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Abstract—Image category recognition is important to access
visual information on the level of objects and scene types. So far,
intensity-based descriptors have been widely used for feature
extraction at salient points. To increase illumination invariance
and discriminative power, color descriptors have been proposed.
Because many different descriptors exist, a structured overview
is required of color invariant descriptors in the context of image
category recognition.

Therefore, this paper studies the invariance properties and
the distinctiveness of color descriptors1 in a structured way. The
analytical invariance properties of color descriptors are explored,
using a taxonomy based on invariance properties with respect
to photometric transformations, and tested experimentally using
a dataset with known illumination conditions. In addition, the
distinctiveness of color descriptors is assessed experimentally
using two benchmarks, one from the image domain and one
from the video domain.

From the theoretical and experimental results, it can be
derived that invariance to light intensity changes and light color
changes affects category recognition. The results reveal further
that, for light intensity shifts, the usefulness of invariance is
category-specific. Overall, when choosing a single descriptor
and no prior knowledge about the dataset and object and
scene categories is available, the OpponentSIFT is recommended.
Furthermore, a combined set of color descriptors outperforms
intensity-based SIFT and improves category recognition by 8%
on the PASCAL VOC 2007 and by 7% on the Mediamill
Challenge.

Index Terms—Image/video retrieval, evaluation/methodology,
color, invariants, pattern recognition.

I. INTRODUCTION

Image category recognition is important to access visual

information on the level of objects (buildings, cars, etc.) and

scene types (outdoor, vegetation, etc.). In general, systems

for category recognition on images [1], [2], [3], [4], [5] and

video [6], [7], [8] use machine learning based on image de-

scriptions to distinguish object and scene categories. However,

there can be large variations in viewing and lighting conditions

for real-world scenes, complicating the description of images

and consequently the image category recognition task. This

is illustrated in figure 1. A change in viewpoint will yield

shape variations such as the orientation and scale of the object.

Salient point detection methods and corresponding region

descriptors can robustly detect regions which are translation-

, rotation- and scale-invariant, addressing these viewpoint

changes [9], [10], [11]. In addition, changes in the illumination
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1Software to compute the color descriptors from this paper is available from
http://www.colordescriptors.com

of a scene can greatly affect the performance of object and

scene type recognition if the descriptors used are not robust

to these changes. To increase photometric invariance and

discriminative power, color descriptors have been proposed

which are robust against certain photometric changes [12],

[13], [14], [15], [16]. As there are many different methods to

obtain color descriptors, however, it is unclear what similarities

these methods have and how they are different. To arrange

color invariant descriptors in the context of image category

recognition, a taxonomy is required based on principles of

photometric changes.

Therefore, this paper studies the invariance properties and

the distinctiveness of color descriptors in a structured way.

First, a taxonomy of invariant properties is presented. The

taxonomy is derived by considering the diagonal model of

illumination change [17], [18], [19]. Using this model, a

systematic approach is adopted to provide a set of invariance

properties which achieve different amounts of invariance, such

as invariance to light intensity changes, light intensity shifts,

light color changes and light color changes and shifts. Color

descriptors are tested experimentally with respect to this set

of invariance properties through an object recognition dataset

with known illumination changes [20]. Then, the distinctive-
ness of color descriptors is analyzed experimentally using

two benchmarks from the image domain [21] and the video

domain [22]. The benchmarks are very different in nature:

the image benchmark consists of photographs and the video

benchmark consists of keyframes from broadcast news videos.

However, they share a common characteristic: both contain

the illumination conditions as encountered in the real world.

Based on extensive experiments on this large set of real-

world image data, the usefulness of the different invariant

properties is derived. As a result, new color descriptors can be

designed according to the obtained invariance criteria. Finally,

recommendations are given on which color descriptors to use

under which circumstances and datasets.

This paper is organized as follows. In section II, the

reflectance model is presented. Further, its relation to the diag-

onal model of illumination change is discussed. In section III,

a taxonomy of color descriptors and their invariance properties

is given. The experimental setup is presented in section IV.

In section V, a discussion of the results is given. Finally, in

section VI, conclusions are drawn.
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Fig. 1. Illustration of variations in viewing and illumination conditions for real-world scenes containing potted plants. The potted plants vary in imaging
scale and are imaged under outdoor lighting, indoor lighting and a combination of the two, respectively. Images are from an image benchmark [21].

II. REFLECTANCE MODEL

An image f can be modelled under the assumption of

Lambertian reflectance as follows:

f(x) =
∫

ω

e(λ)ρk(λ)s(x, λ)dλ, (1)

where e(λ) is the color of the light source, s(x, λ) is the

surface reflectance and ρk(λ) is the camera sensitivity function

(k ∈ {R,G,B}). Further, ω and x are the visible spectrum

and the spatial coordinates respectively.
Shafer [23] proposes to add a diffuse term to the model of

eq. (1). In fact, the term includes a wider range of possible

causes than only diffuse light, such as interreflections, infrared

sensitivity of the camera sensor, scattering in the medium or

lens. The diffuse light is considered to have a lower intensity

and to originate from all directions in equal amounts:

f(x) =
∫

ω

e(λ)ρk(λ)s(x, λ)dλ +
∫

ω

A(λ)ρk(λ)dλ, (2)

where A(λ) is the term that models the diffuse light.
By computing the derivative of image f , it can be easily

derived that the effect of a(λ) is cancelled out, since it

is independent of the surface reflectance term. Then, the

reflection model of the spatial derivative of f at location x
on scale σ is given by:

fx,σ(x) =
∫

ω

e(λ)ρk(λ)sx,σ(x, λ)dλ. (3)

Hence, derivatives will yield invariance to diffuse light. The

reflection model of eq. (1) corresponds to the diagonal model

of illumination change under the assumption of narrow band

filters. This is detailed in the next section.

A. Diagonal Model
Changes in the illumination can be modeled by a diagonal

mapping or von Kries Model [18] as follows:

f c = Du,cfu, (4)

where fu is the image taken under an unknown light source,

f c is the same image transformed, so it appears as if it was

taken under the reference light (called canonical illuminant),

and Du,c is a diagonal matrix which maps colors that are taken

under an unknown light source u to their corresponding colors

under the canonical illuminant c:⎛
⎝Rc

Gc

Bc

⎞
⎠ =

⎛
⎝a 0 0

0 b 0
0 0 c

⎞
⎠

⎛
⎝Ru

Gu

Bu

⎞
⎠ . (5)

To include the ‘diffuse’ light term, Finlayson et al. [24]

extended the diagonal model with an offset (o1, o2, o3)T ,

resulting in the diagonal-offset model:⎛
⎝Rc

Gc

Bc

⎞
⎠ =

⎛
⎝a 0 0

0 b 0
0 0 c

⎞
⎠

⎛
⎝Ru

Gu

Bu

⎞
⎠ +

⎛
⎝o1

o2

o3

⎞
⎠ . (6)

The diagonal model with offset term corresponds to eq. (2)

assuming narrow-band filters measured at wavelengths λR,

λG and λB at position x with surface reflectance s(x, λC)
as follows:⎛

⎝ec(λR)
ec(λG)
ec(λB)

⎞
⎠ =

⎛
⎝a 0 0

0 b 0
0 0 c

⎞
⎠

⎛
⎝eu(λR)

eu(λG)
eu(λB)

⎞
⎠ +

⎛
⎝A(λR)

A(λG)
A(λB)

⎞
⎠ . (7)

As the surface reflectance s(x, λC) is equal for both

the canonical and the unknown illuminant, equation (7) is

a simplification of ec(λR)s(x, λR) = aeu(λR)s(x, λR) +
A(λR), ec(λG)s(x, λG) = beu(λG)s(x, λG) + A(λG) and

ec(λB)s(x, λB) = ceu(λB)s(x, λB) + A(λB).
For broad-band cameras, spectral sharpening can be applied

to obtain narrow-band filters [17]. Note that similar to eq. (3),

when image derivatives are taken (first or higher order image

statistics), the offset in the diagonal-offset model will cancel

out.

B. Photometric Analysis
Based on the diagonal model and the diagonal-offset model,

five types of common changes in the image values f(x) are

categorized in this section.
Firstly, for eq. (5), when the image values change by a

constant factor in all channels (i.e. a = b = c), this is equal

to a light intensity change:⎛
⎝Rc

Gc

Bc

⎞
⎠ =

⎛
⎝a 0 0

0 a 0
0 0 a

⎞
⎠

⎛
⎝Ru

Gu

Bu

⎞
⎠ . (8)

In addition to differences in the intensity of the light source,

light intensity changes also include (no-colored) shadows and

shading. Hence, when a descriptor is invariant to light intensity

changes, it is scale-invariant with respect to (light) intensity.
Secondly, an equal shift in image intensity values in all

channels, i.e. light intensity shift, where (o1 = o2 = o3) and

(a = b = c = 1) will yield:⎛
⎝Rc

Gc

Bc

⎞
⎠ =

⎛
⎝Ru

Gu

Bu

⎞
⎠ +

⎛
⎝o1

o1

o1

⎞
⎠ . (9)
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Light intensity shifts are due to diffuse lighting including

scattering of a white light source, object highlights (specular

component of the surface) under a white light source, inter-

reflections and infrared sensitivity of the camera sensor. When

a descriptor is invariant to a light intensity shift, it is shift-
invariant with respect to light intensity.

Thirdly, the above classes of changes can be combined to

model both intensity changes and shifts:⎛
⎝Rc

Gc

Bc

⎞
⎠ =

⎛
⎝a 0 0

0 a 0
0 0 a

⎞
⎠

⎛
⎝Ru

Gu

Bu

⎞
⎠ +

⎛
⎝o1

o1

o1

⎞
⎠ ; (10)

i.e. an image descriptor robust to these changes is scale-

invariant and shift-invariant with respect to light intensity.

Fourthly, in the full diagonal model (i.e. allowing a �=
b �= c), the image channels scale independently (eq. (5)). This

allows for light color changes in the image. Hence, this class

of changes can model a change in the illuminant color and

light scattering, amongst others.

Finally, the full diagonal-offset model (eq. (6)) models

arbitrary offsets (o1 �= o2 �= o3), besides the light color

changes (a �= b �= c) offered by the full diagonal model. This

type of change is called light color change and shift.
In conclusion, five types of common changes have been

identified based on the diagonal-offset model of illumination

change, i.e. variations to light intensity changes, light intensity

shifts, light intensity changes and shifts, light color changes

and light color changes and shifts.

III. COLOR DESCRIPTORS AND INVARIANT PROPERTIES

In this section, color descriptors are presented and their

invariance properties are summarized. First, color descriptors

based on histograms are discussed. Then, color moments

and color moment invariants are presented. Finally, color

descriptors based on SIFT are discussed. These three types

of descriptors were chosen due to their distinct nature and

wide-spread use. Color histograms do not contain local spatial

information and are inherently pixel-based. Color moments do

contain local photometrical and spatial information derived

from pixel values. SIFT descriptors contain local spatial in-

formation and are derivative-based.

See table I for an overview of the descriptors and their

invariance properties. We define invariance of a descriptor to

condition A as follows: under a condition A, the descriptor

is independent of changes in condition A. The independence

is derived analytically under the assumption that no color

clipping occurs. Color clipping occurs when the color of a

pixel falls outside the valid range and is subsequently clipped

to the minimum or maximum of the range. For example, for

a very large scaling of the intensity in eq. (8), color clipping

occurs if the scaled values exceed 255, the maximum value

typically used for image storage.

A. Histograms

RGB histogram The RGB histogram is a combination of

three 1-D histograms based on the R, G and B channels of

the RGB color space. This histogram possesses no invariance

properties.

Opponent histogram The opponent histogram is a combi-

nation of three 1-D histograms based on the channels of the

opponent color space:⎛
⎝ O1

O2

O3

⎞
⎠ =

⎛
⎜⎝

R−G√
2

R+G−2B√
6

R+G+B√
3

⎞
⎟⎠ . (11)

The intensity information is represented by channel O3 and

the color information by O1 and O2. Due to the subtraction

in O1 and O2, the offsets will cancel out if they are equal

for all channels (e.g. a white light source). This is verified by

substituting the unknown illuminant from eq. (9) with offset

o1: (
O1

O2

)
=

(
Rc−Gc√

2
Rc+Gc−2Bc√

6

)

=

(
(Ru+o1)−(Gu+o1)√

2
(Ru+o1)+(Gu+o1)−2(Bu+o1)√

6

)
(12)

=

(
Ru−Gu√

2
Ru+Gu−2Bu√

6

)
.

Therefore, these O1 and O2 are shift-invariant with respect

to light intensity. The intensity channel O3 has no invariance

properties.

Hue histogram In the HSV color space, it is known that the

hue becomes unstable near the grey axis. To this end, Van de

Weijer et al. [14] apply an error propagation analysis to the

hue transformation. The analysis shows that the certainty of the

hue is inversely proportional to the saturation. Therefore, the

hue histogram is made more robust by weighing each sample

of the hue by its saturation. The H color model is scale-

invariant and shift-invariant with respect to light intensity [14].

rghistogram In the normalized RGB color model, the chro-

maticity components r and g describe the color information

in the image (b is redundant as r + g + b = 1):⎛
⎝ r

g
b

⎞
⎠ =

⎛
⎝

R
R+G+B

G
R+G+B

B
R+G+B

⎞
⎠ . (13)

Because of the normalization, r and g are scale-invariant

and thereby invariant to light intensity changes, shadows and

shading [25] from eq. (8):(
r
g

)
=

(
Rc

Rc+Gc+Bc

Gc

Rc+Gc+Bc

)
=

(
aRu

aRu+aGu+aBu

aGu

aRu+aGu+aBu

)

=

(
aRu

a(Ru+Gu+Bu)
aGu

a(Ru+Gu+Bu)

)
=

(
Ru

Ru+Gu+Bu

Gu

Ru+Gu+Bu

)
. (14)

Transformed color distribution An RGB histogram is

not invariant to changes in lighting conditions. However, by

normalizing the pixel value distributions, scale-invariance and

shift-invariance is achieved with respect to light intensity. Be-

cause each channel is normalized independently, the descriptor
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TABLE I
INVARIANCE OF DESCRIPTORS (SECTION III) AGAINST TYPES OF CHANGES IN THE DIAGONAL-OFFSET MODEL AND ITS SPECIALIZATIONS

(SECTION II-B). INVARIANCE IS INDICATED WITH ‘+’, LACK OF INVARIANCE IS INDICATED WITH ‘-’. THE INVARIANCE OF A DESCRIPTOR TO

CONDITION A IS DEFINED AS FOLLOWS: UNDER A CONDITION A, THE DESCRIPTOR IS INDEPENDENT OF CHANGES IN CONDITION A. THE

INDEPENDENCE IS DERIVED ANALYTICALLY UNDER THE ASSUMPTION THAT NO COLOR CLIPPING OCCURS.

Light intensity change Light intensity shift Light intensity change and shift Light color change Light color change and shift0
@

a 0 0
0 a 0
0 0 a

1
A

0
@

R
G
B

1
A

0
@

R
G
B

1
A +

0
@

o1

o1

o1

1
A

0
@

a 0 0
0 a 0
0 0 a

1
A

0
@

R
G
B

1
A +

0
@

o1

o1

o1

1
A

0
@

a 0 0
0 b 0
0 0 c

1
A

0
@

R
G
B

1
A

0
@

a 0 0
0 b 0
0 0 c

1
A

0
@

R
G
B

1
A +

0
@

o1

o2

o3

1
A

RGB Histogram - - - - -
O1, O2 - + - - -
O3, Intensity - - - - -
Hue + + + - -
Saturation - - - - -
r, g + - - - -
Transformed color + + + + +
Color moments - + - - -
Moment invariants + + + + +
SIFT (∇I) + + + - -
HSV-SIFT - - - - -
HueSIFT + + + - -
OpponentSIFT + + + - -
C-SIFT + - - - -
rgSIFT + - - - -
Transf. color SIFT + + + + +
RGB-SIFT + + + + +

is also normalized against changes in light color and arbitrary

offsets: ⎛
⎝ R′

G′

B′

⎞
⎠ =

⎛
⎜⎝

R−μR

σR
G−μG

σG
B−μB

σB

⎞
⎟⎠ , (15)

with μC the mean and σC the standard deviation of the

distribution in channel C computed over the area under

consideration (e.g. a patch or image). This yields for every

channel a distribution where μ = 0 and σ = 1.

B. Color Moments and Moment Invariants

A color image corresponds to a function I defining

RGB triplets for image positions (x, y): I : (x, y) �→
(R(x, y), G(x, y), B(x, y)). By regarding RGB triplets as

data points coming from a distribution, it is possible to define

moments. Mindru et al. [26] have defined generalized color
moments Mabc

pq :

Mabc
pq =

∫ ∫
xpyq[IR(x, y)]a[IG(x, y)]b[IB(x, y)]cdxdy.

(16)

Mabc
pq is referred to as a generalized color moment of order

p + q and degree a + b + c. Note that moments of order 0 do

not contain any spatial information, while moments of degree

0 do not contain any photometric information. Thus, moment

descriptions of order 0 are rotationally invariant, while higher

orders are not. A large number of moments can be created

with small values for the order and degree. However, for larger

values the moments are less stable. Typically, generalized color

moments up to the first order and the second degree are used.

By using the proper combination of moments, it is possible

to normalize against photometric changes. These combinations

are called color moment invariants. Invariants involving only

a single color channel (e.g. out of a, b and c two are 0) are

called 1-band invariants. Similarly there are 2-band invariants

involving only two out of three color bands. 3-band invariants

involve all color channels, but these can always be created by

using 2-band invariants for different combinations of channels.

Color moments The color moment descriptor uses all gen-

eralized color moments up to the second degree and the first

order. This lead to nine possible combinations for the degree:

M000
pq , M100

pq , M010
pq , M001

pq , M200
pq , M110

pq , M020
pq , M011

pq , M002
pq

and M101
pq

†. Combined with three possible combinations for

the order: Mabc
00 ,Mabc

10 and Mabc
01 , the color moment descriptor

has 27 dimensions. These color moments only have shift-

invariance. This is achieved by subtracting the average in all

input channels before computing the moments.

Color moment invariants Color moment invariants can

be constructed from generalized color moments. All 3-band

invariants are computed from Mindru et al. [26]. To be

comparable, the C̃02 invariants are considered. This gives a

total of 24 color moment invariants, which are invariant to all

the properties listed in table I.

C. Color SIFT Descriptors

SIFT The SIFT descriptor proposed by Lowe [9] describes

the local shape of a region using edge orientation histograms.

The gradient of an image is shift-invariant: taking the deriva-

tive cancels out offsets (section II-B). Under light intensity

changes, i.e. a scaling of the intensity channel, the gradi-

ent direction and the relative gradient magnitude remain the

same. Because the SIFT descriptor is normalized, the gradient

magnitude changes have no effect on the final descriptor. The

SIFT descriptor is not invariant to light color changes, because

the intensity channel is a combination of the R, G and B
channels. To compute SIFT descriptors, the version described

by Lowe [9] is used.

HSV-SIFT Bosch et al. [16] compute SIFT descriptors over

all three channels of the HSV color model. This gives 3x128

dimensions per descriptor, 128 per channel. As stated earlier,

†Because it is constant, the moment M000
pq is excluded.
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the H color model is scale-invariant and shift-invariant with

respect to light intensity. However, due to the combination of

the HSV channels, the complete descriptor has no invariance

properties. Further, the instability of the hue for low saturation

is not addressed here.

HueSIFT Van de Weijer et al. [14] introduce a concatenation

of the hue histogram (see section III-A) with the SIFT descrip-

tor. When compared to HSV-SIFT, the usage of the weighed

hue histogram addresses the instability of the hue near the grey

axis. Because the bins of the hue histogram are independent,

the periodicity of the hue channel for HueSIFT is addressed.

Similar to the hue histogram, the HueSIFT descriptor is scale-

invariant and shift-invariant.

OpponentSIFT OpponentSIFT describes all the channels in

the opponent color space (eq. (11)) using SIFT descriptors.

The information in the O3 channel is equal to the intensity

information, while the other channels describe the color infor-

mation in the image. These other channels do contain some

intensity information, but due to the normalization of the SIFT

descriptor they are invariant to changes in light intensity.

C-SIFT In the opponent color space, the O1 and O2

channels still contain some intensity information. To add

invariance to intensity changes, [13] proposes the C-invariant

which eliminates the remaining intensity information from

these channels. The use of color invariants as input for SIFT

was first suggested by Abdel-Hakim and Farag [12]. The

C-SIFT descriptor [15] uses the C invariant, which can be

intuitively seen as the normalized opponent color space O1
O3

and O2
O3

. Because of the division by intensity, the scaling in the

diagonal model will cancel out, making C-SIFT scale-invariant

with respect to light intensity. Due to the definition of the

color space, the offset does not cancel out when taking the

derivative: it is not shift-invariant.

rgSIFT For the rgSIFT descriptor, descriptors are added for

the r and g chromaticity components of the normalized RGB

color model from eq. (13), which is already scale-invariant.

Transformed color SIFT For the transformed color SIFT,

the same normalization is applied to the RGB channels as

for the transformed color histogram (eq. (15)). For every

normalized channel, the SIFT descriptor is computed. The

descriptor is scale-invariant, shift-invariant and invariant to

light color changes and shift.

RGB-SIFT For the RGB-SIFT descriptor, SIFT descriptors

are computed for every RGB channel independently. An

interesting property of this descriptor, is that its descriptor

values are equal to the transformed color SIFT descriptor.

This is explained by looking at the transformed color space

(eq. (15)): this transformation is already implicitly performed

when SIFT is applied to each RGB channel independently.

Because the SIFT descriptor operates on derivatives only, the

subtraction of the means in the transformed color model is

redudant, as this offset is already cancelled out by taking

derivatives. Similarly, the division by the standard deviation

is already implicitly performed by the normalization of the

vector length of SIFT descriptors. Therefore, as the RGB-SIFT

and transformed color SIFT descriptors are equal, we will use

the RGB-SIFT name throughout this paper.

D. Conclusion
In this section, three different groups of color descriptors

were discussed: histograms in different color spaces, color

moments and moment invariants and color extensions of

SIFT. For each color descriptor, the invariance with respect

to illumination changes in the diagonal-offset model were

analyzed. The results are summarized in table I.

IV. EXPERIMENTAL SETUP

In this section, the experimental setup to evaluate the dif-

ferent color descriptors is outlined. The invariance properties

of the color descriptors, which were derived analytically in

the previous section, are verified experimentally as well using

a dataset with known illumination conditions. The distinc-
tiveness of the color descriptors is assessed experimentally

through their discriminative power on the dataset with known

imaging conditions, an image benchmark and a video bench-

mark.
First, implementation details of the descriptors in an object

and scene recognition setting are discussed. Then, the datasets

used for evaluation are described. After discussing these

benchmarks and their datasets, evaluation criteria are given.

A. Feature Extraction Pipelines
To emperically test the different color descriptors, the

descriptors are computed at scale-invariant points [5], [9].

See figure 2 for an overview of the processing pipeline. In

the pipeline shown, scale-invariant points are obtained with

the Harris-Laplace point detector on the intensity channel.

Other region detectors [10], such as the dense sampling

detector, Maximally Stable Extremal Regions [27] and Maxi-

mally Stable Color Regions [28], can be plugged in. For the

experiments, the Harris-Laplace point detector is used because

it has shown good performance for category recognition [5].

This detector uses the Harris corner detector to find potential

scale-invariant points. It then selects a subset of these points

for which the Laplacian-of-Gaussians reaches a maximum over

scale. The color descriptors from section III are computed over

the area around the points. The size of this area depends on

the maximum scale of the Laplacian-of-Gaussians [10].
To obtain fixed-length feature vectors per image, the bag-

of-words model is used [29]. The bag-of-words model is

also known as ‘textons’ [30], ‘object parts’ [31] and ‘code-

books’ [32], [33]. The bag-of-words model performs vector

quantization of the color descriptors in an image against a

visual codebook. A descriptor is assigned to the codebook

element which is closest in Euclidian space. To be independent

of the total number of descriptors in an image, the feature

vector is normalized to sum to 1.
The visual codebook is constructed by applying k-means

clustering to 200, 000 randomly sampled descriptors from the

set of images available for training. In this paper, visual

codebooks with 4, 000 elements are used.
Color descriptor software implementing this processing

pipeline is available from our website2. It performs point sam-

pling, color descriptor computation and vector quantization.

2http://www.colordescriptors.com

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE VOL. X, NO. X, JULY 200X 6

0

1

R e l a t i v e  

f r e que nc y

1 2 3 4 5

Code book  e l e me nt

Fig. 2. The stages of the primary feature extraction pipeline used in this paper. First, the Harris-Laplace salient point detector is applied to the image. Then,
for every point a color descriptor is computed over the area around the point. All the color descriptors of an image are subsequently vector quantized against
a codebook of prototypical color descriptors. This results in a fixed-length feature vector representing the image.

After these steps, an image is represented by a fixed-length

feature vector.

B. Classification

For datasets where only a single training example is avail-

able per object or scene category, a nearest neighbor classifier

is used with χ2 distances between feature vectors F and F ′:

distχ2(�F , �F ′) =
1
2

n∑
i=1

( �Fi − �F ′i )
2

�Fi + �F ′i
, (17)

with n the size of the feature vectors. For notational conve-

nience, 0
0 is assumed to be equal to 0 iff �Fi = �F ′i = 0.

For datasets with multiple training examples, the support

vector machines classifier is used. The decision function of

a support vector machines classifier for a test sample with

feature vector �F ′ has the form:

g( �F ′) =
∑

�F∈trainset

α�F y�F k(�F , �F ′) − β, (18)

where y�F is the class label of �F (−1 or +1), α�F is the

learned weight of train sample �F , β is a learned threshold

and k(�F , �F ′) is the value of a kernel function based on

the χ2 distance, which has shown good results in object

recognition [5]:

k(�F , �F ′) = e−
1
D distχ2 (�F , �F ′), (19)

where D is a scalar which normalizes the distances. We set D
to the average χ2 distance between all elements of the train

set.

The LibSVM implementation [34] is used to train the

classifier. As parameters for the training phase, the weight

of the positive class is set to #pos+#neg
#pos and the weight of

the negative class is set to #pos+#neg
#neg , with #pos the number

of positive instances in the train set and #neg the number

of negative instances. The cost parameter is optimized using

3-fold cross-validation with a parameter range of 2−4 through

24.

To use multiple features, instead of relying on a single

feature, the kernel function is extended in a weighted fashion

for m features:

k({�F(1), ..., �F(m)}, { �F ′(1), ..., �F ′(m)})

= e
− 1Pm

j=1 wj

( Pm
j=1

wj
Dj

dist(�F(j), �F ′
(j))

)
, (20)

with wj the weight of the jth feature, Dj the normalization

factor for the jth feature and �F(j) the jth feature vector.

An example of the use of multiple features is the spatial

pyramid [3]; it is illustrated in figure 3. When using the spatial

pyramid, additional features are extracted for specific parts of

the image. For example, in a 2x2 subdivision of the image,

feature vectors are extracted for each image quarter with a

weight of 1
4 for each quarter. Similarly, a 1x3 subdivision

consisting of three horizontal bars, which introduces three new

features (each with a weight of 1
3 ). In this setting, the feature

vector for the entire image has a weight of 1.

C. Experiment 1: Illumination Changes

The Amsterdam Library of Object Images (ALOI)

dataset [20] contains more than 48,000 images of 1,000

objects, under various illumination conditions. Light intensity

scaling (eq. (8)) and light intensity shifts (eq. (9)) are not

present in the dataset, therefore we have artificially added

these two condition changes to the dataset. The effect of

simultaneous light intensity changes and shifts (eq. (10)) is

a combination of the previous two properties. Since these two

properties are already evaluated individually, we refrain from

evaluating this combined property. The light color change im-

ages from ALOI directly correspond to our light color changes

(eq. (5)). The light color is varied by changing the illumination

color temperature, resulting in objects illuminated under a

reddish to white light. For completeness, the other conditions

present in the ALOI dataset are also included: objects lighted

by a different number of white lights at increasingly oblique

angles (between one and three white lights around the object,

introducing selfshadowing for up to half of the object), object

rotation images and images with different levels of JPEG

compression.

Because only a single training example is available per

object category, the nearest neighbour classifier is used for

the ALOI dataset.

D. Experiment 2: Image Benchmark

The PASCAL Visual Object Classes Challenge [21] pro-

vides a yearly benchmark for comparison of object classifica-

tion systems. The PASCAL VOC Challenge 2007 dataset con-

tains nearly 10,000 images of 20 different object categories,

e.g. bird, bottle, car, dining table, motorbike and people. The

dataset is divided into a predefined train set (5011 images) and

test set (4952 images).
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Fig. 3. Examples of additional feature extraction pipelines used in this paper, besides the primary pipeline shown in figure 2. The pipelines shown are
examples of using a different point sampling strategy or a spatial pyramid [3]. The spatial pyramid constructs feature vectors for specific parts of the image.
For every pipeline, first, a point sampling method is applied to the image. Then, for every point a color descriptor is computed over the area around the point.
All the color descriptors of an image are subsequently vector quantized against a codebook of prototypical color descriptors. This results in a fixed-length
feature vector representing the image.

E. Experiment 3: Video Benchmark

The Mediamill Challenge by Snoek et al. [22] provides an

annotated video dataset, based on the training set of the NIST

TRECVID 2005 benchmark [7]. Over this dataset, repeatable

experiments have been defined. The experiments decompose

automatic category recognition into a number of components,

for which they provide a standard implementation. This pro-

vides an environment to analyze which components affect the

performance most.

The dataset of 86 hours is divided into a Challenge training

set (70% of the data or 30, 993 shots) and a Challenge test

set (30% of the data or 12, 914 shots). For every shot, the

Challenge provides a single representative keyframe image.

So, the complete dataset consists of 43, 907 images, one for

every video shot. The dataset consists of television news from

November 2004 broadcasted on six different TV channels in

three different languages: English, Chinese and Arabic. On

this dataset, the 39 LSCOM-Lite categories [35] are employed.

These include object categories like aircraft, animal, car and

faces, and scence categories such as desert, mountain, sky,

urban and vegetation.

F. Evaluation Criteria

Experiments on the ALOI dataset perform object recogni-

tion using one example: given a query image of an object under

unknown illumination conditions, the top-ranked result should

be equal to the original image of the object for successful

recognition. The percentage of objects where the top-ranked

result is indeed the correct object is used as the performance

on the ALOI dataset.

For our benchmark results, the average precision is taken

as the performance metric for determining the accuracy of

ranked category recognition results. The average precision is

a single-valued measure that is proportional to the area under

a precision-recall curve. This value is the average of the preci-

sion over all images/keyframes judged to be relevant. Hence, it

combines both precision and recall into a single performance

value. For the PASCAL VOC Challenge 2007, the official

standard is the 11-point interpolated average precision, and

for TRECVID, the official standard is the non-interpolated

average precision. The interpolated average precision is an

approximation of the non-interpolated average precision. As

the difference between the two is generally very small, we

will follow the official standard for each dataset and refer to

them as average precision scores. When performing experi-

ments over multiple object and scene categories, the average

precisions of the individual categories are aggregated. This

aggregation, mean average precision, is calculated by taking

the mean of the average precisions. As average precision

depends on the number of correct object and scene categories

present in the test set, the mean average precision depends on

the dataset used.

To obtain an indication of significance, the bootstrap

method [36], [37] is used to estimate confidence intervals for

mean average precision. In bootstrap, multiple test sets TB

are created by selecting images at random from the original

test set T , with replacement, until |T | = |TB |. This has the

effect that some images are replicated in TB , whereas other

images may be absent. This process is repeated 1000 times

to generate 1000 test sets, each obtained by sampling from

the original test set T . The statistical accuracy of the mean

average precision score can then be evaluated by looking at

the standard deviation of the mean average precision scores

over the different bootstrap test sets.
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Experiment 1: Illumination Changes
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Fig. 4. Evaluation of the invariance properties of color descriptors under different illumination conditions, averaged over 1000 objects from the ALOI
dataset [20]. Performance is measured using the percentage of correctly identified objects. For clarity of presentation, the results have been split into two parts.
To allow for easier comparison, SIFT is shown in both the graphs on the left and the graphs on the right. The rows correspond to the invariant properties
from section II, as listed in the graph titles and the equations shown. For light intensity shifts, the axis unit corresponds to image values in the range [0, 255].
For the light color changes, the light color is varied by changing the illumination color temperature, resulting in objects illuminated under a white to reddish
light. Conditions where, on average, more than 50% of the object area is affected by color clipping (due to image values falling outside the range [0, 255])
are marked with a grey background.

V. RESULTS

A. Experiment 1: Illumination Changes

From the results in figure 4, the theoretical invariance

properties of color descriptors are validated. By observing

the results with respect to light intensity changes, the color

descriptors without invariance to this property, such as the

RGB histogram, the opponent color histogram and color

moments, do not perform well. There is a clear distinction in

performance between these descriptors and the invariant de-

scriptors, such as the hue histogram, color moment invariants

and SIFT. Overall, within this group of invariant descriptors,

the SIFT and color SIFT descriptors perform much better than

histogram-based descriptors; they have higher discriminative

power. HueSIFT, which is a combination of the hue histogram

and the SIFT descriptor, falls between these descriptor classes

in terms of performance. The HSV-SIFT descriptor, which is

not invariant to light intensity changes, is the lowest-scoring

SIFT descriptor after HueSIFT. For very large scaling factors,

the performance of all descriptors drops. This is due to color

clipping: scaled image values outside the range [0, 255] are

clipped to 255. In figure 4, a grey background indicates under

which conditions, on average, more than half of all object
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Fig. 5. For completeness, this figure contains the results for color descriptors under different lighting arrangements at increasingly oblique angles (between
one and three of the lights around the object are on, introducing selfshadowing for up to half of the object), different viewpoint angles and different degrees
of JPEG compression, averaged over 1000 objects from the ALOI dataset [20]. Performance is measured using the percentage of correctly identified objects.
For clarity of presentation, the results have been split into two parts. To allow for easier comparison, SIFT is shown in both the graphs on the left and the
graphs on the right.
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pixels have been clipped.

For light intensity shifts, it is shown that the color descrip-

tors which lack invariance, the RGB histogram, the opponent

color histogram and the rghistogram, indeed have reduced

performance. Additionally, color moments and color moment

invariants are affected when the shift amount increases, these

descriptors can only handle small light intensity shifts. The

three color SIFT descriptors which lack shift-invariance, HSV-

SIFT, C-SIFT and rgSIFT, show reduced performance for

large shifts when compared to other SIFT variants, confirming

their lack of invariance.

For light color changes, it is observed that histograms do not

perform well. This is consistent with their lack of invariance.

The exceptions are the transformed color histogram and the

color moment invariants, which do possess invariance to light

color changes and indeed perform much better. For the SIFT-

based descriptors, only HSV-SIFT and HueSIFT degrade in

performance as the light color changes. This is due to their lack

of invariance. Of interest is that some of the descriptors which

are not invariant to light color changes, e.g. OpponentSIFT, C-

SIFT and rgSIFT, are (in practice) largely robust to the light

color changes present in the ALOI dataset.

Besides the evaluation of the invariant properties, there are

also different conditions which can be evaluated using ALOI.

For the lighting arrangement changes, shown in figure 5,

between one and three white lights around the object are turned

on. This leads to shadows, shading and white highlights, e.g.

to both light intensity scaling and shifts (eq. (10)), but also

to partial visibility due to lack of light on certain parts of the

object. In this setting, both the invariant properties and the dis-

criminative power of color descriptors play an important role.

The intensity scale-invariant C-SIFT and rgSIFT perform well,

ahead of the OpponentSIFT descriptor, which is also shift-

invariant. For the RGB-SIFT descriptor, which is invariant to

light color changes in addition to begin scale-invariant and

shift-invariant, the increased invariance comes at the price of

reduced discriminative power: it is behind C-SIFT, rg-SIFT

and OpponentSIFT under this condition. For this condition,

light intensity shifts and light color changes do not occur and

therefore OpponentSIFT and RGB-SIFT are too invariant. A

similar pattern is observed from the results in figure 5 for

viewpoint changes due to object rotation. The scale-invariant

C-SIFT and rgSIFT perform best, and the light intensity shift

invariance offered by OpponentSIFT and RGB-SIFT is not

needed, nor is the light color invariance of RGB-SIFT.

From the results shown in figure 5 for JPEG compres-

sion quality, it can be seen that the hue histogram, the

rghistogram, the transformed color histogram and the color

moment invariants are not robust to even moderate amounts

of compression: compression artifacts cause large deviations

in these descriptors.

In conclusion, changes in lighting conditions affect color

descriptors. However, for object recognition, not just the

invariance of a color descriptor to lighting conditions is

important, but also the distinctiveness of the descriptor. An

invariant descriptor is only useful for visual categorization

when it has sufficient discriminative power as well. Finally,

certain color descriptors are sensitive to compression artifacts,

Experiment 2: Descriptor performance on image benchmark
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Fig. 6. Evaluation of color descriptors on an image benchmark, the PASCAL
VOC Challenge 2007 [21], averaged over the 20 object categories. Error bars
indicate the standard deviation in mean average precision, obtained using
bootstrap. The dashed lines indicate the lower bound of the C-SIFT confidence
interval.

Experiment 2: Descriptor performance split out per category
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Fig. 7. Evaluation of color descriptors on an image benchmark, the PASCAL
VOC Challenge 2007, split out per object category. SIFT and the best four
color SIFT variants from figure 6 are shown.

reducing their usefulness. Although the best choice of color

descriptor depends on the condition, the descriptors with the

best overall performance are C-SIFT, rgSIFT, OpponentSIFT

and RGB-SIFT.

B. Experiment 2: Image Benchmark

From the results shown in figure 6, it is observed that

for object category recognition the SIFT variants perform

significantly better than color moments, moment invariants

and color histograms. The moments and histograms are not

very distinctive when compared to SIFT-based descriptors:

they contain too little relevant information to be competitive

with SIFT.

For SIFT and the four best color SIFT descriptors from

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE VOL. X, NO. X, JULY 200X 11

Experiment 3: Descriptor performance on video benchmark
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Fig. 8. Evaluation of color descriptors on a video benchmark, the Mediamill
Challenge [22], averaged over 39 object and scene categories. Error bars
indicate the standard deviation in mean average precision, obtained using
bootstrap. The dashed line indicates the lower bound of the OpponentSIFT
confidence interval.

figure 6 (OpponentSIFT, C-SIFT, rgSIFT and RGB-SIFT),

the results per object category are shown in figure 7. For

bird, boat, horse, motorbike, person, potted plant and sheep, it

can be observed that the descriptors which perform best have

scale-invariance for light intensity (C-SIFT and rgSIFT). Of

these two scale-invariant descriptors, C-SIFT has the highest

overall performance. The performance of the OpponentSIFT

descriptor, which is also shift-invariant compared to C-SIFT,

indicates that only scale-invariance, i.e. invariance to light

intensity changes, is important for these object categories.

RGB-SIFT includes additional invariance against light inten-

sity shifts and light color changes and shifts when compared

to C-SIFT. However, this additional invariance makes the de-

scriptor less discriminative for these object categories, because

a reduction in performance is observed. This is illustrated by

the examples shown in figure 1 for potted plant, which are

ranked significantly higher for C-SIFT and rgSIFT compared

to OpponentSIFT and RGB-SIFT.

In conclusion, C-SIFT is significantly better than all other

descriptors except rgSIFT (see figure 6) on the image bench-

mark. The corresponding invariant property of both of these

descriptors is given by eq. (8). However, the difference

between the rgSIFT descriptor and OpponentSIFT, which

corresponds to eq. (10), is not significant. Therefore, the best

choice for this dataset is C-SIFT.

C. Experiment 3: Video Benchmark

From the visual categorization results shown in figure 8, the

same overall pattern as for the image benchmark is observed:

SIFT and color SIFT variants perform significantly better than

the other descriptors. The shift-invariant OpponentSIFT has

left C-SIFT behind and is now the only descriptor which

is significantly better than all other descriptors. An analysis

on the individual object and scene categories shows that the

OpponentSIFT descriptor performs best for building, meeting,

mountain, office, outdoor, sky, studio, walking/running and

weather news. All these concepts occur under a wide range

of light intensities and different amounts of diffuse lighting.

Therefore, its invariance to light intensity changes and shifts

makes OpponentSIFT a good feature for these categories, and

explains why it is better than C-SIFT and rgSIFT for the

video benchmark. RGB-SIFT, with additional invariance to

light color changes and shifts, does not differ significantly

from C-SIFT and rgSIFT. For some categories, there is a

small performance gain, for others there is a small loss. This

contrasts with the results on the image benchmark, where a

performance reduction was observed.

In conclusion, OpponentSIFT is significantly better than all

other descriptors on the video benchmark (see figure 8). The

corresponding invariant property is given by eq. (10).

D. Comparison with state-of-the-art

So far, the performance of single descriptors has been

analyzed. It is worthwhile to investigate combinations of

several descriptors, since they are not completely redundant.

State-of-the-art results on the PASCAL VOC Challenge 2007

also employ combinations of several methods. Table II gives

an overview of combinations on this dataset. For example, the

best entry in the PASCAL VOC Challenge 2007, by Marszałek

et al. [38], has achieved a mean average precision of 0.594
using SIFT and HueSIFT descriptors, the spatial pyramid [3],

additional point sampling strategies besides Harris-Laplace

such as Laplacian point sampling and dense sampling, and a

feature selection scheme. When the feature selection scheme

is excluded and simple flat fusion is used, Marszałek reports

a mean average precision of 0.575.

To illustrate the potential of the color descriptors from

table I, a simple fusion experiment has been performed with

SIFT and the best four color SIFT variants (section IV-B

details how the combination is constructed). To be comparable,

a setting similar to Marszałek is used: both Harris-Laplace

point sampling and dense sampling are employed and the

same spatial pyramid is used (see figure 2 for an overview of

the feature extraction pipelines used). In this setting, the best

single color descriptor achieve a mean average precision 0.566.

The combination gives a mean average precision of 0.605. This

convincing gain of 7% suggests that the color descriptors are

not entirely redundant. Compared to the intensity-based SIFT

descriptor, the gain is 8%. Further gains should be possible, if

the descriptors with the right amount of invariance are fused,

preferably using an automatic selection strategy.

As shown in table III, similar gains are observed on the

Mediamill Challenge: mean average precision increases by 7%

when combinations of color descriptors are used, instead of

intensity-based SIFT only. Relative to the best single color

descriptor, an increase of 3% is observed. Furthermore, when

the descriptors of this paper are compared to the baseline

provided by the Mediamill Challenge, there is a relative

improvement of 104%.

For reference, combinations of color descriptors from this

paper were submitted to the PASCAL VOC 2008 bench-

mark [40] and the TRECVID 2008 evaluation campaign [7].

In both cases, top performance was achieved. The color

descriptors as presented in this paper were the foundation of
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TABLE II
IN THIS TABLE, COMBINATIONS OF DESCRIPTORS ON THE IMAGE BENCHMARK ARE COMPARED TO MARSZAŁEK et al. [38], WHO OBTAINS

STATE-OF-THE-ART RESULTS ON THIS DATASET. ADDING COLOR DESCRIPTORS IMPROVES OVER INTENSITY-BASED SIFT ALONE BY 8%.

Combinations on image benchmark
Author Point sampling Descriptor Spatial pyramid Mean average

precision

This paper Harris-Laplace, dense sampling SIFT 1x1+2x2+1x3 0.558
This paper Harris-Laplace, dense sampling C-SIFT 1x1+2x2+1x3 0.566
Marszałek et al. [38] Harris-Laplace, dense sampling, Laplacian SIFT, HueSIFT, other 1x1+2x2+1x3 0.575
Marszałek et al. [38] Harris-Laplace, dense sampling, Laplacian SIFT, HueSIFT, other; with fea-

ture selection
1x1+2x2+1x3 0.594

This paper Harris-Laplace, dense sampling SIFT, OpponentSIFT, rgSIFT,
C-SIFT, RGB-SIFT

1x1+2x2+1x3 0.605

TABLE III
IN THIS TABLE, COMBINATIONS OF DESCRIPTORS ON THE VIDEO BENCHMARK ARE COMPARED TO THE BASELINE SET BY THE MEDIAMILL

CHALLENGE [22] FOR THE 39 LSCOM-LITE CATEGORIES [35]. ADDING COLOR DESCRIPTORS IMPROVES OVER INTENSITY-BASED SIFT ALONE BY 7%.

Combinations on video benchmark
Author Point sampling Descriptor Spatial pyramid Mean average

precision

Snoek et al. [22] Grid Weibull [39] 1x1 0.250
This paper Harris-Laplace, dense sampling SIFT 1x1+2x2+1x3 0.476
This paper Harris-Laplace, dense sampling OpponentSIFT 1x1+2x2+1x3 0.494
This paper Harris-Laplace, dense sampling SIFT, OpponentSIFT, rgSIFT, C-SIFT, RGB-SIFT 1x1+2x2+1x3 0.510

TABLE IV
IN THIS TABLE, RESULTS OF DESCRIPTOR COMBINATIONS FROM THIS PAPER AS SUBMITTED TO THE CLASSIFICATION TASK OF THE PASCAL VOC

CHALLENGE 2008 [40] ARE SHOWN.

PASCAL VOC 2008 evaluation: best overall performance
Author Point sampling Descriptor Spatial pyramid Mean average

precision

This paper and
Tahir et al. [41]

Harris-Laplace, dense sampling SIFT, OpponentSIFT, rgSIFT, C-SIFT, RGB-SIFT 1x1+2x2+1x3 0.549

TABLE V
IN THIS TABLE, RESULTS OF DESCRIPTOR COMBINATIONS FROM THIS PAPER AS SUBMITTED TO THE NIST TRECVID 2008 VIDEO BENCHMARK [7] ARE

SHOWN.

NIST TRECVID 2008 evaluation: best overall performance
Author Point sampling Descriptor Spatial pyramid Inferred mean

average precision

This paper and
Snoek et al. [43]

Harris-Laplace, dense sampling SIFT, OpponentSIFT, rgSIFT, C-SIFT, RGB-SIFT 1x1+2x2+1x3 0.194

these submissions. For additional details, see table IV [41],

[42] and table V [43].

E. Discussion

Using the ALOI dataset, the theoretical invariance properties

of color descriptors were verified experimentally. However,

possessing invariance properties alone is not sufficient to

address category recognition: the descriptor should also be dis-

tinctive and robust to compression artifacts. Several histogram-

based descriptors and color moment invariants were found to

be sensitive to even moderate amounts of compression, thereby

reducing their usefulness. On the other hand, the results show

that the SIFT descriptor and most color extensions of the

SIFT descriptor are robust to compression artifacts. Also,

these SIFT-based descriptors outperform histogram-based and

moment-based descriptors on both image and video category

recognition. Therefore, the rest of this discussion will focus

on the properties of these descriptors in particular.

The results on two category recognition benchmarks show

that SIFT-based descriptors which perform well are all in-

variant to light intensity changes. For light intensity shifts,

the usefulness of invariance depends on the object or scene

category. For those categories in real-world datasets where

large variations in lighting conditions occur frequently, invari-

ance to light intensity shifts is useful. Examples for the image

benchmark are shown in figure 9: normally, sofas are found

indoor. However, the dataset contains samples where the sofa

is photographed outside on the street. As the ranking positions

show, the OpponentSIFT descriptor, which is invariant to

both light intensity changes and shifts, places these samples

higher in the ranking. However, the converse also occurs,

as the example of the potted plants shows. The descriptors
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Positions in Rankings for Image Benchmark
Sofa Sofa Bus Bus

Color Descriptor
OpponentSIFT 769 1053 21 190

C-SIFT 1782 2813 103 591

rgSIFT 3075 1445 161 486

RGB-SIFT 1917 3522 6 11

Potted Plant Potted Plant Potted Plant

Color Descriptor
OpponentSIFT 194 709 1583

C-SIFT 8 19 43
rgSIFT 10 18 63

RGB-SIFT 264 2627 706

Fig. 9. From the PASCAL VOC Challenge 2007 [21], several positive examples for the object categories sofa, bus and potted plant are shown, together with
their position in the ranked list of category recognition results for four different color descriptors. If, for one or more color descriptors, the ranked position
is notably better than for the other color descriptors, it has been bold-faced. The ranking has 4952 elements.

Positions in Rankings for Video Benchmark
Building Building Vegetation Vegetation

Color Descriptor
OpponentSIFT 26 34 1035 304

C-SIFT 677 2719 53 1
rgSIFT 1113 1512 111 46

RGB-SIFT 102 35 954 921

Fig. 10. From the Mediamill Challenge [22], several positive examples for the categories building and vegetation are shown, together with their position in
the ranked list of category recognition results for four different color descriptors. If, for one or more color descriptors, the ranked position is notably better
than for the other color descriptors, it has been bold-faced. The ranking has 12914 elements.

which are only scale-invariant place the samples higher in the

ranking, and the shift-invariant OpponentSIFT and RGB-SIFT

descriptors lag behind. For the video benchmark, figure 10

shows similar examples of both phenomena for buildings and

vegetation.

From the results, it can be noticed that invariance to light

color changes and shifts is domain-specific. For the image

dataset, a significant reduction in performance was observed,

whereas for the video dataset, there was no performance differ-

ence. However, there are specific samples where invariance to

light color changes provides a benefit. An example is shown

in figure 9 for busses: the bus illuminated by a setting sun

benefits from light color invariance, as does the bus illuminated

by red light tubes. Invariance to light intensity changes and

shifts is not sufficient for the latter sample. However, the

overall performance is not improved by light color invariance,

TABLE VI
THE RECOMMENDED CHOICE OF DESCRIPTORS FOR DIFFERENT

DATASETS: THE PASCAL VOC 2007, MEDIAMILL CHALLENGE AND

DATASETS WHERE NO PRIOR KNOWLEDGE ABOUT THE LIGHTING

CONDITIONS OR THE OBJECT AND SCENE CATEGORIES IS AVAILABLE.
WITHOUT SUCH PRIOR KNOWLEDGE, OPPONENTSIFT IS THE BEST

CHOICE.

Recommended Color Descriptors Per Dataset
PASCAL VOC 2007 Mediamill Challenge Unknown Data
1. C-SIFT 1. OpponentSIFT 1. OpponentSIFT
2. OpponentSIFT 2. RGB-SIFT 2. C-SIFT
3. RGB-SIFT 3. C-SIFT 3. RGB-SIFT
4. SIFT 4. SIFT 4. SIFT

presumably because light color changes are quite rare in both

benchmarks due to the white balancing performed during data

recording.
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Overall, when choosing a single descriptor and no prior

knowledge about the dataset and object and scene categories is

available, the best choice is OpponentSIFT. The correspondig

invariance property is scale- and shift-invariance, given by

eq. (10). Second best is C-SIFT for which the corresponding

invariance property is scale-invariance, given by eq. (8). Ta-

ble VI summarizes the recommendations for the datasets from

this paper and datasets where no prior knowledge is available.

To obtain state-of-the-art performance on real-world

datasets with large variations in lighting conditions, multiple

color descriptors should be chosen, each one with a differ-

ent amount of invariance. As shown earlier, even a simple

combination of color descriptors improves over the individual

descriptors, suggesting that they are not completely redundant.

This is illustrated by the keyframes shown in figure 10:

depending on the visual category, the OpponentSIFT and C-

SIFT descriptors both show their strong points. Results on the

two categorization benchmarks have shown that the choice of a

single descriptor for all categories is suboptimal (see figure 7).

While the addition of color improves category recognition by

8–10% over intensity-based SIFT only, further gains should

be possible if the descriptor with the appropriate amount

of invariance is selected per category, using either a feature

selection strategy or domain knowledge.

VI. CONCLUSION

In this paper, the invariance properties of color descriptors

are studied using a taxonomy of invariance with respect to

photometric transformations, see table I for an overview.

These invariance properties were validated using a dataset with

known photometric changes. In addition, the distinctiveness

of color descriptors is assessed experimentally using two

benchmarks from the image domain and the video domain. On

these benchmarks, the addition of color descriptors over SIFT

improves category recognition by 8% and 7%, respectively.

From the theoretical and experimental results, it can be

derived that invariance to light intensity changes and light

color changes affects object and scene category recognition.

The results reveal further that, for light intensity shifts, the

usefulness of invariance is category-specific. Therefore, a color

descriptor with an appropriate level of invariance should be

selected for automated recognition of individual object and

scene categories. Overall, when choosing a single descriptor

and no prior knowledge about the dataset and object and scene

categories is available, the OpponentSIFT is recommended.

Finally, a proper combination of color descriptors improves

over the individual descriptors.
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