
60 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 1, FEBRUARY 2011

Empowering Visual Categorization With the GPU
Koen E. A. van de Sande, Student Member, IEEE, Theo Gevers, Member, IEEE, and Cees G. M. Snoek, Member, IEEE

Abstract—Visual categorization is important to manage large
collections of digital images and video, where textual metadata is
often incomplete or simply unavailable. The bag-of-words model
has become the most powerful method for visual categorization of
images and video. Despite its high accuracy, a severe drawback of
this model is its high computational cost. As the trend to increase
computational power in newer CPU and GPU architectures is to
increase their level of parallelism, exploiting this parallelism be-
comes an important direction to handle the computational cost of
the bag-of-words approach. When optimizing a system based on
the bag-of-words approach, the goal is to minimize the time it takes
to process batches of images.

In this paper, we analyze the bag-of-words model for visual cat-
egorization in terms of computational cost and identify two major
bottlenecks: the quantization step and the classification step. We
address these two bottlenecks by proposing two efficient algorithms
for quantization and classification by exploiting the GPU hardware
and the CUDA parallel programming model. The algorithms are
designed to 1) keep categorization accuracy intact, 2) decompose
the problem, and 3) give the same numerical results.

In the experiments on large scale datasets, it is shown that, by
using a parallel implementation on the Geforce GTX260 GPU, clas-
sifying unseen images is 4.8 times faster than a quad-core CPU
version on the Core i7 920, while giving the exact same numerical
results. In addition, we show how the algorithms can be general-
ized to other applications, such as text retrieval and video retrieval.
Moreover, when the obtained speedup is used to process extra video
frames in a video retrieval benchmark, the accuracy of visual cat-
egorization is improved by 29%.

Index Terms—Bag-of-words, computational efficiency, Gen-
eral-Purpose computation on Graphics Processing Units
(GPGPU), image classification, image/video retrieval, multi-
core processing, parallel processing, support vector machines.

I. INTRODUCTION

V ISUAL categorization aims to determine whether objects
or scene types are visually present in images or video

segments. This is a useful prerequisite to manage large col-
lections of digital images and video, where textual metadata
is often incomplete or simply unavailable [1]. Letting humans
annotate such metadata is expensive and infeasible for large
datasets. While automatic visual categorization is not yet as
accurate as a human annotation, it is a useful tool to manage
large collections. The bag-of-words model [2] has become the
most powerful method today for visual categorization [3]–[11].

Manuscript received March 01, 2010; revised June 04, 2010 and September
07, 2010; accepted November 01, 2010. Date of publication November 11, 2010;
date of current version January 19, 2011. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Yen-Kuang
Chen.

The authors are with the Intelligent Systems Lab Amsterdam, Informatics
Institute, University of Amsterdam, Amsterdam XH 1098, The Netherlands
(e-mail: ksande@uva.nl; th.gevers@uva.nl; cgmsnoek@uva.nl).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2010.2091400

The bag-of-words model computes image descriptors at specific
points in the image. These descriptors are then quantized against
a codebook of prototypical descriptors to obtain a fixed-length
representation of an image. Although the bag-of-words model is
a powerful mechanism for accurate visual categorization, a se-
vere drawback is its high computational cost. Current state-of-
the-art in visual categorization benchmarks such as TRECVID
2009 [12] require weeks of computing time on compute clus-
ters to process 380 h of video. However, even with weeks of
computing time, most systems are still only able to process
a limited subset of about 250 000 frames. In the future, more
and more data needs to be processed as datasets continue to
grow. To address the problem of computation, the two directions
are faster approximate methods and larger compute clusters.
Faster to compute descriptors (such as SURF [13], [14]) and
indexing mechanisms (tree-based codebooks [15], [16]) have
been developed. Another direction is to use large compute clus-
ters with many CPUs [10], [11], [17] to solve the computational
problem using brute force. However, both directions have their
drawbacks. Faster methods will 1) suffer from reduced accuracy
when they resort to increasingly coarse approximations and 2)
suffer from increased complexity in the form of additional pa-
rameters and thresholds to control the approximations, all of
which need to be hand-tuned. Brute force solutions based on
compute clusters have the problem that 1) compute clusters are
available in limited supply and 2) due to the complexities of re-
source scheduling and the large (network) communication over-
heads found in large distributed compute clusters, they are dif-
ficult to use efficiently.

Recently, another direction for acceleration has opened up:
computing on consumer graphics hardware. Cornelis and Van
Gool [18] have implemented SURF on the graphics processing
unit (GPU) and obtained an order of magnitude speedup com-
pared to a CPU implementation. These GPU implementations
[18], [19] build on the trend of increased parallelism. In recent
years, the most important method for higher computational
power in both CPUs and GPUs has been to increase parallelism:
the number of processing units is increased, instead of the speed
of the processing units. GPUs have been evolving faster than
CPUs, with transistor counts doubling every few months.
Whereas commodity CPUs currently have up to four cores,
commodity GPUs have up to 30 cores at their disposal [20].
Together, the increased programmability and computational
power of GPUs provides ample opportunities for acceleration
of algorithms which can be parallelized [21]. However, note
that the parallelization of an algorithm can be applied to CPU
implementations as well. CPU implementations should be
multi-threaded and SIMD-optimized to allow for a fair com-
parison to optimized GPU versions [22]–[24]. Compared to
faster approximate methods, algorithms for the GPU do not

1520-9210/$26.00 © 2010 IEEE

VAN DE SANDE et al.: EMPOWERING VISUAL CATEGORIZATION WITH THE GPU 61

need to approximate for speedups, if they are able to exploit
the parallel nature of the GPU. Compared to compute clusters,
the main advantages of the GPU are their wide availability and
their potential to be more energy-efficient.

When optimizing a system based on the bag-of-words model,
the goal is to minimize the time it takes to process batches of im-
ages. Individual components of the bag-of-words model, such as
the point sampling strategy, descriptor computation, and SVM
model training, have been independently studied on the GPU be-
fore [18], [25], [26]. These studies accelerate specific algorithms
with the GPU. However, it remains unclear whether those algo-
rithms are the real bottlenecks in accurate visual categorization
with the bag-of-words model. In our overview of related work
on visual categorization with the GPU, we observe that quanti-
zation and classification have remained CPU-bound so far, de-
spite being computationally very expensive.

Therefore, in this paper, the goal is to combine GPU hardware
and a parallel programming model to accelerate the quantiza-
tion and classification components of a visual categorization ar-
chitecture. Two algorithms are proposed to accelerate these two
components. We identify the following requirements to these
algorithms.

1) The algorithms and their implementations should push the
state-of-the-art in categorization accuracy.

2) Visual categorization must be decomposable into compo-
nents to locate bottlenecks.

3) Given the same input, implementations of a component
on various hardware architectures must give the same
output.1

Requirement 1 states that we are pursuing algorithms and imple-
mentations which will push the state-of-the-art in categorization
accuracy, and therefore require high computational throughput.
Requirement 2 implies that visual categorization can be decom-
posed into several steps, and the computational bottlenecks are
located in specific parts. Requirement 3 allows CPU and GPU
versions of the same visual categorization component to be in-
terchanged in the system, because both versions will give the
same output. Therefore, keeping the rest of the system the same,
time measurements can be performed on these individual com-
ponents.

Our contributions are 1) an analysis of the bottlenecks in ac-
curate visual categorization systems and, to address these bottle-
necks, 2) two GPU-accelerated algorithms, GPU vector quanti-
zation and GPU kernel value precomputation, which results in
a substantial acceleration of the complete visual categorization
pipeline.

This paper is organized as follows. In Section II, an effi-
ciency analysis of visual categorization based on the bag-of-
words model is made. In Section III, the GPU architecture and
the GPU-accelerated versions of quantization and classification
are discussed. In Section IV, the experimental setup used to
evaluate the accelerations is presented. In Section V, results are
shown and analyzed. In Section VI, applications of the speedups

1For practical purposes, small numeric deviations (less than ��) in the
output of a component are considered to be the same. We have verified that
these deviations have not changed the accuracy of the complete visual catego-
rization system.

in this paper besides visual categorization are discussed. Finally,
in Section VII, we conclude with an overview of the benefits of
GPU acceleration for visual categorization.

II. OVERVIEW OF VISUAL CATEGORIZATION

The aim of this paper is to speed up state-of-the-art visual cat-
egorization systems using GPUs. In visual categorization [27],
the visual presence of an object or scene of specified type is de-
termined. In Fig. 1, an overview of the components of a visual
categorization system is shown. A trained visual categorization
system takes an image as input and returns the likelihood that
one or more visual categories are present in the image. Visual
categorization systems break down into a number of common
steps:

• Image Feature Extraction, which takes an image as input
and outputs a fixed-length feature vector representing the
image;

• Category Model Learning, learns one model per visual cat-
egory by taking all vector representations of images from
the train set and the category labels associated with those
images;

• Test Image Classification, which takes vector representa-
tions of images from the test set and applies the visual cat-
egory models to these images. The output of this step is a
likelihood score for each image and each visual category.

A. Image Feature Extraction

Visual categorization systems which achieve state-of-the-art
results on the PASCAL VOC benchmarks [4], [5], [7] use the
bag-of-words model [2] as the underlying representation model.
This model first extracts specific points in an image using a point
sampling strategy. Over the area around these points, descrip-
tors are computed which represent the local area. The bag-of-
words model performs vector quantization of the descriptors in
an image against a visual codebook. A descriptor is assigned
to the codebook element which is closest in Euclidean space.
Fig. 1 gives an overview of the steps for the bag-of-words model
in the image feature extraction blocks. In Table I, the computa-
tion times of different steps within the bag-of-words model are
listed. For every step, multiple options are available. Next, we
will discuss these options, their presence in related work, and
their computation times on the CPU and GPU.

1) Point Sampling Strategy: As a point sampling strategy,
there are two commonly used techniques in state-of-the-art sys-
tems [5], [7]: dense sampling and salient point methods. Dense
sampling samples points regularly over the image at fixed pixel
intervals. As it does not depend on the image contents, it is a
trivial operation to perform. Typically, around 10 000 points are
sampled per image. Two examples of salient point methods are
the Harris-Laplace salient point detector [29] and the Differ-
ence-of-Gaussians detector [28]. See Table I for computation
times of these point sampling strategies. The Harris-Laplace de-
tector uses the Harris corner detector to find scale-invariant in-
terest points. It then selects a subset of these points for which the
Laplacian-of-Gaussians reaches a maximum over scale. Using
recursive Gaussian filters [30], the computation of Gaussian
derivatives at multiple scale required for these steps is possible

62 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 1, FEBRUARY 2011

Fig. 1. Components of a state-of-the-art visual categorization system. For all images in both the train set and the test set, visual features are extracted in a number of
steps. First, a point sampling method is applied to the image. Then, for every point, a descriptor is computed over the area around the point. All the descriptors of an
image are subsequently vector quantized against a codebook of prototypical descriptors. This results in a fixed-length feature vector representing the image. Next,
the visual categorization system is trained based on the feature vectors of all training images and their category labels. To learn kernel-based classifiers, similarities
between training images are needed. These similarities are computed using a kernel function. To apply a trained model to test images, the kernel function values
are also needed. Given these values between a test image and the images in the train set, the category models are applied and category likelihoods are obtained.

TABLE I
IMAGE FEATURE EXTRACTION TIMINGS. COMPUTATION TIMES OF DIFFERENT

STEPS WITHIN THE BAG-OF-WORDS MODEL WITH A SINGLE CPU CORE,
FOUR CPU CORES AND ON THE GPU. FOR EVERY STEP, MULTIPLE CHOICES

ARE AVAILABLE. CPU TIMES OBTAINED ON AMD OPTERON 250. GPU
TIMES OBTAINED FROM THE LITERATURE. ONE OF THE CONTRIBUTIONS

OF THIS PAPER IS SUBSTANTIALLY ACCELERATING THE VECTOR

QUANTIZATION STEP USING THE GPU

at a rate of multiple images per second: computational com-
plexity of recursive Gaussian filters is independent of the scale.
As has been shown by Cornelis and Van Gool [18], running the
Difference-of-Gaussians detector is possible in real-time, using
a scale-space pyramid to limit computational complexity.

2) Descriptor Computation: To describe the area around the
sampled points, the SIFT descriptor [28] and the SURF de-
scriptor [13] are the most popular choices. Sinha et al. [19] com-
pute SIFT descriptors at 10 frames per second for 640 480
images. Cornelis and Van Gool [18] compute SURF descrip-
tors at 100 frames per second for 640 480 images. Both of
these papers show that descriptor computation runs with excel-
lent performance on the GPU, because one thread can be as-
signed per pixel or per descriptor, and thereby performing oper-
ations in parallel. The standard SIFT descriptor has a length of
128. Following Everingham et al. [4], color extensions of SIFT
[5] would form a reasonable state-of-the-art baseline for future
VOC challenges, due to their increased classification accuracy.

ColorSIFT increases the descriptor length to 384 and the re-
quired computation time is also tripled.

3) Bag-of-Words: Vector quantization is computationally the
most expensive part of the bag-of-words model. With descrip-
tors of length in an image, the quantization against a codebook
with elements requires the full distance matrix be-
tween all descriptors and codebook elements. For values which
are common for visual categorization, , and
codebook size , a CPU implementation takes approx-
imately 5 s per image, as the complexity is per image.
When increases to 384, as is the case for ColorSIFT, the CPU
implementation slows down to more than 10 s per image, which
makes this a computational bottleneck.

One approach to address this bottleneck is to index using a
tree-based codebook structure [14]–[16], instead of a standard
codebook. A tree-based codebook replaces the comparison of
each descriptor with all codebook elements by a compar-
ison against codebook elements. As a result, algorithmic
complexity is reduced to . Tree-based methods
have been shown to run in real-time on the GPU [25]. However,
for a tree-based codebook, generally the accuracy is lower [14],
especially for high-dimensional descriptors such as ColorSIFT.
Therefore, tree-based codebooks conflict with our first require-
ment: it does not keep accuracy intact. The same argument ap-
plies to other indexing structures such as mini bag-of-features
(miniBOF) [31]: accuracy is sacrificed in return for faster com-
putation. Another drawback of tree-based codebooks and mini-
BOFs is that soft assignment [6], [32], e.g., assigning weight to
more than just the closest codebook element, requires the full
distance matrix instead of only the closest elements. This soft
assignment improves the classification accuracy for visual cat-
egorization by more than 5% on state-of-the-art systems [32].
Ruling out such an important performance improvement again
conflicts with requirement 1. Therefore, this paper studies how
to accelerate the vector quantization step using normal code-
books on the GPU, as the same accelerations are then also ap-
plicable to soft assignment.

In conclusion, in a state-of-the-art setup of the bag-of-words
model, the most expensive part is the vector quantization step.

VAN DE SANDE et al.: EMPOWERING VISUAL CATEGORIZATION WITH THE GPU 63

TABLE II
VISUAL CATEGORIZATION TIMINGS. THE TIMES LISTED ARE FOR AN IMAGE DATASET (PASCAL VOC 2008), WHICH HAS A TRAINING SET OF SIZE 4332

AND TEST SET OF SIZE 4133. CLASSIFICATION TIMES ARE TOTALS FOR ALL 20 VISUAL CATEGORIES. CPU TIMES OBTAINED ON AMD OPTERON 250.
THIS PAPER SUBSTANTIALLY ACCELERATES THE PRECOMPUTATION OF KERNEL VALUES (SHOWN IN BOLD) USING THE GPU

Approximate methods are unable to satisfy our requirement to
maintain accuracy.

B. Category Model Learning

To learn visual category models, supervised kernel-based
learning algorithms such as support vector machines (SVMs)
and spectral regression kernel discriminant analysis [33] have
shown good results [3], [5]. Key property of a kernel-based
classifier is that it does not require the actual vector
representation of the feature vector , but only a kernel
function which is related to the distance between the
feature vectors. This is sometimes referred to as the “kernel
trick”. It has been shown experimentally [3] that the nonlinear

kernel function is the best choice [5], [7] for accurate visual
categorization.

When tuning the parameters of the classifier, the values of
the kernel function are needed for every parameter setting.
While typical implementations compute the values of this
kernel function on-the-fly and only keep a cache of the most
recent evaluations, it is more efficient to compute all values in
advance and store them, because then the values can be reused
for every parameter setting and for every visual category. The
total number of kernel values to be computed in advance is
the number of pair-wise distances between all training images,
e.g., it is quadratic with respect to the number of images. The
benefit of precomputing kernel values is illustrated in Table II.

The kernel-based SVM algorithm has been ported to the GPU
by [26] and [35]. In [35], specific optimizations are made in
the GPU version such that only linear kernel functions are sup-
ported. For visual categorization, however, support for the more
accurate nonlinear kernel function is needed to meet require-
ment 1. Catanzaro et al. [26] perform a selection of the training
samples under consideration for SVM, resulting in a speedup of
up to 35 times for training models. Further speedups are possible
if this GPU-SVM implementation is combined with the precom-
putation of kernel values. The precomputation of kernel values
itself has not been investigated yet. Therefore, in Section III-C,

we propose an algorithm to precompute the kernel values and
investigate the speedup possibilities offered by precomputing
these values.

Table II gives an overview of computation times on the
PASCAL VOC 2008 dataset for different feature vector
lengths, where the learning of visual category models is split
into a precomputation of kernel values and the actual model
learning. Because the ground truth labels of all images and
their extracted features are needed before training can start, it is
an inherently offline process. When multiple features are used,
more than 90% of computation time is spent on precomputing
the kernel values. This makes it the most expensive step in
category model learning.

In conclusion, the learning of category models can be split
into two steps, kernel value computation and classifier training.
The classifier training has been accelerated with the GPU be-
fore, but the kernel value computation is the most expensive
step. This paper will study how to accelerate the computation
of the kernel values on the GPU.

C. Test Image Classification

To classify images from a test set, feature extraction first has
to be applied to the images, similar to the train set. Therefore,
speed-ups obtained in the image feature extraction stage are
useful for both the train set and the test set. To apply the vi-
sual category models, pair-wise kernel values between the fea-
ture vectors of the train set and those of the test set are needed.
The same precomputation strategy used in the learning stage is
applicable here. When accelerating the computation of kernel
values, this speedup will apply to both the training phase and the
test phase of a visual categorization system. Timings in Table II
illustrate that when processing images from the test set, again,
the computation of kernel values takes up the most time.

In conclusion, the speedups obtained using GPU vector
quantization and GPU precomputation of kernel values also
directly apply to the classification of images/frames from the
test set.

64 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 1, FEBRUARY 2011

III. GPU ACCELERATED CATEGORIZATION

We first discuss parallel programming with the GPU and the
CPU (Section III-A). Next, we discuss the GPU-accelerated ver-
sions of vector quantization (Section III-B) and kernel value pre-
computation (Section III-C). Both of these visual categorization
steps take large numbers of vectors as input, and therefore are
ideally suited for the data parallelism offered by the GPU.

A. Parallel Programming on the GPU and CPU

Over the years, there have been different approaches to
programming generic algorithms on GPUs. Initially, algorithms
needed to be formulated in terms of graphics primitives such
as textures and vertices and written in specialized shader
languages before they could run on the GPU. Through the
availability of C-like parallel programming models such as
CUDA [36] and OpenCL [37], the programmability of GPUs
has increased. Since CUDA has the most mature software stack
available at this moment, we use CUDA. The CUDA parallel
programming model is explained in [38]. It is designed for
writing scalable parallel code that runs across tens of thousands
of concurrent threads and dozens of processor cores. Because
the physical parallelism of current GPUs ranges up to 30
processor cores and over 30 000 threads, this is an essential
property. The parallel models allows a programmer to write
parallel programs that transparently and efficiently scale with
this level of parallelism.

The model is also applicable to multicore CPUs, as has been
shown for CUDA by Stratton et al. [39] and Diamos et al. [40],
[41]. However, the code generated by their approaches is not yet
as efficient as handwritten CPU code. On the CPU, programs
can be parallellized by running multiple threads on different
cores and by using SIMD instructions. SIMD instructions per-
form the same operation on multiple data elements at the same
time, effectively allowing two to four floating point instructions
to be executed at the same time on a single core. For additional
information, see [42]. Internally, the GPU uses SIMD as well:
each of the 30 cores in the GTX275 can execute eight floating
point instructions at the same time [36].

B. Algorithm 1: GPU-Accelerated Vector Quantization

In Section II-A, we have shown that vector quantization is
computationally the most expensive step in image feature ex-
traction. Therefore, in this section, the GPU implementation of
vector quantization for an image with descriptors against a
codebook of elements is proposed. The descriptor length is

. Quantization against a codebook requires the full dis-
tance matrix between all descriptors and codebook elements. A
descriptor is then assigned to the column which has the lowest
distance in a row. By counting the number of minima occurring
in each column, the vector quantized representation of the image
is obtained. To be robust against changes in the number of de-
scriptors in an image, these counts are divided by the number of
descriptors for the final feature vector.

The most expensive computational step in vector quantization
is the calculation of the distance matrix. Typically, the Euclidean
distance is employed:

(1)

This formula for the Euclidean distance can be directly imple-
mented on the GPU using loops [43]. However, such a naive
implementation is not very efficient, because the same result is
obtained with fewer operations by simply vectorizing the Eu-
clidean distance, which is a common trick [26]:

(2)

The advantage of the vector form of the Euclidean distance
is that it allows us to decompose the computation of a distance
matrix between sets of vectors into several smaller steps which
are faster to compute. In Algorithm 1, pseudo code is given for
vector quantization using simple vectorization of the Euclidean
distance. In the algorithm, is the matrix with all image de-
scriptors as rows, e.g., a matrix, is the matrix with all
codebook elements as rows, e.g., a matrix, is the th
row of , and is the th row of .

Algorithm 1: Vector Quantization with Simple Vectorized
Euclidean Distance

1) for to do

2)

3) end for

4) for to do

5)

6) end for

7)

8) for to do

9)

10)

11) for to do

12)

13) if then ,

14) end for

15)

16) end for

17) return assignTo

We identify the following steps within Algorithm 1:
1) Compute the squared vector lengths for every row

of and for every row of (line 1–6). We assign
one GPU thread per vector and do a serial sum within each
thread. To avoid numerical deviations due to the summing
of many numbers with single precision floating point oper-
ations, we use Kahan summation [44]. Transposing the ma-
trices and allows for faster (aligned) memory access.
The CUDA SDK [45] contains an efficient implementation
of matrix transpose for arbitrarily sized matrices. Trans-
posing rectangular matrices on the GPU is faster than the
CPU, because the GPU has a higher memory bandwidth.

VAN DE SANDE et al.: EMPOWERING VISUAL CATEGORIZATION WITH THE GPU 65

2) Compute the dot products between all rows of and
(line 7). This operation can be performed by writing it as

a matrix multiplication: contains all the dot products
required for the full distance matrix. As matrix multiplica-
tions are the building block for many algorithms, highly
optimized BLAS linear algebra libraries containing this
operation exist for both the CPU and the GPU. An unvec-
torized implementation [43] is unable to take advantage of
BLAS operations and is therefore less efficient.

3) Sum the output of steps 1) and 2) to obtain the squared
Euclidean distance (line 10–12). Key insight when imple-
menting this operation is that the vector lengths from step
1) are used multiple times and can be cached (line 10).

4) For every descriptor , find the codebook element with
the lowest distance (line 10–15). The weight for a de-
scriptor is then assigned to the codebook element corre-
sponding to the column with the lowest distance.

The CPU implementation of vector quantization is able to use
SSE instructions to execute floating point instructions on four
single precision numbers at the same time. On a Core i7 920,
the non-SSE version is 3.4 times slower. Our experiments use
the SSE-optimized version only.

In conclusion, vector quantization involves computing the
pair-wise Euclidean distances between descriptors and
codebook elements. By simply vectorizing the computation of
the Euclidean distance, the computation can be decomposed
into steps which can be efficiently executed on the GPU.

C. Algorithm 2: GPU-Accelerated Kernel Value
Precomputation

To compute kernel function values, we use the kernel function
based on the distance, which has shown the most accurate
results in visual categorization (see Section II-B). Our contribu-
tion is evaluating the kernel function on the GPU efficiently,
even for very large datasets which do not fit into memory. The

distance between feature vectors and is

(3)

with the size of the feature vectors. For notational conve-
nience, is assumed to be equal to 0 iff .

The kernel function based on this distance then is

(4)

where is an optional scalar to normalizes the distances [3].
Because the distance is already constrained to lie between 0
and 1, this normalization is unnecessary and we therefore fix
to 1.

To use multiple input features, instead of relying on a single
feature, the kernel function is extended in a weighted fashion
for features

(5)

with the weight of the th feature and the th fea-
ture vector. An example of the use of multiple features with
weights is the spatial pyramid [46], [47]. When using the spatial
pyramid, additional features are extracted for specific parts of
the image. For example, in a 2 2 subdivision of the image, fea-
ture vectors are extracted for each image quarter with a weight of

for each quarter. Similarly, a 1 3 subdivision consisting of
three horizontal bars, which introduces three new features (each
with a weight of). In this setting, the feature vector for the
entire image has a weight of 1.

For vector quantization, discussed in the previous section, all
input data and the resulting output fits into computer memory.
For kernel value precomputation, memory usage is an impor-
tant problem. For example, for a dataset with 50 000 images, the
input data is 12 GB and the output data is 19 GB. Therefore, spe-
cial care must be taken when designing the implementation, to
avoid holding all data in memory simultaneously. We divide the
processing into evenly sized chunks. Each chunk corresponds
to a square 1024 1024 subblock of the kernel matrix with all
kernel function values, i.e., a chunk computes the kernel func-
tion values between 1024 vectors and 1024 vectors . The
algorithm is given in pseudo code in Algorithm 2.

Algorithm 2: Compute Kernel Matrix Values with Distance

1) for every chunk of 1024 kernel matrix rows do

2) for every chunk of 1024 kernel matrix columns do

3) matrix with zeros

4) for feature to do

5) between 1024 vectors

and 1024 vectors

6)

7) end for

8) for all elements of CurrentChunk do

9)

10) end for

11) Store CurrentChunk as part of the final kernel matrix

12) end for

13) end for

To implement the function in Algorithm 2, we find
that single precision is not accurate enough to sum many num-
bers. Therefore, we use double precision on the CPU with SSE
instructions which can process two double precision numbers
at the same time. Because double precision computations are
eight times slower than single precision on the GTX260, we use
a Kahan summation [44] instead of switching to double preci-
sion on the GPU. For the CPU implementation, the additional
operations of the Kahan summation are more expensive than
switching to double precision.

66 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 1, FEBRUARY 2011

IV. EXPERIMENTAL SETUP

In this section, we discuss the setup of our experiments. In
our first two experiments, we measure the speedup of our two
contributions: GPU vector quantization and GPU kernel value
precomputation. In the third experiment, instead of timing
just the improved components, we measure the classification
throughput of a complete visual categorization system. See
Fig. 1 for the pipeline of such a complete system. Software for
the GPU-accelerated feature extraction will be released on our
website.2, together with kernel value precomputation software.

A. Experiment 1: Vector Quantization Speed

We measure the relative speed of two vector quantization im-
plementations: CPU and GPU versions of the vectorized ap-
proach from Section III-B. The CPU implementation is SIMD-
optimized. Measured times are the median of 25 runs; an ini-
tial warm-up run is discarded to exclude initialization effects.
For the experiments, realistic data sizes are used, following the
state-of-the-art [5]: a codebook of size ; up to 20 000
descriptors per image and descriptor lengths of (SIFT)
and (ColorSIFT).

Because the compute power of CPU architectures still im-
proves with every generation, we include two CPUs in our
comparison of CPU and GPU, to show the rate of development
in CPU compute speeds besides the increase in number of
cores. Specifically, the single-core Opteron 250 (2.4 GHz)
from 2005 and the quad-core Core i7 920 (2.66 GHz) from
2009 are included. For the quad-core Core i7, results for both
a single-threaded and a multi-threaded CPU implementation
are reported. These are compared to a Geforce GTX260 GPU
(27 cores). Timing results are reported per frame; for a real
dataset the times should be multiplied by the number of frames
or images in the set.

B. Experiment 2: Kernel Value Precomputation Speed

To measure the speed of kernel value computation, we com-
pare a CPU version and a GPU version based on the approach
from Section III-C. We evaluate these implementations on the
same hardware as experiment 1.

To obtain timings results, we have chosen the large Medi-
amill Challenge training set of 30 993 frames [48] with real-
istic feature vector lengths. Times required to precompute the
kernel values are measured for different amounts of input fea-
tures: from a single feature (total feature vector length 4000) up
to ten features (total feature vector length 128 000). For a real
system, the number of features might be even higher [5], [10].

C. Experiment 3: Visual Categorization Throughput

After accelerating two components of the categorization
pipeline (see Fig. 1) in the first two experiments, in this experi-
ment, we measure the throughput of the complete system. The
average time needed to classify a frame is referred to as the
throughput of the system. For categorizing large datasets, the
processing time required to push frames through the complete

2http://www.colordescriptors.com

categorization pipeline is important, because this gives a good
indication of the time needed to process the full dataset. For
the throughput experiment, a comparison is made between
the quad-core Core i7 920 CPU (2.66 GHz) and the Gefore
GTX260 GPU (27 cores).

V. RESULTS

In this section, the results from the experiments listed in
Section IV are discussed. We will investigate the speed of
vector quantization, the speed of precomputing kernel values,
and finally the throughput of a complete visual categorization
system, with and without the GPU.

A. Experiment 1: Vector Quantization Speed

Fig. 2 shows the vector quantization speeds for SIFT de-
scriptors using different hardware platforms and implementa-
tions. From the results, it is shown that vector quantization on
CPUs takes more time than on GPUs. The difference between
the fastest single-threaded CPU and the fastest GPU is a factor
of 13; both are using a vectorized implementation. If the CPU
uses a multi-threaded implementation, the difference between
the CPU and the GPU is a factor of 3.9. For a typical number
of SIFT descriptors per frame, 10 000, this is the difference be-
tween 0.29 s and 0.08 s spent per image in vector quantization.
In the ColorSIFT results, we see the same speedup: from 0.59 s
to 0.16 s. When processing datasets of thousands or even mil-
lions of images, this is an important acceleration.

An interesting observation, based on the single-threaded re-
sults, is that the CPU times can be used to roughly order them
by release date. The single-core 2005 Opteron takes about 2.2
times longer than a single thread of a 2009 Core i7 920.

For the GPU, we obtain 212 GLOPS, which equals 0.65 in-
structions per clock cycle per core. This result includes the time
it takes to transfer data between the CPU global memory and
the GPU global memory. Without transfer times, performance
would be 218 GLOPS. The optimized CUBLAS matrix multi-
plication used inside vector quantization achieves 0.74 instruc-
tions per cycle. The theoretical 875 GLOPS of the GPU is only
reached when two instructions can be executed per clock cycle,
which is possible for a specific combined add-multiply opera-
tion only. The computations use 70–80 GB/s out of a possible
117 GB/s GPU memory bandwidth.

For the Core i7 CPU, we obtain 43 GFLOPS out of a theoret-
ical 100 GFLOPS for higher-clocked versions of this quad-core
CPU architecture. For the Core i7 920, the theoretical maximum
is about 80 GFLOPS. We observed (results not shown) that hy-
perthreading gives a speedup of at most 5% and sometimes de-
creases performance. Therefore, hyperthreading was disabled
in our experiments. The CPU performance scales fairly well in
terms of cores with the quad-core version being up to 3.4 times
faster than the single-core version.

In conclusion, the speedup through parallelization obtained
for vector quantization is an important acceleration when pro-
cessing large image datasets. When combined with GPU ver-
sions of the other image feature extraction stages (see Table I),
even the most expensive feature can still be extracted in less than
1 s per image.

VAN DE SANDE et al.: EMPOWERING VISUAL CATEGORIZATION WITH THE GPU 67

Fig. 2. Vector quantization speeds for a varying number of SIFT descriptors
(top plot) or ColorSIFT descriptors (bottom plot). The difference between the
multi-threaded CPU and the GPU is a factor of 3.9. The difference between the
single-threaded CPU implementation and the GPU is a factor 13. The single-
threaded results of the quad-core Core i7 CPU are shown as a dashed line, to
indicate that it does not use all cores available.

B. Experiment 2: Kernel Value Precomputation Speed

Fig. 3 shows the kernel value precomputation speeds on
different hardware platforms. The difference between a single
GTX260 and a single Opteron CPU is a factor 74! The differ-
ence between a single thread of the more recent Core i7 CPU
and the GTX260 GPU is a factor 37. When all threads of the
Core i7 are used, the difference is a factor 10. When using a
bag-of-words model with features computed for four pyramid

levels (1 1, 2 2, 3 3 and 4 4), e.g., a total feature vector
length of 120,000, this is the difference between 1360 minutes
and 142 minutes. Again, the GPU architecture results in a
substantial acceleration.

The GPU achieves 349 GFLOPS including memory transfers
between the CPU global memory and the GPU global memory,
with 1.10 instructions per clock cycle per core. Excluding
memory transfers the GPU achieves 357 GFLOPS. More im-
portantly, the computation uses 85–97 GB/s out of a possible
117 GB/s bandwidth to the GPU memory, showing that the
algorithm is both bandwidth-intensive and compute-intensive.
The multi-threaded SIMD-optimized CPU version achieves
30 GFLOPS on the quad-core Core i7 920. However, as noted
in Section III-C, the CPU version uses double precision for
its computation, which limits the theoretical GFLOPS of the
Core i7 920 to 40 GFLOPS, instead of 80 GFLOPS for single
precision computations.

C. Experiment 3: Visual Categorization Throughput

For categorizing large datasets, the average amount of time
required to classify a frame from start to finish is important.
This is commonly referred to as the throughput of the system.
As an example of a large real-world dataset, we again use the
Mediamill Challenge [48]. See Table III for an overview of the
throughput. To classify 12 914 keyframes from the test set takes
40.3 min when using the GPU, equal to 5.3 frames per second.
This includes the time it takes to load the frames, extract densely
sampled SIFT features,3 perform vector quantization, compute
kernel values, and apply trained models. When looking at the
feature extraction and kernel value computation separately,
the feature extraction per frame achieved a throughput of 12.3
frames per second (17.5 min for all frames) and the kernel
value precomputation with 30 993 training samples achieved
9.4 frames per second (22.8 min for all frames). Compared
to the single-threaded CPU version, which takes 11.5 h to
process these frames and therefore runs at 0.31 frames per
second, the speedup for the complete pipeline is 17 times. The
multi-threaded CPU version, running on a quad-core CPU,
needs 3 h 15 min to process all frames, and is 3.6 times faster
than the single-threaded CPU version. The GPU version is 4.8
times faster than the quad-core CPU.

VI. OTHER APPLICATIONS

The speedups for vector quantization and computing kernel
values obtained using GPU processing can be applied to other
problems than visual categorization as well. In this section, we
will discuss how it applies to the -means clustering algorithm
and to processing text with the bag-of-words model, and how the
faster processing can be used to improve visual categorization
accuracy.

A. Application 1: -Means Clustering

The -means clustering algorithm [49] is regularly used to
construct the codebook used within a categorization pipeline. It
is applicable to any real-valued set of data points and is one of

3SIFT feature extraction is also performed on the GPU.

68 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 1, FEBRUARY 2011

Fig. 3. Timings of kernel value precomputation on different hardware platforms for various total feature vector lengths. The difference between a GTX260 and a
single-core Opteron CPU is a factor 74. The difference between the more recent Core i7 920 CPU utilizing four threads and the GPU is a factor 10. For reference,
results of the Core i7 with only a single CPU thread are also shown (dashed line).

TABLE III
VISUAL CATEGORIZATION THROUGHPUT. THROUGHPUT IS MEASURED USING THE MEDIAMILL CHALLENGE [48] DATASET. TIME

MEASUREMENTS ARE FOR CLASSIFYING 12 914 FRAMES, FRAMES PER SECOND (FPS) LISTINGS ARE THE AVERAGE TIME PER FRAME.
THE SPEEDUP FOR THE GPU IS MEASURED AGAINST THE MULTI-THREADED CPU IMPLEMENTATION

the most common clustering algorithms in use. The -means al-
gorithm relies heavily on vector quantization. Once the set of
clusters has been initialized, all data points will be vector quan-
tized against these clusters. The data points are then assigned
to the closest cluster, and the clusters are updated by computing
the mean data value of all points assigned to that cluster. These
steps are repeated until the clusters do not change anymore. Per-
forming the vector quantization, i.e., finding the closest cluster
for each data point, is the most expensive step in the -means
algorithm. When using the GPU vector quantization of experi-
ment 1, a single iteration of the -means algorithm took 3.4 s
instead of 76 s, i.e., a speedup of 22.

B. Application 2: Bag-of-Words Model for Text Retrieval

The bag-of-words model as used in visual categorization is
based on the original bag-of-words model as used for text. It re-
sults in the same kind of feature vectors with frequency counts
of each “codeword”, where words are to be taken literally for
text. Due to the large number of words possible, the feature vec-
tors for documents can be very long. In the UCI datasets repos-
itory [50], there are several examples of textual bag-of-words
datasets. The Enron e-mail collection, for example, contains al-
most 40 000 documents which together contain 28 000 unique
words. The NY Times news article collection contains 300 000
documents with over 100 000 unique words. The precomputa-
tion of kernel values from experiment 2 (to train a topic model
based on annotations) and/or the computation of distances

(to, e.g., cluster similar documents) can be directly applied to
this text data, i.e., a speedup by a factor of 35.

C. Application 3: Multi-Frame Processing for Video Retrieval

The increased throughput for visual categorization has been
instrumental in our participation in the visual categorization
task of the TRECVID 2009 video retrieval benchmark [12].
This task has a test set with 280 h of material in which 20 vi-
sual categories need to be identified. Instead of processing only
the keyframes in the test set (97 150), the improved throughput
made processing of up to 10 extra frames per shot feasible, for a
total of 1 million frames. When looking at just the keyframe of
a shot, there is a large chance that a visual category is not visible
in that specific frame. By looking beyond the keyframes, more
relevant frames can be identified and accuracy can be improved.
See Fig. 4 for an overview of accuracy results by including 1 to
10 additional frames. The likelihood a visual category occurs
in a shot is estimated by either taking the maximum score of
all frames in the shot or the average score. From the results, it is
clear that taking the maximum score instead of the average gives
better results. The accuracy gained by including more frames
becomes smaller after 5 additional frames have been added,
though the accuracy does increase. The relative improvement
due to processing extra frames, while keeping all other compo-
nents of the system the same, is 29%: from 0.175 to 0.226. This
is in line with previous work in [51], where it was shown that
processing additional frames will improve accuracy of visual
categorization. In the official evaluation of the TRECVID 2009

VAN DE SANDE et al.: EMPOWERING VISUAL CATEGORIZATION WITH THE GPU 69

Fig. 4. Effect of multi-frame processing on the NIST TRECVID 2009 video
retrieval benchmark [12], made possibly by the use of GPU computing. This
task has a test set with 280 h of material in which 20 visual categories need to
be identified. The relative improvement due to processing extra frames is 29%.
The baseline and all additional frame results use the same visual features and
training procedures.

visual categorization task, we obtained state-of-the-art results
using the GPU and multi-frame processing: the system achieved
the highest overall accuracy [10].

VII. CONCLUSIONS

This paper provides an efficiency analysis of a state-of-the-art
visual categorization pipeline based on the bag-of-words model.
In this analysis, two large bottlenecks were identified: the vector
quantization step in the image feature extraction and the kernel
value computation in the category classification. By using a vec-
torized GPU implementation of vector quantization, it is 3.9
times faster than when it is computed on a modern quad-core
CPU. For the classification, we exploit the intrinsic property
of kernel-based classifiers that only kernel values are needed.
By precomputing these kernel values, the parameter tuning and
model learning stages can reuse these values, instead of com-
puting them on the fly for every visual category and parameter
setting. Also, precomputing these kernel values on the GPU in-
stead of a quad-core CPU accelerates it by a factor of 10. The
latter GPU acceleration is applicable to both the learning phase
and the training phase. The speedups obtained in the visual cat-
egorization pipeline are also applicable to other problems, such
as text retrieval and video retrieval. Additionally, when the ob-
tained speedup is used to process extra video frames in a video
retrieval benchmark, the accuracy of visual categorization is im-
proved by 29%.

Overall, by using a parallel implementation on the GPU, clas-
sifying unseen images is 17 times faster than a single-threaded
CPU version, while giving the exact same results for visual cate-
gorization. Compared to a multi-threaded CPU implementation
on a quad-core CPU, the GPU is 4.8 times faster.

REFERENCES

[1] B. Huurnink, L. Hollink, W. van den Heuvel, and M. de Rijke, “Search
behavior of media professionals at an audiovisual archive: A transac-
tion log analysis,” J. Amer. Soc. Inf. Sci. Technol., vol. 61, no. 6, pp.
1180–1197, Jun. 2010.

[2] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in Proc. IEEE Int. Conf. Computer Vision,
2003, pp. 1470–1477.

[3] J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid, “Local features
and kernels for classification of texture and object categories: A com-
prehensive study,” Int. J. Comput. Vis., vol. 73, no. 2, pp. 213–238,
2007.

[4] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (VOC) challenge,” Int. J. Comput.
Vis., vol. 88, no. 2, pp. 303–338, 2010.

[5] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek, “Evaluating
color descriptors for object and scene recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 9, pp. 1582–1596, Sep. 2010.

[6] Y.-G. Jiang, J. Yang, C.-W. Ngo, and A. Hauptmann, “Representa-
tions of keypoint-based semantic concept detection: A comprehensive
study,” IEEE Trans. Multimedia, vol. 12, no. 1, pp. 42–53, Jan. 2010.

[7] M. Marszałek, C. Schmid, H. Harzallah, and J. van de Weijer,
“Learning object representations for visual object class recognition,”
in Proc. Visual Recognition Challenge Workshop, in conjunc-
tion with IEEE ICCV, 2007. [Online]. Available: http://lear.inri-
alpes.fr/pubs/2007/MSHV07.

[8] S.-F. Chang, J. He, Y.-G. Jiang, E. E. Khoury, C.-W. Ngo, A. Yana-
gawa, and E. Zavesky, “Columbia university/VIREO-CityU/IRIT
TRECVID2008 high-level feature extraction and interactive video
search,” in Proc. TRECVID Workshop, 2008.

[9] A. Gaidon, M. Marszałek, and C. Schmid, The PASCAL Visual
Object Classes Challenge 2008 Submission, INRIA-LEAR, 2008,
Tech. Rep.

[10] C. G. M. Snoek, K. E. A. van de Sande, O. de Rooij, B. Huurnink, J.
R. R. Uijlings, M. van Liempt, M. Bugalho, I. Trancoso, F. Yan, M.
A. Tahir, K. Mikolajczyk, J. Kittler, M. de Rijke, J. M. Geusebroek,
T. Gevers, M. Worring, D. C. Koelma, and A. W. M. Smeulders, “The
mediaMill TRECVID 2009 semantic video search engine,” in Proc.
TRECVID Workshop, 2009.

[11] D. Wang, X. Liu, L. Luo, J. Li, and B. Zhang, “Video diver: Generic
video indexing with diverse features,” in Proc. ACM Int. Workshop
Multimedia Information Retrieval, 2007, pp. 61–70.

[12] A. F. Smeaton, P. Over, and W. Kraaij, “Evaluation campaigns and
TRECVid,” in Proc. ACM Int. Workshop Multimedia Information Re-
trieval, 2006, pp. 321–330.

[13] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, 2008.

[14] J. R. R. Uijlings, A. W. M. Smeulders, and R. J. H. Scha, “Real-time
bag-of-words, approximately,” in Proc. ACM Int. Conf. Image and
Video Retrieval, 2009.

[15] C.-C. Chang, Y.-C. Li, and J.-B. Yeh, “Fast codebook search algo-
rithms based on tree-structured vector quantization,” Pattern Recognit.
Lett., vol. 27, no. 10, pp. 1077–1086, 2006.

[16] F. Moosmann, B. Triggs, and F. Jurie, “Fast discriminative visual code-
books using randomized clustering forests,” in Proc. Neural Informa-
tion Processing Systems, 2006, pp. 985–992.

[17] F. J. Seinstra, J.-M. Geusebroek, D. Koelma, C. G. M. Snoek, M. Wor-
ring, and A. W. M. Smeulders, “High-performance distributed video
content analysis with parallel-hours,” IEEE Multimedia, vol. 14, no. 4,
pp. 64–75, 2007.

[18] N. Cornelis and L. Van Gool, “Fast scale invariant feature detection and
matching on programmable graphics hardware,” in Proc. IEEE Com-
puter Vision and Pattern Recognition Workshops, 2008.

[19] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Feature tracking
and matching in video using programmable graphics hardware,” Ma-
chine Vision and Applications, 2007. [Online]. Available: http://www.
springerlink.com/content/8t05rv61u5p24360.

[20] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[21] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proc. IEEE, vol. 96, no. 5, pp. 879–899,
May 2008.

[22] R. Bordawekar, U. Bondhugula, and R. Rao, Believe it or not! Multi-
core CPUs can match GPU performance for flop-intensive applica-
tion! IBM Thomas J. Watson Research Center, 2010, Tech. Rep. IBM-
RC24982.

[23] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N.
Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100x GPU vs. CPU myth: An evalua-
tion of throughput computing on CPU and GPU,” SIGARCH Comput.
Architect. News, vol. 38, no. 3, pp. 451–460, 2010.

70 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 1, FEBRUARY 2011

[24] R. Vuduc, A. Chandramowlishwaran, J. W. Choi, M. E. Guney, and A.
Shringarpure, “On the limits of GPU acceleration,” in Proc. USENIX
Workshop Hot Topics in Parallelism, 2010.

[25] T. Sharp, “Implementing decision trees and forests on a GPU,” in Proc.
IEEE Eur. Conf. Computer Vision, 2008, pp. 595–608.

[26] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support vector ma-
chine training and classification on graphics processors,” in Proc. Int.
Conf. Machine Learning, 2008, pp. 104–111.

[27] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval: Ideas, influ-
ences, and trends of the new age,” ACM Comput. Surv., vol. 40, no. 2,
pp. 1–60, 2008.

[28] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[29] K. Mikolajczyk et al., “A comparison of affine region detectors,” Int.
J. Comput. Vis., vol. 65, no. 1–2, pp. 43–72, 2005.

[30] J.-M. Geusebroek, A. W. M. Smeulders, and J. van de Weijer, “Fast
anisotropic gauss filtering,” IEEE Trans. Image Process., vol. 12, no.
8, pp. 938–943, Aug. 2003.

[31] H. Jégou, M. Douze, and C. Schmid, “Packing bag-of-features,” in
Proc. IEEE Int. Conf. Computer Vision, 2009.

[32] J. C. van Gemert, C. J. Veenman, A. W. M. Smeulders, and J.-M.
Geusebroek, “Visual word ambiguity,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 7, pp. 1271–1283, Jul. 2010.

[33] D. Cai, X. He, and J. Han, “Efficient kernel discriminant analysis via
spectral regression,” in Proc. IEEE Int. Conf. Data Mining, 2007, pp.
427–432.

[34] C.-C. Chang and C.-J. Lin, LIBSVM: A Library for Support Vector Ma-
chines, 2001. [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

[35] T.-N. Do, V.-H. Nguyen, and F. Poulet, “Speed up SVM algorithm
for massive classification tasks,” in Proc. Advanced Data Mining and
Applications, 2008, pp. 147–157.

[36] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hardwick, S.
Morton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing
experiences with CUDA,” IEEE Micro, vol. 28, no. 4, pp. 13–27,
2008.

[37] KhronosGroup, OpenCL Website, 2010. [Online]. Available:
http://www.khronos.org/opencl/.

[38] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[39] J. Stratton, S. Stone, and W. mei Hwu, “MCUDA: An efficient imple-
mentation of CUDA kernels for multi-core CPUs,” in Proc. Workshop
Languages and Compilers for Parallel Computing, 2008.

[40] G. Diamos, A. Kerr, and M. Kesavan, Translating GPU Binaries to
Tiered SIMD Architectures With Ocelot, Center for Experimental Re-
search in Computer Systems, 2009, Tech. Rep.

[41] G. Diamos, The Design and Implementation of Ocelot’s Dynamic Bi-
nary Translator From PTX to Multi-core x86, Center for Experimental
Research in Computer Systems, 2009, Tech. Rep.

[42] M. Hassaballah, S. Omran, and Y. B. Mahdy, “A review of simd mul-
timedia extensions and their usage in scientific and engineering appli-
cations,” Comput. J., vol. 51, no. 6, pp. 630–649, 2008.

[43] D. Chang, N. A. Jones, D. Li, and M. Ouyang, “Compute pairwise eu-
clidean distances of data points with GPUs,” in Proc. Intelligent Sys-
tems and Control, 2008, pp. 278–283.

[44] W. Kahan, “Pracniques: Further remarks on reducing truncation er-
rors,” Commun. ACM, vol. 8, no. 1, pp. 40–40, 1965.

[45] Nvidia, CUDA Programming Guide, 2010. [Online]. Available: http://
www.nvidia.com/CUDA.

[46] K. Grauman and T. Darrell, “The pyramid match kernel: Efficient
learning with sets of features,” J. Mach. Learn. Res., vol. 8, pp. 725–760,
2007.

[47] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2006,
vol. 2, pp. 2169–2178.

[48] C. G. M. Snoek, M. Worring, J. C. van Gemert, J.-M. Geusebroek, and
A. W. M. Smeulders, “The challenge problem for automated detection
of 101 semantic concepts in multimedia,” in Proc. ACM Int. Conf. Mul-
timedia, 2006, pp. 421–430.

[49] A. R. Webb, Statistical Pattern Recognition, 2nd ed. New York:
Wiley, 2002.

[50] A. Asuncion and D. Newman, UCI Machine Learning Repository,
2007. [Online]. Available: http://archive.ics.uci.edu/ml.

[51] C. G. M. Snoek, M. Worring, J.-M. Geusebroek, D. C. Koelma, and F.
J. Seinstra, “On the surplus value of semantic video analysis beyond
the key frame,” in Proc. IEEE Int. Conf. Multimedia & Expo, 2005.

Koen E. A. van de Sande (S’08) received the B.Sc.
degree in computer science (2004), the B.Sc. degree
in artificial intelligence (2004), and the M.Sc. degree
in computer science (2007) from the University
of Amsterdam, Amsterdam, The Netherlands.
Currently, he is pursuing the Ph.D. degree at the
University of Amsterdam.

His research interests include computer vision,
visual categorization, (color) image processing,
statistical pattern recognition, and large-scale
benchmark evaluations. He is a co-organizer of the

annual VideOlympics.

Theo Gevers (M’10) is an Associate Professor of
Computer Science at the University of Amsterdam,
Amsterdam, The Netherlands, and a (part-time) full
Professor at the Computer Vision Center (UAB),
Barcelona, Spain. At the University of Amsterdam,
he is a teaching director of the M.Sc. of Artificial
Intelligence. He currently holds a VICI-award (for
excellent researchers) from the Dutch Organisation
for Scientific Research. His main research interests
are in the fundamentals of content-based image
retrieval, color image processing, and computer

vision, specifically in the theoretical foundation of geometric and photometric
invariants. He has published over 100 papers on color image processing, image
retrieval, and computer vision. He is a lecturer of postdoctoral courses given at
various major conferences (CVPR, ICPR, SPIE, and CGIV).

Prof. Gevers is an associate editor for the IEEE TRANSACTIONS ON IMAGE

PROCESSING. He is co-chair of the Internet Imaging Conference (SPIE 2005,
2006), co-organizer of the First International Workshop on Image Databases
and Multi Media Search (1996), the International Conference on Visual Infor-
mation Systems (1999, 2005), the Conference on Multimedia & Expo (ICME,
2005), and the European Conference on Colour in Graphics, Imaging, and Vi-
sion (CGIV, 2012). He is guest editor of the special issue on content-based
image retrieval for the International Journal of Computer Vision (IJCV 2004)
and the special issue on Colour for Image Indexing and Retrieval for the journal
of Computer Vision and Image Understanding (CVIU 2004). He is program
committee member of a number of conferences, and an invited speaker at major
conferences.

Cees G. M. Snoek (M’06) received the M.Sc.
degree in business information systems (2005) and
the Ph.D. degree in computer science (2005), both
from the University of Amsterdam, Amsterdam,
The Netherlands.

He is currently a Senior Researcher in the Intelli-
gent Systems Lab at the University of Amsterdam.
He was a visiting scientist at Carnegie Mellon Uni-
versity, Pittsburgh, PA, in 2003 and a Fulbright Ju-
nior Scholar at the University of California, Berkeley,
in 2010–2011. His research interests include visual

categorization, statistical pattern recognition, social media retrieval, and large-
scale benchmark evaluations, especially when applied in combination for video
search. He has published more than 90 refereed book chapters, journal, and con-
ference papers in these fields. He is the lead researcher of the award-winning
MediaMill Semantic Video Search Engine, which is a consistent top performer
in the yearly NIST TRECVID evaluations. He is a co-initiator and co-organizer
of the annual VideOlympics, co-chair of the SPIE Multimedia Content Access
conference, the Multimedia Grand Challenge at ACM Multimedia 2010, and a
lecturer of postdoctoral courses given at international conferences and summer
schools.

Dr. Snoek serves on the program committees of several conferences. He re-
ceived a young talent (VENI) grant from the Dutch Organization for Scientific
Research in 2008 and a Fulbright visiting scholar grant in 2010.

