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Abstract—The choice of a color model is of great importance for many computer vision algorithms (e.g., feature detection, object

recognition, and tracking) as the chosen color model induces the equivalence classes to the actual algorithms. As there are many color

models available, the inherent difficulty is how to automatically select a single color model or, alternatively, a weighted subset of color

models producing the best result for a particular task. The subsequent hurdle is how to obtain a proper fusion scheme for the algorithms

so that the results are combined in an optimal setting. To achieve proper color model selection and fusion of feature detection algorithms,

in this paper, we propose a method that exploits nonperfect correlation between color models or feature detection algorithms derived

from the principles of diversification. As a consequence, a proper balance is obtained between repeatability and distinctiveness. The

result is a weighting scheme which yields maximal feature discrimination. The method is verified experimentally for three different image

feature detectors. The experimental results show that the fusion method provides feature detection results having a higher discriminative

power than the standard weighting scheme. Further, it is experimentally shown that the color model selection scheme provides a proper

balance between color invariance (repeatability) and discriminative power (distinctiveness).

Index Terms—Color, learning, feature detection, scene analysis.

Ç

1 INTRODUCTION

THE choice of a color space is important for many computer
vision algorithms (e.g., feature detection, image classifi-

cation, object recognition, and visual tracking). It induces the
equivalence classes to the actual algorithms. For example, a
standard segmentation algorithm will divide a single yellow
object, which is partially shaded due to its orientation with
respect to a light source, into two separate parts when the
algorithm is applied on the RGB sensor color model. In
contrast, when the same algorithm is applied on the rgb color
model, which is insensitive to shading variations, the yellow
object will be detected as an entire object [1].

However, no color space can be considered as universal
because color can be interpreted and modeled in different
ways. With the large variety of available color spaces (e.g.,
RGB,CMY , Y IQ, Y UV ,XYZ, I1I2I3, rg, CIE L�a�b�, L�u�v�,
HSV , etc.), the inevitable question that arises is how to select
the color model that produces the best result for a particular
computer vision task. It is possible that several color spaces
are equally good candidates (for instance, the color spaces
CIE L�a�b� or L�u�v� are both perceptually uniform) or that
different color channels have similar properties (for instance,
the V and G channels both encode the intensity information
for green colors). In these cases, the subsequent question is
how to obtain a proper weighting scheme to combine color

spaces or color channels. To this end, a weighting scheme for
color models is proposed by Angulo and Serra [2], where a
color space representation is derived of type hue-luminance-
saturation in which the saturation plays an important role to
merge the chromatic and achromatic information during the
segmentation process. Macaire et al. [3] provide a hybrid
color space to yield high discrimination between the pixel
classes in the context of soccer image analysis. In this paper,
we focus on selection and fusion of color models for image
feature detection.

Similar questions arise in the context of selecting and
weighting different feature detection methods, in particular
in the case of color edge detection. Here, the default method
to combine edges is to use equal weights for the different
color feature detectors. In this way, to achieve color edge
detection, intensity-based edge detection techniques are
extended by taking the sum or Euclidean distance from the
individual gradient maps [4], [5]. This default approach is
used by other feature detectors. For example, Cardei and
Funt [6] combine the output of different color constancy
algorithms by simply averaging, based on optimizing the
least mean square error, and by using a neural network. By
combining the results of several existing algorithms, better
illumination estimates are obtained for color constancy.

In this paper, the goal is to select and fuse color models
and feature detection algorithms. Feature selection has
been used in computer vision where one or more visual
features are chosen from a given initial set of candidates.
Based on the notion of class separability, various methods
have been proposed to select the feature subset that
optimizes the discriminatory power regarding the ground
truth consisting of positive and negative data labels [7], [8]
[9], [10], [11]. For example, model selection by SVM [7] is
used to select the most discriminating appearance features.
For image retrieval, a method is provided by Tieu and
Viola [10] based on AdaBoost to select a small number of
features from a large feature set. In the context of face
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recognition, PCA is applied to reduce the dimensionality
[8]. Most of the classifiers are dichotomic (two-class)
learning from positive and negative data labels. In contrast
to these two-class methods, we focus on the one-class
problem (only positive labels) as it is not evident how to
choose proper negative data labels in the context of image
feature detection. Contradictory chosen negative data labels
result in an invalidated impact on the classification
accuracy [12], [13].

Therefore, in this paper, to achieve proper color model
selection and fusion of feature detection algorithms, we
introduce the weighting scheme proposed by Markowitz
[14] using only positive training samples. The method is
generic and exploits nonperfect correlation between color
models or feature detection algorithms derived from the
principles of diversification. The result is a weighting
scheme which yields maximal feature discrimination.

Further, two criteria are used to assess the performance of
the color feature detectors: 1) (repeatability) they should be
invariant (stable) under varying viewing conditions, such as
illumination, shading, highlights, and 2) (distinctiveness) they
should have high discriminative power. It has been shown that
there exists a trade-off between color invariant models and
their discriminative power [15]. For example, color constant
models have been proposed [1] which are invariant to all
possible light sources assuming a diagonal model for
illumination changes. However, such a strong assumption
will significantly reduce the discriminative power. For a
particular computer vision task that assumes only a few
different light sources, color models should be selected which
are invariant (only) to these few light sources resulting in an
augmentation of the discriminative power of the algorithm.
Therefore, the aim is to automatically weight color models to
arrive at a proper balance between color invariance (repeat-
ability) and discriminative power (distinctiveness).

The paper is organized as follows: In Section 2, we
interpret the method of Markowitz in the context of image
processing. In Section 3, we apply the methodology to
image feature detection. In Section 4, the method is
evaluated empirically. Conclusions are given in Section 5.

2 FUSION OF OBSERVATIONS

First, in Section 2.1, the problem is formulated. Then, in
Section 2.2, the weights are derived by exploiting
nonperfect correlation between the observation methods.
The notion of optimality is given in Section 2.3. Finally, an
example is given in Section 2.4.

2.1 Problem Statement

In this paper, we pose the following abstract problem: “Given
sets of observations of the same quantity which are expressed
in the same unit but which are obtained by N different
methods, how are these methods to be combined in order to
obtain the most accurate measurement of the process?” Here,
we assume no knowledge about the particular observation
methods except that the distribution of the observations itself
is unimodal. As such, we assume that the observations may
be stated as:

u ¼ EðuÞ � �u; ð1Þ

where EðuÞ is the central value for the observation of
random variable u (e.g., the average value) and �u is a
measure of dispersion of u (e.g., the standard deviation).

To solve the problem, we propose combining the
observations obtained with the N different methods by
the following standard weighting scheme:

EðuÞ ¼
XN
i

wiEðuiÞ; ð2Þ

where EðuiÞ is the estimate of a particular method i as
expressed by (1). Taking a linear fusion scheme given by (2) is
a choice motivated by its simplicity. Next, the particular
problem we address is: “How to derive proper weighting
values wi?” A method to solve this will be discussed in the
next section.

2.2 Derivation of Weights by the Exploitation of
Nonperfect Correlations

The variance of several combined observation methods
follows from (2) by

�2
u ¼

XN
i¼1

XN
j¼1

wiwjcovðui; ujÞ; ð3Þ

or, equivalently,

�2
u ¼

XN
i¼1

w2
i �

2
ui
þ
XN
i¼1

XN
j¼1;i 6¼j

wiwjcovðui; ujÞ; ð4Þ

where wi denotes the weight assigned to observation
method i, ui corresponds to the average output of observa-
tion method i, �ui denotes the standard deviation of quantity
ui of observation method i, and, finally, covðui; ujÞ corre-
sponds to the covariance between observation methods i
and j.

This latter expression for the standard deviation reveals
the usefulness of diversification over various observation
methods to reduce the variance due to the correlation that
may exist between them. To achieve optimal diversification,
we apply the mathematical selection model of Markowitz
[14]. The model involves minimizing the standard deviation
for a given expected estimate of quantity u or maximizing
the expected estimate of a given standard deviation �u. To
this end, the selection model is given by

minimize �u ð5Þ

under the condition stated by (2). Furthermore, the following
conditions are imposed:

XN
i¼1

wi ¼ 1; ð6Þ

� 1 � wi � 1; i ¼ 1; � � � ; N: ð7Þ

The goal is to minimize the variance imposed by (5) while
achieving the minimally acceptable estimate u. Constraint (6)
ensures that the available observation methods are fully
allocated. Constraint (7) limits the search space when
determining values for wi. Note that it may well be possible
that, for observations of the same process, some of the
measured quantities obtain negative values, whereas other
quantities obtain positive values. By allowing the weights to
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take on negative values instead of restricting the weights to
take zero values, the selection model can still exploit the
negative values to maximize the expected estimate.

The objective function (5) is quadratic with linear con-
straints. Therefore, the selection problem can be solved by
linear programming [16]. When �u is varied parametrically,
solutions for (5) result in mean-standard deviation pairs of
points which represent different weightings of observation
methods. The space of attainable mean-standard deviation
pairs will be limited and, thus, be bounded by a frontier.

Enlarging the universe of observation methods from
which the set of weights is selected will result in a frontier
with larger expected values. This is because new observa-
tion methods can always be included at a level of zero
weighting. As a final step, a single set of weights needs to be
selected from the infinitely large universe of weightings
making up this frontier. Such selection will, in general, be
application dependent.

2.3 The Notion of Optimality

The notion of an optimal set of weights can be defined as
follows:

1. For any level of standard deviation, consider all the
sets of weights which have that standard deviation.
From among them all, select the set which has the
highest expected output.

2. For any expected output, consider all the sets of
weights which have that expected output. From
among them all, select the one which has the lowest
standard deviation.

Each definition produces a collection of optimal sets of
weights. Definition (1) produces an optimal set of weights
for each possible level of standard deviation. Definition (2)
produces an optimal set of weights for each expected
output. Actually, the two definitions are equivalent. The
collections of optimal sets of weights obtained using one
definition is exactly the same set which is obtained from the
other.The collections of optimal sets of weights generate a
curved line in the mean-standard deviation plane. This
curve will be referred to as the optimal frontier.

2.4 Example

For clarity, an illustration is given where we derive an explicit
formula that computes a set of weights on the optimal frontier.
The example assumes, for simplicity, that only two hypothe-
tical observation methodsDandE exist.As such, the objective
is to find the weights wD and wE . We solve the problem for a
point on the optimal frontier that is of particular interest in
many practical applications: The solution yields the maximal
ratio between the expected combined output EðuÞ and the
expected standard deviation �u. As such, the objective is to
maximize an objective functionSp for weight allocation p. The
constraint that the weights sum up to 1.0 has to be satisfied,
that is,wD þ wE ¼ 1. Therefore, the mathematical problem to
be solved is formally written as:

maximize Sp; ð8Þ
where

Sp ¼
EðupÞ
�p

; ð9Þ

subject to constraint (6). This is a standard problem in
optimization. In the case of two observation methods, the
solution for the weights of the optimal weight allocation is
obtained by

EðuÞ ¼ wDEðuDÞ þ wEEðuEÞ; ð10Þ

which follows from (2). Furthermore,

�2
p ¼ w2

D�
2
D þ w2

E�
2
E þ 2wDwE�D�EcovðuD; uEÞ; ð11Þ

which follows from (3). Next, substitute (10) forEðupÞand (11)
for �p. Further, substitute 1� wD for wE . Then, differentiate
the resulting expression for Sp with respect to wD, set the
derivative equal to zero, and, solvingwD, we obtain:

wD ¼
EðuDÞ�2

E �EðuEÞcovðuD; uEÞ
EðuDÞ�2

E þEðuEÞ�2
D � EðuDÞ þ EðuEÞ½ �covðuD; uEÞ

;

ð12Þ

wE ¼ 1� wD; ð13Þ

where the ratio between EðuÞ and �u exceeds the ratio of
any other set of weights.

3 APPLICATION TO IMAGE FEATURE DETECTION

In this section, the weighting scheme is applied to fuse color
models and image feature detectors. To this end, an
algorithm is proposed in Section 3.1 to fuse different color
models. In Section 3.2, the weighting scheme is provided to
fuse different feature detection methods. A discussion is
given in Section 3.3.

3.1 Selection and Fusion of Color Models

To apply the results obtained in the previous section for the
fusion of color models, we interpret the variables of (4) as
follows: wi denotes the weight assigned to a particular color
plane i, ui is a central value for the observation of random
variable u (which we interpret here as the average pixel
output for a target color in color plane i), �ui denotes the
standard deviation of quantity u of color plane i, and, finally,
covðui; ujÞ corresponds to the covariance between color
planes i and j.

For training, the following steps are performed:

. For all transformed color planes in a region of
interest in a training image, estimate the expected
mean EðuÞ, the standard deviation �u, and the
covariances between all the color planes.

. Use the obtained results to select the optimal
weightings of the color planes by the method
proposed in Section 2.2.

For testing, perform the following method:

. Apply the weights obtained in the training phase to
the standard weighting scheme of (2), thereby
combining linearly the color planes to a gray-value
image. Let the obtained intensity values in the gray-
value image be denoted by tðx; yÞ, where ðx; yÞ are
the image coordinates.

. The local zeroth and first order statistics are computed
by selecting a window ofM �M ¼ N pixels, which is
moved over tðx; yÞ. First, the weighted mean is
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computed at ðx; yÞ by a convolution with a Gaussian
kernel G�F with smoothing parameter �F as follows:

Gðx; yÞ ¼ tðx; yÞ 	G�F ðx; yÞ: ð14Þ

The mean value is subtracted from each of the pixel
values in the window and the result is squared:

rðx; yÞ ¼
XM=2

a¼�M=2

XM=2

b¼�M=2

tðxþ a; yþ bÞ � gðx; yÞð Þ2:

ð15Þ

We compute the variance by

hðx; yÞ ¼ rðx; yÞ 	G�F ðx; yÞ: ð16Þ

Finally, the standard deviation v at image coordi-
nate ðx; yÞ is obtained by:

vðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx; yÞ
N � 1

r
: ð17Þ

. The signal-to-noise image, SNR, is obtained by
dividing, at each pixel, the local mean value gðx; yÞ
by the local standard deviation vðx; yÞ:

SNRðx; yÞ ¼ gðx; yÞ=vðx; yÞ: ð18Þ

For training colors, the value of SNR will be high.
. Compute the �-squared error between the signal-to-

noise ratio EðuÞ=�u based on the training data and
the locally measured signal-to-noise SNR value at
every pixel ðx; yÞ by

�ðx; yÞ ¼ SNRðx; yÞ � EðuÞ
�u

� �2

: ð19Þ

. Threshold the �-squared image and assign pixel
values close to zero to the target color, i.e., for training
colors, the �-squared error will attain small values
compared to other (arbitrary) colors:

Cðx; yÞ ¼ 1 if �ðx; yÞ < T
0 otherwise:

�
ð20Þ

The appropriate value of T can be obtained, for
example, by the isodata method [17].

In this way, the described algorithm classifies pixels using
the training information.

3.2 Selection and Fusion of Feature Detection
Algorithms

The application of the results obtained in Section 2 to fuse
feature detection algorithms is now straightforward. To this
end, we interpret the variables of (4) as follows:wi denotes the
weight assigned to detection algorithm i, ui denotes the
average detection error (in pixels) of algorithm i, �u denotes
the standard deviation of quantity u of algorithm i, and,
finally, covðui; ujÞ corresponds to the covariance between the
results obtained with algorithms i and j.

3.3 Discussion

Using the term optimality in the context of image processing
might be misleading. In this paper, we follow the approach in
which different color planes are processed separately before
combining individual results. By making the decision to

process the color planes separately, we can only claim that
our results are optimal within this context. Stated this way, it
may very well be that a (true) optimal result could be
obtained by processing the color planes simultaneously.

Still, an attractive feature of the fusing algorithm, given
by (2), is that it allows for the combination of features
coming from very different domains. In this paper, we use
the fusing algorithm to combine different image processing
algorithms which detect the same feature (e.g., edges or
corners). Alternatively, we use the algorithm to combine
different color transformation algorithms which transform
standard RGB color images into, for instance, the normal-
ized red and green rg planes (invariant to shading and
illumination intensity [1]) or the opponent color models RG
and YB planes (invariant to highlights, assuming a white
light source [18]). These applications are discussed in detail
in the next section.

In conclusion, the output of a weighted set of observation
methods is the weighted average of its component expected
outputs, whereas its standard deviation is less than the
weighted average of the component standard deviations. As
a consequence, the weighted sets of observation methods of
less than perfectly correlated observation methods always
offer better variance-output ratio’s than the individual
component observation methods on their own. In this
way, an optimal balance is obtained by the proposed
method between repeatability and distinctiveness. The
results are verified experimentally in the next section.

4 EXPERIMENTS

In this section, the proposed fusion method is tested on
different data sets. First, in Section 4.1, the accuracy of the
method to select color models is examined for feature
detection. To this end, in Section 4.1.1, color models are
automatically selected for image segmentation yielding the
highest discrimination power between foreground-back-
ground objects. Then, in the context of color edge detection,
the performance of the method is tested to provide the highest
edge value and minimal variance in Section 4.1.2. Finally, in
Section 4.2, the performance of the proposed method is tested
to fuse various image feature detection algorithms.

4.1 Selection and Fusion of Color (Invariant)
Models

Experiments are conducted on a series of images taken from

real-world scenes. For all experiments described in this
section, the training RGB images are transformed into the

following color channels: First, the normalized red and

green channels are, respectively, defined as r ¼ 255R=ðRþ
GþBÞ and g ¼ 255G=ðRþGþBÞ. Then, the opponent

color channels, red-green RG and yellow-blue Y B, are
obtained by RG ¼ R�G and Y B ¼ ð2B�RþGÞ=4. The

CIE L�a�b� color channels are defined by

L� ¼ 116
Y

Yn

� �1=3

�16;

a� ¼ 500
X

Xn

� �1=3

� Y

Yn

� �1=3
" #

;

374 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 3, MARCH 2007



and

b� ¼ 200
Y

Yn

� �1=3

� Z

Zn

� �1=3
" #

;

where XnYnZn is the reference white point. Finally,
the saturation S and value V channels are obtained as
V ¼ maxðR;G;BÞ and S ¼ V �minðR;G;BÞ. The hue color
channel is omitted as it is expressed in degrees, which
complicates straightforward computation of its mean and
variance. All 12 color models are used in the experiments.

These models are selected as they are commonly
encountered in color image processing. Further, these color
models contain both variant and invariant properties with
regard to the imaging conditions. From [1], it is derived that
RGB, CIE L�, and SV are all sensitive to shadows, shading,
illumination, and highlights. Further, rg and CIE a�b� are
invariant to shadows, shading, and illumination intensity.
The opponent RG and YB color models are invariant to
highlights, assuming a white light source. As these color
channels provide both color invariance, i.e., repeatability
(rg, CIE a�b�, RG, and YB), and variance, i.e., distinctive-
ness (RGB, CIE L� and S, and V ), it allows us to test
whether the proposed method will yield an optimal balance
between repeatability and discriminative power by choos-
ing the proper weights for the color channels.

4.1.1 Color Region Detection: Zeroth Order Statistics

The first experiment is conducted on images taken from a
football match. The goal is to detect the grass. The task is
complicated due varying imaging conditions and the
texture of the grass, which cause nonuniform pixel values.
The training and test images are shown in Fig. 1. The size of
the images is 288� 360 pixels.

From the training sample, the correlation coefficients are
computed for the various color channels. The coefficients are
shown in Table 1. Inspection of the table shows that various
color channels show strong negative correlations such as, e.g.,
the red channel and the normalized colors. The optimal
frontier for the grass is illustrated in Fig. 2. From the frontier,
the weighting is selected giving the best signal-to-noise ratio,
obtained by solving (8). Table 2 shows the weights assigned to
the various color channels. The expected intensity value
obtained by the weighting method is 91:0� 0:3. Here, the
standard deviation has a very small value. Next, a small
moving window of size N ¼ 9 is used. The smoothing value
for the Gaussian filter is set to �F ¼ 1:5. The obtained signal-
to-noise and chi-squared images are shown in Figs. 3 and 4.

The experiment is repeated for images depicting faces, as
shown in Fig. 6. The goal is to detect skin color. The weights
assigned to the different color models are specified in
Table 2. The optimal frontier is plotted in Fig. 5. The
expected intensity value obtained through the weighting
scheme is 107:5� 1:0. Again, the standard deviation is very
small. In Fig. 6a, is the image from which the training data is
taken, denoted by the rectangular box. Fig. 6b shows the test
image. The images are taken under different imaging
conditions. Fig. 6c shows the signal-to-noise image where
high values denote large confidence in skin presence.

A third experiment is conducted on a series of images
taken from object number 25 of the Amsterdam Library of
Images [19]. The image shows a ball with red, green, yellow,
and blue colors against a black background. Images are taken
under various viewpoints and illuminations. The training
and test images are shown in Fig. 7. Three training patches are
obtained containing various kinds of blue colors: normal,
very dark, and a patch containing highlights. The optimal
frontier is shown in Fig. 9. The figure shows that the blue
sensor shows very high variance. As a result, the blue color is
assigned a weight close to zero by the proposed weighting
method, as is shown in Table 2. The expected intensity, after
applying (2), for the blue patch is 116:1� 0:4. The obtained
signal-to-noise image is shown in Fig. 8a. Clearly, the
proposed method augments the discriminative power for
the blue color.

4.1.2 Color Edge Detection: First Order Statistics

In this experiment, the goal is to detect color transitions of
interest. The proposed weighting scheme is used to select the
weights such that the highest possible gradient value is
selected, while, at the same time, the smallest variance of
gradient values is obtained. To achieve color edge detection,
training samples are selected manually under varying
imaging conditions.

To obtain the training edge set, a single color channel is
selected and threshold values are determined manually to
obtain the color transition of interest. The values of the edge
pixels of the 12 transformed color channels are used to train
the optimal weights as described in Section 2. The resulting
optimal frontiers in the gradient-standard deviation space is
shown as a curve in Fig. 10 for red-cyan and yellow-purple
transitions. The precise weights for the color models are
shown in Table 3. In Fig. 11, the training image and the test
image are shown for the yellow-green color transition.
Clearly, training on yellow-green transitions yields the color
transition in the test image.
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4.2 Selection and Fusion of Image Feature
Detection Algorithms

In this section, the goal is to investigate whether robust edge
detection is obtained through diversification over different
edge detectors. Therefore, edge detection is performed on
1,001 different colors from the PANTONE1 color system. The
1,001 PANTONE colors are recorded by an RGB-camera
(Sony DXC-930P), under a 5,200K daylight simulator (Little
Light, Grigull, Jungingen, Germany). Color edges are formed
by digitally combining two images into one single image as
described by [15]. As such, one yellow image is aligned to the
other images, yielding 1,000 different color edges. In this way,
the exact location of the color transition is known. As such,
statistics for the detection error can easily be obtained. An
example image is shown in Fig. 12.

The color information of the red and green channel is
discarded in order to illustrate that the proposed method
also works on gray-value images. The blue color channel is
selected instead of the red or green channel as it is the most
noisy channel, which may disturb the detection of the color
transition. For each image (i.e., color transition), a single
horizontal line scan is taken from the blue color (Fig. 13).
The goal is to detect the location of the transition. Images
are recorded such that the exact location of the transition is
known, yielding the ground-truth.

Three standard detectors are used to compute the color
transition. These detectors are:

Thresholding: Thresholds the signal by a chosen value. If the
signal value exceeds the threshold value, then the output is
set to one, otherwise to zero. Output is the mean grid position.

Edge detection: The signal is processed by a differential
filter. The output of the operation is the input to the
aforementioned threshold operation.

Erosion and dilation operation (morphology): A mask of a
chosen length is used to perform an erosion and dilation
operation, after which the difference is taken. The output of
the operation is the input to the threshold operation.
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TABLE 1
Correlation Coefficients for Grass



The filter size of the edge detection algorithm and the
size of the structuring element of the morphology operators
are comparable. As a final postprocessing step, the error e
between the output of each detector and the ground truth is
computed as

e ¼ xm � xi; ð21Þ

with xm denoting the x position where method m detected
the intensity transition and xi denotes the ideal, golden
standard position of the transition.

4.2.1 Determining the Optimal Weighting

To estimate the performance of the edge detectors, a
training set consisting of 500 images is used. The data set
is processed by the three detectors after which the mean
and standard deviation of the error for each detector is
computed. The results are listed in Table 4. The table shows
that the edge detection method has a very high mean
precision, although the standard deviation is quite high.
The thresholding and morphology methods both have a
systematic error as the locations of the detected color
transitions are, in general, biased to the left. Considering the

mean error, the default way of combining the three
detectors would be to equally weight each method.

However, according to the proposed fusion model, the
variance of the detectors is also important. Therefore, the
autocorrelations are shown in Table 5. From the table, it can
be derived that the three detection methods have a relatively
low correlation. The correlation between the threshholding
detector and the morphology-based method is the lowest.
This correlation is important as it indicates that a proper
diversification over these edge detectors will yield a
significant decrease in the variance. As the expected errors
and covariances are known in advance from the training set,
the optimal frontier is computed for 10 optimal sets of
detectors. The results are shown in Fig. 14. The weightings
of the specific sets are given in Table 6. Further, the expected
error and the standard deviations are given in Table 7. From
the table, it can be derived that a global minimal error
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TABLE 2
Weights (Expressed in Percentages) Assigned

to Color Models for Detection of Various Targets

Fig. 3. (a) Output signal-to-noise image and (b) chi-squared image for
the first test image.

Fig. 4. (a) Output signal-to-noise image and (b) chi-squared image for

the second test image.

Fig. 5. Mean—standard deviation space for skin. The curved line is the

optimal frontier.

Fig. 6. (a) Training image depicting the region from which training data is obtained. (b) The image used for testing. (c) Signal-to-noise image.



weighting of detectors is obtained by assigning 100 percent

of the weight to the edge and thresholding methods which

corresponds to a assigning wedge and wthreshold the value one.

Simultaneously, the morphology method is assigned the

weight wmorphology ¼ �1, which is denoted as �100 percent.

4.2.2 Verification of the Weighting Scheme
A new set of five-hundred images is used to verify the

obtained weighting factors. The performance of the
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Fig. 7. (a) Training image. (b) Test image.

Fig. 8. (a) Signal-to-noise image. (b) Chi-squared image.

Fig. 9. Optimal frontier for the color blue. The blue color model yields
very high variance value and is therefore not a good candidate for
detecting the color blue.

Fig. 10. Mean—standard deviation space for (a) red-cyan color transitions and (b) yellow-purple transitions.

TABLE 3
Weights Expressed as Percentages Assigned by the Proposed Weighting Scheme to Detect Color Transitions



individual detectors for this new set is shown in Table 8.
The results are comparable with the results obtained for the
training set as shown in Table 4.

We now determine how the (optimized) weighting sets of
detectors perform out-of-sample. The results are computed

for the default weighting of algorithms and for the minimal
variance detectors. The results are shown in Table 8. The
mean error for the minimal variance detector set is 8 percent
smaller than for the default weighting scheme. As such, the
experiment shows that the fusion model can be successfully
applied to decrease the standard deviation of detection
algorithms while obtaining a minimal error.

4.3 Discussion of the Results

The proposed method has been tested on a wide variety of
applications.

First, in Section 4.1.1, the proposed selection method is
evaluated for zeroth order statistics. The correlation coeffi-
cients between the different color channels reveal that
taking combinations of color channels performs better than
taking only a single color space. This is of interest as
commonly a single color space is chosen for digital image
processing, e.g., the CIE L�a�b� or the HSV space. The
obtained weights yield the best ratio between the mean
intensity of the training color and the variance thereof. The
ratio is exploited through computing signal-to-noise
images. The experiments clearly show that the appearance
of the training color is boosted significantly.

Second, in Section 4.1.2, the proposed method is evaluated
for first-order statistics. The curve of the optimal frontier
shows that, for edge detection, the ratio between the gradient
strength and the variance thereof is significantly smaller than
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Fig. 11. Training edges between green and yellow colors are shown on

the left. Verification of selected edges is shown on the right. For display

purposes, the actual edges are enlarged by a dilation operation.

Fig. 12. Example image consisting of two homogeneous colors.

Fig. 13. Example of the blue color model for the image shown in Fig. 12.

TABLE 4
Error for Various Detectors for the Training Set

The edge detection method yields the smallest error.

TABLE 5
Autocorrelation Values of the

Three Detectors for the Training Set

The detectors are uncorrelated, which means, in theory, that combining
of the detectors may significantly reduce the overall variance.

Fig. 14. Error-standard deviation plane. The optimal frontier is obtained

by combining three edge detection algorithms.



for the case of zeroth order statistics or for the case of

combining different feature detectors. As such, the minimal

variance set of weights was not selected, but the more extreme

weights, yielding very high gradient values. Therefore,

Table 3 shows that many color channels are assigned weights

close to 100 percent or �100 percent, whereas the weights in

Tables 6 and 2 are more evenly assigned.

Third, in Section 4.2, the method is evaluated for

different feature detectors. Due to the low correlation

between the detectors, combining the detectors yields, in

theory, a better performance than using only a single

detector. This theoretical result was successfully confirmed

in practice. Even more, the proposed diversification method

outperformed the default weighting method in practice.
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TABLE 6
Weights Assigned to the Thresholding, Edge,

and Morphology Detectors, Expressed in Percentages,
for Various Points along the Optimal Frontier

Set 1 yields the smallest variance in the detection, set 8 yields the
smallest average error.

TABLE 7
Expected Variance and Errors for Optimal Frontier Sets

of Detectors, as Shown in Fig. 14

TABLE 8
The First Three Rows Depict the Mean and Standard Deviation of the Error for Various Detectors for the Test Set

The results for the morphology-based detection method, edge detector, and threshold-based method are quite different than those obtained for the
training set, as shown in Table 4. The last two rows specify the error for the default and minimal variance edge detection sets in the test set. The
experiment shows empirically that diversification over different feature detection methods gives much better results than using only a single detector.
Moreover, the proposed weighting method outperforms the default method as 99 percent of all transitions are detected within a range of 3.65 pixels
for the default method and 3.21 pixels for the proposed method. Hence, the performance of the proposed method is 12 percent.



5 CONCLUSION

In this paper, a generic selection model has been proposed
to select and weight color (invariant) models for discrimi-
natory and robust image feature detection. Further, the
method is used to combine image feature detection
algorithms. It has been experimentally verified that the
selection model can be applied successfully to construct the
optimal weighting of color features. Further, the results are
successfully applied to edge detection.

The extensive experiments conducted on a wide variety
of applications show that the proposed method is widely
applicable, yielding an optimal balance between repeat-
ability and distinctiveness. The generic method can be used
to achieve both color model weighting as well as the fusion
of image feature detectors.
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