retrieval pro-
cess.

During the refinement stage, color ratio gradient
histograms are created for the query image and each
candidate image. The query image, together with the
most similar candidate images, are used as input to
the segmentation algorithm. After image segmenta-
tion, the region having the highest similarity with the
query object is selected to represent each candidate
image. Hence, for the purpose of image retrieval, only
a single region is used for matching. Then, the nor-
malized cross correlation Dx is taken as the similarity
function during query-region matching. After match-
ing, images are shown to the user in descending order
of resemblance.

VI. Experiments

In this section, experiments are conducted on color
images. In Section VI-A, the segmentation scheme is
evaluated with respect to its robustness against vary-
ing imaging conditions. In Section VI-B, we compare
the retrieval accuracy of the proposed retrieval scheme
with respect to the global histogram matching.

A. Texture Segmentation

This section describes the experiments that have
been performed on the region-based segmentation al-
gorithm. This section is organized as follows. In Sec-
tion VI-A.1, we study the accuracy of the texture
segmentation algorithm on RGB color images with
respect to shading and varying illumination intensity.
In Section VI-A.2, we simulate a change in illumina-
tion color by multiplying each RGB-color band by an
independent scalar.
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A.1 RGB Texture Images: Color Normalization

In Figure 1.b, a natural image of an outdoor scene
is shown. The image comes from the MIT VisTex c©
image database. The image has 512x512 spatial reso-
lution with 8 bits for each color channel. The image
shows a coast border of grass near the sea. As one
can see, the texture elements of the image are non-
uniformly distributed. Also, boundaries between ad-
jacent textures are not well-defined but are changing
smoothly from one texture to another. Furthermore,
the image is contaminated by a substantial amount
of shadows, shading, and changes in color intensity
fields.

To evaluate the robustness of the texture segmenta-
tion method with respect to the varying imaging and
viewing conditions, the query image, shown in Fig-
ure 1.a, is composed of a part of the (textured) grass
area. In Figure 1.c, segmentation result is shown ob-
tained by the texture segmentation technique based
on ∇CRGB. Clearly, the segmentation result is nega-
tively affected by shadows and shading. In contrast,
the segmentation results based on ∇Cθ1θ2

, shown in
Figure 1.d, and color ratio gradient ∇CM , shown in
Figure 1.e, are insensitive for shadows, illumination
and surface orientation changes. Computed region
borders correspond properly to the grass-sea border.

In Figure 2.b, a natural image of an indoor scene is
shown. The image is taken by a digital camrecorder.
The image has 380x282 spatial resolution with 8 bits
for each color channel. The image shows a bookcase
against a wall composed of bricks. The texture el-
ements of the wall are nonuniform with a periodic
component. Again, the image is contaminated by a
substantial amount of shadows, shading, and changes
in color intensity fields. Note that three parts of the
wall are present due to occlusion of the wall by the
bookcase. The query image, shown in Figure 2.a,
consists of a patch of a brick from the same wall. Note
that the query image is a different recording then the
original image. Hence, illumination conditions are dif-
ferent. In Figure 2.c, segmentation result is shown
obtained by the region based segmentation technique
based on ∇CRGB. The texture segmentation result is
only slightly affected. This is because the wall is flat
and does not cause much shading. However, only one
of the three wall parts have been detected. In con-
trast, segmentation results for polar color ratio gradi-
ent ∇Cθ1θ2

, shown in Figure 2.d, and color constant
ratio gradient ∇CM , shown in Figure 2.e, are robust
to the imaging conditions.

A.2 RGB Texture Images: Color Constancy

In this section, we simulate a change in illumination
color for the color images. It is known that that the
variation in SPD of the illumination can be approxi-
mated by the coefficient rule or diagonal model, where
the change in the illumination color corresponds to
the multiplication of each RGB-color band by an in-
dependent scalar. The diagonal model of illumination
change holds exactly in the case of narrow-band sen-
sors. To evaluate the sensitivity with respect to a
change in the color of the illumination, the R, G and
B-images of the query image are multiplied by a fac-
tor 1.2, 1 and 0.8 respectively, see Figure 3.a and
4.a.

The segmentation results based on ∇CRGB is shown
in Figure 3.c and 4.c. Further, the segmentation re-
sults based on ∇Cθ1θ2

is shown in Figure 3.d and
4.d. From the results, we can observe that color ratio
gradient ∇Cθ1θ2

, which achieved best segmentation re-
sults under white illumination, is highly sensitive to a
change in illumination color. As expected, only ∇CM

is insensitive to a change in illumination color, see
Figure 3.e and 4.e.

B. Image Retrieval

In this section, the proposed retrieval process is
evaluated with respect to global histogram match-
ing. The dataset consists of 600 target images taken
by a digital color camera (Casio). Images have sizes
256x256 with 8 bits per color. Images were taken at
different places in the city of Amsterdam. Images were
taken with different viewpoints and illumination con-
ditions, see Figure 5. Note that the color of the sun
changes by day and month due to latitude and atmo-
spheric conditions.

In this section, we focus on detecting and localizing
information signs. This is an important application in
our society (e.g. traffic, surveillance, robotics, license
plate recognition). Moreover, the application has all
the difficult problems such as cluttered street scenes
where the illuminant color can vary greatly, where the
pose and position of the signs are unknown, and where
the signs can be partially obscured or in shadow. To
this end, an independent set (the query set) of query
or test recordings was made of each traffic sign already
in the database which were recorded under a new,
arbitrary position and orientation with respect to the
camera, some rotated, some at different distances.

For a measure of match quality, we compute the
recall versus precision curve as follows. Let |R| be
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Query

Original image RGB Mθ1θ2

Fig. 1. a. Query texture b. Target image c. Segmentation result based on ∇CRGB. d. Segmentation
result based on ∇Cθ1θ2

. e. Segmentation result based on color ratio gradient ∇CM .

Query 

Original image RGB Mθ1θ2

Fig. 2. a. Query texture b. Target image c. Segmentation result based on ∇CRGB. d. Segmentation
result based on ∇Cθ1θ2

. e. Segmentation result based on color ratio gradient ∇CM .

Query

Original image RGB Mθ1θ2

Fig. 3. a. Query texture under different illumination b. Target image c. Segmentation result based
on ∇CRGB. d. Segmentation result based on ∇Cθ1θ2

. e. Segmentation result based on color ratio
gradient ∇CM .

Query

Original image RGB Mθ1θ2

Fig. 4. a. Query texture under different illumination b. Target image c. Segmentation result based
on ∇CRGB. d. Segmentation result based on ∇Cθ1θ2

. e. Segmentation result based on color ratio
gradient ∇CM .

the number of relevant images i.e. images containing
the specific textured object one is looking for. Let
|A| denote the answer set i.e. the number of images

shown to the user. Let |Ra| be the number of images
in the intersection of the sets R and A. Then, recall
is the fraction of the relevant images (R) which has
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Fig. 5. Subset of 32 images representative for the dataset consisting of 600 images taken by a digital
color camera (Casio). Images were taken at different places in a city with different viewpoints and
illumination conditions

been retrieved:

Recall =
|RA|

|R|
, (23)

and precision is the fraction of retrieved images (A)
which is relevant:

Precision =
|Ra|

|A|
. (24)

Retrieval results for searching specific traffic signs are
shown in Figure 6 in descending order of resemblance
based on comparing distributions taken from the po-
lar color coordinates θ1θ2. The number of relevant
traffic signs is 8 (|R| = 8). Further, the precision
versus recall curve is shown graphically in Figure 7,
computed on the basis of θ1θ2 for global histogram in-
tersection and for the proposed region-based retrieval
process. It is shown that region-based matching ap-
proach achieves high retrieval accuracy where all 8
traffic signs are within the first 15 rankings. Further,
global based matching provides that the 8 traffic sign
are within the first 82 images. The proposed image
retrieval process clearly outperforms the global based
image retrieval scheme.

A different experiment has been performed for
searching warehouse signs based on θ1θ2 (visual re-
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Fig. 7. Precision versus recall graphs. Global vs local
based image retrieval.

sults not shown here). The number of relevant im-
ages is 5 i.e. |R| = 5. The proposed image retrieval
achieves satisfactory retrieval accuracy where 5 traffic
signs are within the first 16 rankings. Further, preci-
sion versus recall graphs are shown graphically in Fig-
ure 8, for global histogram intersection and for the
proposed retrieval scheme. It is now shown that the
proposed image retrieval process only slightly outper-
forms the global based image retrieval scheme. This
is due to the fact that the warehouse sign consists of
large portion of the image. In conclusion, for large
objects occupying a large portion of the image, the
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Fig. 6. Results of finding images containing a specific traffic sign. All 5 traffic signs are within the first
8 highest rankings.

proposed method is similar to global-based matching.
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Fig. 8. Precision versus recall graphs. Global vs local
based image retrieval.

VII. Conclusion

From the theoretical and experimental results, it
is concluded that color constant texture matching in
image libraries provides high retrieval accuracy and is
robust to varying illumination and viewing conditions.

Further, it is concluded that the proposed retrieval
method outperform global-based retrieval. However,
when objects to be searched for consists of a large
portion of the image, the proposed retrieval method
achieves similar performance as global-based retrieval.
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