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Accurate Eye Center Location through Invariant
Isocentric Patterns
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Abstract—Locating the center of the eyes allows for valuable information to be captured and used in a wide range of applications.
Accurate eye center location can be determined using commercial eye-gaze trackers, but additional constraints and expensive hardware
make these existing solutions unattractive and impossible to be used on standard (i.e. visible wavelenght), low resolution images of
eyes. Systems based solely on appearance are proposed in literature, but their accuracy does not allow to accurately locate and
distinguish eye centers movements in these low resolution settings. Our aim is to bridge this gap by locating the center of the eye
within the area of the pupil on low resolution images, taken from a webcam or a similar device. The proposed method makes use of
isophote properties to gain invariance to linear lighting changes (contrast and brightness), to achieve in plane rotational invariance,
and to keep low computational costs. To further gain scale invariance, the approach is applied to a scale space pyramid. In this paper,
we extensively test our approach for its robustness to changes in illumination, head pose, scale, occlusion and eye rotation . We
demonstrate that our system can achieve a significant improvement in accuracy over state of the art techniques for eye center location
in standard low resolution imagery.

Index Terms—Eye center location, isophotes, facial features detection.
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1 INTRODUCTION

As shown by increasing interest on the subject [8], [22], [28],

eye center location is an important component in many com-

puter vision applications and research. In fact, the information

about the location of the eye center is commonly used in appli-

cations as face alignment, face recognition, human-computer

interaction, control devices for disabled people, user attention

and gaze estimation (e.g. driving and marketing) [21], [6]. Eye

center location techniques can be divided into three distinct

categories which employ different modalities [15]: (1) Electro

oculography, which records the electric potential differences

of the skin surrounding the ocular cavity; (2) scleral contact

lens/search coil, which makes use of a mechanical reference

mounted on a contact lens, and (3) photo/video oculography,

which uses image processing techniques to locate the center of

the eye. The highly accurate eye center information obtained

through the mentioned modalities is often used in eye-gaze

trackers to map the current position of the eyes to a known

plane (i.e. a computer screen) as a user’s visual gaze estimate.

Unfortunately, the common problem of the above techniques

is the requirement of intrusive and expensive sensors [4]. In

fact, while photo/video oculography is considered the least

invasive of the described modalities, commercially available

eye-gaze trackers still require the user to be either equipped

with a head mounted device, or to acquire high resolution

eye images through zoomed cameras [9] combined with a

chinrest to limit the allowed head movement. Furthermore,

daylight applications are precluded due to the common use
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of active infrared (IR) illumination to obtain accurate eye

location through corneal reflection [35]. Approaches that fuse

IR and appearance based modalities are also proposed in

literature [50], but dedicated hardware is still required.

In situations in which a closed up/infrared image of the

eye is not available, the low resolution information about the

location of the center of the eye is still very useful for a

large number of applications (e.g. detecting gaze aversion,

estimating the area of interest, automatic red eye reduction,

landmarking, face alignment, gaming, and HCI). Therefore,

in this paper we want to focus on appearance based eye

locators which can operate when infrared corneal reflections or

high resolution eye images are not available. Many appearance

based methods for eye center locators in low resolution settings

are already proposed in literature, which can be roughly

divided in three methodologies: (1) Model based methods, (2)

Feature based methods and (3) Hybrid methods.

The model based methods make use of the holistic ap-

pearance of the eye (or even of the face). These approaches

often use classification of a set of features or the fitting of a

learned model to estimate the location of the eyes (possibly in

combination with other facial features). By using the global

appearance, model based methods have the advantage of being

very robust and accurate in detecting the overall eye locations.

However, as the success of these methods depends on the

correct location of many features or the convergence of a full

model, the importance of eye center location is often neglected

due to its variability and learned as being in the middle of the

eye model or of the two eye corner features. Therefore, in

these cases, since the rest of the model is still correct and

the minimization function satisfied, these methods are usually

not very accurate when they are faced with subtle eye center

movements.

On the contrary, features based methods use well known eye
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Method Pre-Requirements Approach Uses Learning Used Feature Used Model/Learning Scheme

Asteriadis [2] Detected face Feature Based - Edges Eye model for init + edge crossing count
Jesorsky [27] Converged face model Model Based X Edges Hausdorff distance on eye model
Cristinacce [13] Detected face Model Based X Pixels PRFR + AAM
Türkan [42] Detected face Hybrid X Edges SVM
Bai [3] Detected face Feature Based - Gradient -
Wang [47], [48] Detected face Model Based X RNDA Boosted classifiers cascade
Campadelli [7] Detected face Hybrid X Haar Wavelets SVM
Hamouz [24] Correct constellation Model Based X Gabor filters Constellation of face features + GMM
Kim [30] Normalized face images Model Based X Gabor jets Eye model bunch
Niu [36] Detected face Model Based X Haar Wavelets Boosted classifiers cascade
Wang [46] Both eyes visible Hybrid X Topographic labels SVM
Huang [26] Detected face Hybrid X Mean, std, entropy Genetic Algorithms + Decision trees
Reale [38] Detected face Model Based - Pixels Circle Fitting
Asadifard [1] Detected face Feature Based - Pixels CDF filtering
Timm [41] Detected face Feature Based - Gradient -
Kroon [32] Detected face Model Based X Pixels Elastic bunch graph + LDA
Our basic method Detected face Feature Based - Isophotes -
Our enhanced method Detected face Hybrid X SIFT kNN

TABLE 1
Differences between the methods discussed in this paper.

properties (i.e. symmetry) to detect candidate eye centers from

simple local image features (e.g. corners, edges, gradients),

without requiring any learning or model fitting. Therefore,

when the feature based methods are not confused by noise

or surrounding features, the resulting eye location can be very

accurate. However, as the detected features might often be

wrong, the feature based methods are less stable then the

model based ones.

Finally, in the hybrid methods, the multiple candidate eye

locations obtained by a feature based method are discriminated

by a classification framework, therefore using a previously

learned eye model to achieve better accuracy.

Within the state of the art methods in each of the described

methodologies, we studied the following subset: The method

proposed by Asteriadis et al. [2] assigns a vector to every

pixel in the edge map of the eye area, which points to the

closest edge pixel. The length and the slope information of

these vectors is consequently used to detect and localize the

eyes by matching them with a training set. Jesorsky et al. [27]

proposed a face matching method based on the Hausdorff dis-

tance followed by a Multi-Layer Perceptron (MLP) eye finder.

Cristinacce et al. [13], [12] utilize a multistage approach to

detect facial features (among them the eye centers) using a

face detector, Pairwise Reinforcement of Feature Responses

(PRFR), and a final refinement by using Active Appearance

Model (AAM) [11]. Türkan et al. [42] apply edge projection

(GPF) [49] and support vector machines (SVM) to classify

estimates of eye centers. Bai et al. [3] exploit an enhanced

version of Reisfeld’s generalized symmetry transform [39] for

the task of eye location. Wang et al. [47], [48] use statistically

learned non-parametric discriminant features combined into

weak classifiers, using the AdaBoost algorithm. Hamouz et
al. [24] search for ten features using Gabor filters, use

features triplets to generate face hypothesis, register them

for affine transformations, and finally verify the remaining

configurations using two SVM classifiers. Campadelli et al.
[7] employ an eye detector to validate the presence of a face

and to initialize an eye locator, which in turn refines the

position of the eye using SVM on optimally selected Haar

wavelet coefficients. Duffner [16] makes use of convolutional

neural networks. The method by Niu et al. [36] uses a

iteratively bootstrapped boosted cascade of classifiers. Kim

et al. [30] discuss a multi-scale approach to localize eyes

based on Gabor vectors. Wang et al. [46] treat faces as a

3D landscape, and they use the geometric properties of this

terrain to extract potential eye regions. These candidates are

then paired and classified using a Bhattacharyya kernel based

SVM. Huang and Wechsler [26] also treat the face image as a

landscape, where final state automata are genetically evolved

to walk the landscape and derive a saliency map for the best

plausible location of the eyes. These salient regions are then

classified as eyes by using genetically evolved decision trees.

Reale et al. [38] map the 2D eye texture to a 3D eye ball,

then fit a circle to the iris to find the optimal eye ball rotation.

Asadifard and Shanbezadeh [1] filter the eye image to find

pixel values which are likely to belong to the pupil in an

adaptive manner. Timm and Barth [41] use the gradient field

to find the most probable eye center. Finally, Kroon et al. [32]

apply a Fisher Linear Discriminant to filter the face image and

select the highest responses as eye center.

A summary of the characteristics of the discussed literature

is presented in Table 1.

As indicated by the last lines of Table 1, this paper will

describe a feature based eye center locator which can quickly,

accurately, and robustly locate eye centers in low resolution

images and videos (i.e. coming from a simple web cam).

Further, this paper will also show how the method is easily ex-

tended into a hybrid approach. Hence, we made the following

contributions:

• A novel eye location approach is proposed, which is

based on the observation that eyes are characterized

by radially symmetric brightness patterns. Contrary to

other approaches using symmetry to accomplish the same

task [3], our method makes use of isophotes (Section 2)

to infer the center of (semi)circular patterns and gain

invariance to in-plane rotation and linear lighting changes.

• A novel center voting mechanism (Section 3) based on

gradient slope is introduced in the isophote framework

to increase and weight important votes to reinforce the

center estimates.
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(a) (b) (c)

Fig. 1. The original image (a), its isophote curvature at
the edges (b), and the 3D plot of the latter (c).

• The integration of our method in a scale space framework

to find the most stable results.

In this paper we study the accuracy and the robustness of

the proposed approach to lighting, occlusion, pose and scale

changes, and compare the obtained results with the state

of the art systems for eye location in standard (i.e. visible

wavelength), low resolution imagery (Section 4).

2 ISOPHOTES CURVATURE ESTIMATION

The iris and pupil are very prominent circular features which

are characterized by an approximately constant intensity along

the limbus (the junction between the sclera and the iris),

and the iris and the pupil. We can therefore represent these

features using isophotes, which are curves connecting points

of equal intensity (one could think of isophotes as contour lines

obtained by slicing the intensity landscape with horizontal

planes). Since isophotes do not intersect each other, an image

can be fully described by its isophotes. Furthermore, the shape

of the isophotes is independent to rotation and linear lighting

changes [33]. Due to these properties, isophotes have been

successfully used as features in object detection and image

segmentation [18], [29], [33].

To better illustrate the isophote framework, the notion of

intrinsic geometry is introduced, i.e. geometry with a locally

defined coordinate system. In every point of the image, a

local coordinate frame is fixed in such a way that it points

in the direction of the maximal change of the intensity, which

corresponds to the direction of the gradient. This reference

frame {v, w} is also referred to as the gauge coordinates. Its

frame vectors ŵ and v̂ are defined as:

ŵ =
{Lx, Ly}√
L2
x + L2

y

; v̂ = ⊥ŵ; (1)

where Lx and Ly are the first-order derivatives1 of the lumi-

nance function L(x, y) in the x and y dimension, respectively.

In this setting, a derivative in the w direction is the gradient

itself, and the derivative in the v direction (perpendicular to

the gradient) is 0 (no intensity change along the isophote).

In this coordinate system, an isophote is defined as

L(v, w(v)) = constant and its curvature is defined as the

1. In our implementation, we use the fast anisotropic Gauss filtering method
proposed in [20] to compute image derivatives. The used sigma parameter is
equal in both direction (isotropic), with a rotation angle of 0◦

(a) (b) (c)

Fig. 2. A detail showing the direction of the gradient under
the image’s edges (a), the displacement vectors pointing
to the isophote centers (b), and the centermap (c).

change w′′ of the tangent vector w′. By implicit differentiation

with respect to v of the isophote definition, we obtain:

Lv + Lww
′ = 0; w′ = − Lv

Lw
. (2)

Since Lv = 0 from the gauge condition, then w′ = 0.

Differentiating again with respect to v, yields

Lvv + 2Lvww
′ + Lwww

′2 + Lww
′′ = 0. (3)

Solving for κ = w′′ (the isophote curvature) and recalling that

w′ = 0, the isophote curvature is obtained as

κ = −Lvv

Lw
. (4)

In Cartesian coordinates, this becomes [14], [44], [25]

κ = −Lvv

Lw
= −L2

yLxx − 2LxLxyLy + L2
xLyy

(L2
x + L2

y)
3/2

. (5)

To better illustrate the effect of the theory on an image,

a simplistic eye model is used, shown in Figure 1(a). The

isophote curvature of the eye model is shown in Figure 1(b).

For presentation purposes, the shown curvature belongs to

the isophote under the edges found in the image using a

Canny operator. The crown-like shape of the values in the

3D representation (Figure 1(c)) is generated by the aliasing

effects due to image discretization. By scaling2 the original

image this effect is reduced, but at higher scales the isophotes

curvature might degenerate with the inherent effect of losing

important structures in the image.

3 ISOPHOTE CENTERS

For every pixel, we are interested in retrieving the center

of the circle which fits the local curvature of the isophote.

Since the curvature is the reciprocal of the radius, Eq. (5)

is reversed to obtain the radius of this circle. The obtained

radius magnitude is meaningless if it is not combined with

orientation and direction. The orientation can be estimated

from the gradient, but its direction will always point towards

the highest change in the luminance (Figure 2(a)). However,

the sign of the isophote curvature depends on the intensity of

the outer side of the curve (for a brighter outer side the sign

is positive). Thus, by multiplying the gradient with the inverse

2. Scale in this context represents the standard deviation of the Gaussian
kernel or its derivatives with which the image is convolved. See [14], [31] for
more details.
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(a) (b) (c)

Fig. 3. A sphere illuminated from above and casting a
shadow (a), a sample of the isophotes superimposed to
the image (b), the curvedness value of the same image
(c).

of the isophote curvature, the sign of the isophote curvature

helps in disambiguating the direction to the center. Since the

unit gradient can be written as
{Lx,Ly}

Lw
, we have

{Dx, Dy} =
{Lx, Ly}

Lw

(
− Lw

Lvv

)
= −{Lx, Ly}

Lvv

= − {Lx, Ly}(L2
x + L2

y)

L2
yLxx − 2LxLxyLy + L2

xLyy
. (6)

where {Dx, Dy} are the displacement vectors to the esti-

mated position of the centers, which can be mapped into an

accumulator, hereinafter “centermap”. Note that sometimes

the isophote curvature could assume extremely small or big

values. This indicates that we are dealing with a “straight line”

or a “single dot” isophote. Since the estimated radius to the

isophote center would be too high to fall into the centermap

or too little to move away from the originating pixel, the

calculation of the displacement vectors in these extreme cases

can simply be avoided. The set of vectors pointing to the

estimated centers are shown in Figure 2(b). When compared

to Figure 2(a), it is possible to note that the vectors are now all

correctly directed towards the center of the circular structures.

Figure 2(c) represents the cumulative vote of the vectors

for their center estimate (i.e. the accumulator). Since every

vector gives a rough estimate of the center, the accumulator

is convolved with a Gaussian kernel so that each cluster of

votes will form a single center estimate. The contribution of

each vector is weighted according to a relevance mechanism,

discussed in the following section.

3.1 Center Voting

So far an edge-based approach and a simplistic eye model

were used to ease the explanations. Instead of using the peaks

of the gradient landscape (i.e. edges), we propose to use the

slope information around them, as they contain much more

information.

In the simplistic eye model in Figure 1(a) there are only

three isophotes: one describing the pupil, one describing

the iris and one describing the boundary of the sclera. By

convolving the eye model with a Gaussian kernel, it can be

observed that the number of isophotes increases around the

edges as the steepness of the edge decreases, and that each

of these new isophotes is similar to the original isophotes

(besides some creations and annihilations), so they can be used

(a) (b) (c)

Fig. 4. The obtained centermap (a), the edges that
contributed to the vote of the MIC (b), the average of the
two biggest clusters of radiuses which voted for the found
MIC (c).

to generate additional evidence to vote for a correct center. The

main idea is that by collecting and averaging local evidence of

curvature, the discretization problems in a digital image could

be lessened and an invariant and accurate eye center estimation

could be achieved.

Contrary to the shown example, in real world environments

there are no guarantees that the boundaries of an object are of

the same intensity, i.e. that there is a sole isophote under the

object’s edges. In this case, allowing every single isophote to

vote for a center will produce meaningless results since, due

to highlights and shadows, the shape of the isophotes signif-

icantly differs from the shape of the object (Figure 3(a)(b)).

In order to cope with this drawback, only the parts of the

isophotes which are meaningful for our purposes should be

considered.

To this end, an image operator that indicates how much a

region deviates from flatness is needed. This operator is the

curvedness [31], defined as

curvedness =
√
L2
xx + 2L2

xy + L2
yy. (7)

The curvedness can be considered as a rotational invariant

gradient operator, which measures the degree of steepness

of the gradient. Therefore, it yields low response on flat

surfaces and edges, whereas it yields high response around the

edges (Figure 3(c)). Since isophotes are slices of the intensity

landscape, there is a direct relation between the value of the

curvedness and the density of isophotes. Therefore, denser

isophotes are likely to belong to the same feature (i.e. edge)

and thus locally agree on the same center. A comparison

between Figures 3(b) and 3(c) shows this relation between

the curvedness and the image isophotes. It is clear that the

curvedness is higher where the isophotes are denser. Therefore,

by only considering the isophotes where the curvedness is

maximal, they will likely follow an object boundary. The

advantage of the proposed approach over a pure edge based

method is that, by using the curvedness value as the weighting

scheme for the importance of the vote, every pixel in the image
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may be used to contribute to a final decision. By summing the

votes, we obtain high responses around the center of isocentric

isophotes patterns. We call these high responses “isocenters”,

or ICs. The maximum isocenter (MIC) in the centermap will

be used as the most probable estimate for the soughtafter

location of the center of the eye.

3.2 Eye Center Location
Recalling that the sign of the isophote curvature depends on

the intensity of the outer side of the curve, it can be observed

that a negative sign indicates a change in the direction of the

gradient (i.e. from brighter to darker areas). Therefore, it is

possible to discriminate between dark and bright centers by

analyzing the sign of the curvature. Regarding the specific task

of pupil and iris location, it can be assumed that the sclera is

brighter than the iris and the pupil, therefore the votes which

move from darker to brighter areas (i.e. in which the curvature

agrees with the direction of the gradient), can be simply

ignored in the computation of the isocenters. This allows the

method to cope with situations in which strong highlights are

present (e.g. when using an infrared illuminator or in the eye

images in Figure 4), as long as the circular pattern of the eye

is not heavily disrupted by them. Once the MIC is found, it

is possible to retrieve a distribution of the most relevant radii

(i.e. the pupil and the iris) by clustering together the distance

to the pixels which voted for it. Figure 4 shows the results of

the procedure applied on two high resolution images of eyes.

Note from Figure 4(b) that the vote contribution coming from

highlights are not considered in the computation of the MIC.

3.3 Eye Center Location: Scale and Scale Space
Although the proposed approach is invariant to rotation and

linear illumination changes, it still suffers from changes in

scale. While in the previous work [43] the scale problem

was solved by exhaustively searching for the scale value that

obtained the best overall results, here we want to gain scale

independence in order to avoid adjustments to the parameters

for different situations. Firstly, since the sampled eye region

depends on the scale of the detected face and on the camera

resolution, to improve scale independency each eye region

is scaled to a reference window. While this technique is

expected to slightly decrease the accuracy with respect to the

previously proposed approach (due to interpolation artifacts),

once the correct scale values are found for the chosen reference

window, the algorithm can be applied at different scales

without requiring an exhaustive parameter search.

Furthermore, to increase robustness and accuracy, a scale

space framework is used to select the isocenters that are stable

across multiple scales. The algorithm is applied to an input

image at different scales and the outcome is analyzed for stable

results. To this end, a Gaussian pyramid is constructed from

the original grayscale image. The image is convolved with

different Gaussians so that they are separated by a constant

factor in scale space. In order to save computation, the image

is downsampled into octaves. In each octave the isocenters

are calculated at different intervals: for each of the image

in the pyramid, the proposed method is applied by using

the appropriate σ as a parameter for image derivatives. In

our experiments (Section 4), we used three octaves and three

intervals for each octave (as in [34]). This procedure results in

a isocenters pyramid (Figure 5). The responses in each octave

are combined linearly, then scaled to the original reference

size to obtain a scale space stack. Every element of the scale

space stack is considered equally important therefore they are

linearly summed into a single centermap. The highest peaks in

the resulting centermap will represent the most scale invariant

isocenters.

3.4 Eye Center Location: Mean Shift and Machine
Learning

Although the MIC should represent the most probable location

for the eye center, certain lighting conditions and occlusions

from the eyelids are expected to result in a wrong MIC. In or-

der to avoid obtaining other isocenters as eye center estimates,

two additional enhancements to the basic approach presented

in the previous section are proposed, the first using mean shift

for density estimation and the second using machine learning

for classification.

Mean shift (MS) usually operates on back-projected images

in which probabilities are assigned to pixels based on the

color probability distribution of a target, weighted by a spatial

kernel over pixel locations. It then finds the local maximum

of this distribution by gradient ascent [10]. Here, under the

assumption that the most relevant isocenter should have higher

density of votes, the mean shift procedure is directly applied

to the centermap as if it was a distribution. Since wrong

MICs are not so distant from the correct one (e.g. on an eye

corner), the mean shift search window is initialized centered

on the found MIC, with dimensions equal to half the detected

eye region’s height and width. The algorithm then iterates to

climb the centermap and converge to a region with maximal

density of center votes. The isocenter closest to the center of

the converged search window is then selected as the new eye

center estimate.

Machine Learning: instead of considering the strongest

isocenter as eye center estimate, the aim is to consider the n
most relevant ones and to discriminate between them using

any classification framework. In this way, the task of the

classifier is simplified as it only has to deal with a two class

problem (eye center or not) and to discriminate between a

couple of features (centered on the n most relevant isocenters).

Note that the final performance of the system will always be

bounded by the quality of the candidate locations (more on

this in Section 4.3). For our experimentation, two different

input features are used, centered on the candidate isocenters: 1)

the pixel intensity sampled from a fixed window (dimensions

depending on the detected face boundary) scaled to a 256

dimensional feature vector and 2) a SIFT [34] based descriptor,

which differs from the SIFT as it does not search for scale

invariant features, since the location of the feature is already

known. Removing invariances from SIFT in an application-

specific way has been shown to improve accuracy in [40].

The reasoning behind the choice of these two specific

features is that 1) intensity is a rich source of information,
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Fig. 5. The scale space framework applied to eye location: the grayscale image is downscaled to different octaves,
each octave is divided into intervals. For each interval, the centermap is computed and upscaled to a reference size
to obtain a scale space stack. The combination of the obtained results gives the scale invariant isocenters.

Method Pixels Sift
Fisher Discriminant 14.05% 10.82%
Nearest Mean 30.75% 14.02%
Scaled nMean 30.38% 13.54%
Parzen 7.36% 6.92%
Neural Network 25.00% 29.38%
kNN 7.78% 6.10%

TABLE 2
Mean errors obtained by some of the tested classification
methods on the raw pixels and the SIFT-like descriptor.

and should naturally be included as baseline and 2) SIFT

features have been shown to yield good generalization due

to the reduced feature space and robustness. Both descriptors

are computed on the original image, centered on the location

of each of the candidate isocenters. Afterwards, the obtained

descriptors are scaled to a reference size.

The following classification frameworks were selected to

be representative of different classification approaches which

are sensible to the selected features and method [17]: A one-

against-all linear Fisher discriminant; A nearest mean and a

scaled nearest mean classifier (in which the features are scaled

to fit a normal distribution); A Parzen density estimator with

feature normalization for each class based on variance; An

automatically trained feed-forward neural network classifier

with a single hidden layer; A kNN classifier, where k is

optimized with respect to the leave-one-out error obtained

from the database.

For the sake of completeness, the obtained classification

results are shown in Table 2. We have used 10-fold cross-

validation in each experiment on the BioID database (de-

scribed in the next section), where both training and validation

folds are actually selected from the original training set. The

test set, on which we report our overall results, is not seen

during cross-validation. Given the simplicity of the problem,

it is not surprising that the kNN classifier with the more

robust SIFT-based descriptor is able to achieve the best results

(Table 2). This is because the features are extracted around a

point suggested by our method, hence it is quite likely that

the training and testing feature vectors will not be exactly

aligned (e.g. it not always centered on the eye center or the

eye corner). Hence, the robustness of the feature descriptor to

minor perturbations from the target location plays an important

role, and SIFT provides for this by allowing overlaps in shifted

vectors to result in meaningful similarity scores. In view of

the high accuracies, computational cost is also a major guiding

factor, hence the combination of the SIFT based feature and

the kNN classification framework is used in the evaluation as

an example of a hybrid variant of our method.

4 EVALUATION

So far, high resolution images of eyes have been used as

examples. In this section, the proposed method is tested on low

resolutions eye images, e.g. coming from face images captured

by a web cam. Additionally, the method is tested for robustness

in changes in pose, illumination, scale and occlusion.

4.1 Procedure and Measures

In order to obtain low resolution eye images from face images

in the used test sets, the face position of each subject is

estimated by using the boosted cascade face detector proposed

by Viola and Jones [45]3. The rough positions of the left

and right eye regions are then estimated using anthropometric

relations4. The proposed procedure is then applied to the

cropped eye regions in order to accurately locate the center

of the eye.

The normalized error, indicating the error obtained by the

worse eye estimation, is adopted as the accuracy measure

for the found eye locations. This measure was proposed by

Jesorsky et al. [27] and is defined as:

e =
max(dleft, dright)

w
, (8)

3. The OpenCV implementation with default parameters is used in our
experiments, discarding false negatives from the test set

4. We empirically found that, in the used datasets, eye centers are always
contained within two regions starting from 20%x30% (left eye) and 60%x30%
(right eye) of the detected face region, with dimensions of 25%x20% of the
latter.
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Fig. 6. Sample of success (first row) and failures (second row) on the BioID face database; a white dot represents the
estimated center.

(a) MIC (b) MIC+MS (c) MICs+ SIFT kNN

Fig. 7. Accuracy vs. minimum (better eye) and maximum (worse eye) normalized error obtained by the proposed
methods on the BioID database.

where dleft and dright is the Euclidean distance between the

found left and right eye centers and the ones in the ground

truth, and w is the Euclidean distance between the eyes in the

ground truth. In this measure, e ≤ 0.25 (a quarter of the inte-

rocular distance) roughly corresponds to the distance between

the eye center and the eye corners, e ≤ 0.1 corresponds to

the range of the iris, and e ≤ 0.05 corresponds the range of

the pupil. To give upper and lower bounds to the accuracy, in

our graphs (Figures 7 and 9) the minimum normalized error
(obtained by considering the better eye estimation only) and

an average between the better and worse estimation are also

shown. These values are also needed in order to compare our

results with other published works which make use of the

normalized error measure in a non standard way.

4.2 Results
The BioID [5] and the color FERET [37] databases are used

for testing. The BioID database consists of 1521 grayscale

images of 23 different subjects and has been taken in different

locations and at different times of the day (i.e. uncontrolled

illumination). Besides changes in illumination, the positions

of the subjects change both in scale and pose. Furthermore,

in several samples of the database the subjects are wearing

glasses. In some instances the eyes are closed, turned away

from the camera, or completely hidden by strong highlights

on the glasses. Due to these conditions, the BioID database is

considered a difficult and realistic database. The size of each

image is 384x288 pixels. A ground truth of the left and right

eye centers is provided with the database.

The color FERET database contains a total of 11338 facial

images collected by photographing 994 subjects at various

angles, over the course of 15 sessions between 1993 and 1996.

The images in the color FERET Database are 512 by 768

pixels. In our case we are only interested in the accuracy of the

eye location in frontal images, therefore only the frontal face

(fa) and alternate frontal face (fb) partitions of the database

are considered. Figure 6 and Figure 8 show the qualitative

results obtained on different subjects of the BioID and the

color FERET databases, respectively. We observe that the

method successfully deals with slight changes in pose, scale,

and presence of glasses. By analyzing the failures (second

row) it can be observed that the system is prone to errors

when the circular eye pattern is altered by the presence of

closed eyelids or strong highlights on the glasses. When these

cases occur, the iris and pupil do not contribute enough to the

center voting, so the eyebrows or the eye corners assume a

position of maximum relevance.

The graphs in Figure 7(a) and Figure 9(a) quantitatively

show the accuracy of our method for different e. While it

is clear that most of the results are nearly optimal, there

is a saddle on the normalized error around the value of

0.15. This clustering of errors proves that few errors occur

between the real eye centers and the eye corners/eyebrows.

The improvement obtained by using the mean shift procedure
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Fig. 8. Sample of success (first row) and failures (second row) on the color FERET face database; a white dot
represents the estimated center, while a red dot represents the human annotation.

(a) MIC (b) MIC+MS (c) MICs+ SIFT kNN

Fig. 9. Accuracy vs. minimum (better eye) and maximum (worse eye) normalized error obtained by the proposed
methods on the color FERET database.

for maximum density can be seen by comparing the graphs

in Figures 7(a) and (b). Without any additional constraint, the

results improved with ≈ 2.5% over the basic approach. The

graphs in Figure 7 (c) and 9 (c) show the accuracy obtained by

using the kNN classifier to discriminate between the top MICs,

which in case of the BioID database achieved better results

than both the basic and the mean shift approaches, while the

results on the color FERET database show a slight drop in

accuracy, which becomes comparable to the basic approach.

This can be explained by the fact that by using classification

the successful outcome of the system will inherently depend

on the conditions it was trained, together with the fact that

the annotation in the color FERET database is sometimes

unreliable. In fact, it can be seen from Figure 8 that the human

annotation (indicated by a red dot) is sometimes less accurate

than the estimated eye center (indicated by a white dot). This

negatively affects the accuracy for accurate eye center location

and its effect can be seen by comparing the graphs in Figure 9

to the ones in Figure 7: the differences between the results at

e ≤ 0.05 and the ones at e ≤ 0.1 are significantly higher than

the ones found on the BioID database.

4.3 Comparison with the State of the Art

Our results are compared with state of the art methods in

the literature which use the same databases and the same

accuracy measure. While many recent results are available on

the BioID database, results on the color FERET database are

often evaluated on custom subsets and with different measures,

therefore not directly comparable. This is the case of Kim

et al. [30] which only use 488 images of the ”fa” subset

(frontal face, neutral expression) and of Duffner [16] which,

instead of using the maximum error measure as in this paper,

evaluates the normalized error on both eyes instead of the

worse one only. This is equivalent to the ”Average” curves in

Figure 9 where the best variant (MIC+MS) obtains an accuracy

of 85.10% for e ≤ 0.05 versus Duffner’s 79.00%. Tables 3

and 4 show the comparison between our methods and the state

of the art methods mentioned in Section 1 for several allowed

normalized errors. Where inexplicitly reported by the authors,

the results are estimated from their normalized error graphs,

safely rounded up to the next unit. It can be seen that, for

an allowed normalized error smaller than 0.25, we achieved

accuracy comparable to the best methods. For iris location

(e ≤ 0.1), our method shows less accuracy with respect to the

some of the other methods. This can be justified by the fact

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



9

Fig. 10. A summary of the better and worse results obtained on the BioID and on the color FERET databases in
comparison with the respective upper bound curves.

Method Accuracy Accuracy Accuracy
(e ≤ 0.05) (e ≤ 0.10) (e ≤ 0.25)

MIC 80.58% 85.81% 96.56%
MIC+MS 81.89% 87.05% 98.00%
MICs+SIFT 86.09% 91.67% 97.87%
Asteriadis [2] 74.00%* 81.70% 97.40%
Jesorsky [27] 40.00% 79.00% 91.80%
Cristinacce [13] 56.00%* 96.00% 98.00%
Türkan [42] 19.00%* 73.68% 99.46%
Bai [3] 37.00%* 64.00% 96.00%
Campadelli [7] 62.00% 85.20% 96.10%
Hamouz [24] 59.00% 77.00% 93.00%
Kim [30] n/a 96.40% 98.80%
Niu [36] 75.00%* 93.00% 98.00%*
Asadifard [1] 47.00% 86.00% 96.00%
Timm [41] 82.50% 93.40% 98.00%
Kroon [32] 65.00%* 87.00% 98.80%*

TABLE 3
Comparison of accuracy vs. normalized error in the BioID
database. *= the value estimated from author’s graphs.

Method Accuracy Accuracy Accuracy
(e ≤ 0.05) (e ≤ 0.10) (e ≤ 0.25)

MIC 72.80% 94.11% 98.21%
MIC+MS 74.38% 96.27% 99.17%
MICs+SIFT 73.47% 94.44% 98.34%
Campadelli [7] 67.70% 89.50% 96.40%
Duffner [16] 79.00%* 97.00%* 99.00%*
Kim [30] 91.80% (e ≤ 0.07)

TABLE 4
Comparison of accuracy vs. normalized error in the color

FERET database.*= uses average normalized error.

that the other methods exploit other facial features to estimate

and adjust the position of the eyes (i.e. the eye center is in

between the eye corners) which works extremely well to find a

point in the middle of two eye corners, but often does not have

enough information to locate the exact position eye center in

between them. However, our approach excels for accurate eye

center location (e ≤ 0.05), even by using the basic approach.

To measure the maximum accuracy achievable by our

method, we computed the normalized error obtained by se-

lecting the isocenter closest to the ground truth. The graphs in

Figure 10 show the comparison between the better and worse

performing variants of the proposed method and an additional

curve which represents the found upper bound on the BioID

and color FERET databases. It is possible to see that the

proposed extensions helped in increasing the bending point

of the curve, while the rest of the curve is similar in all the

cases. This means that the extensions reduced the number of

times an eye corner or an eyebrow is detected as the MIC,

moving the results closer to the upper bound. Note that the

SIFT extension almost follows the upper bound for e ≤ 0.05.

4.4 Robustness to Illumination and Pose Changes
To systematically evaluate the robustness of the proposed eye

locator to lighting and pose changes, two subsets of the Yale

Face Database B [19] are used. The full database contains 5760

grayscale images of 10 subjects each seen under 576 viewing

conditions (9 poses x 64 illuminations). The size of each image

is 640x480 pixels. To independently evaluate the robustness

to illumination and pose, the system is tested on frontal faces

under changing illumination (10 subjects x 64 illuminations)

and on changing pose under ambient illumination (10 subjects

x 9 poses).
The first two rows of Figure 11 show a qualitative sample

of the results obtained for a subject in the illumination subset.

By analyzing the results, we note that the system is able to

deal with light source directions varying from ±35◦ azimuth

and from ±40◦ elevation with respect to the camera axis.

The results obtained under these conditions are shown in

Table 5. When compared to the previously published results

in [43], the improvement in accuracy obtained by the scale

space framework is about 2%, especially for the MS extension.

For higher angles, the method is often successful for the less

illuminated eye and sporadically for the most illuminated one:

if the eye is uniformly illuminated, its center is correctly

located, even for low intensity images; if, on the other hand,

the illumination influences only parts of the eye, the shape

of the isophotes is influenced by shadows, resulting in an

unreliable MIC.
The last row in Figure 11 shows the results of the eye

locator applied to a subject the pose subset of the Yale Face

Database B. The quantitative evaluation on this dataset shows

the robustness of the proposed approach to pose changes: due

to the higher resolution and the absence of occlusions and

glasses, all the variants achieved an accuracy of 100.00% for

e ≤ 0.05. The first errors are actually found by considering

e ≤ 0.04 for the basic method (MIC), where the system

achieves an accuracy of 95.45%.
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Fig. 11. Effect of changes in illumination and pose (last row) on a subject of the Yale Face Database B.

Fig. 12. Effect of changes in illumination (horizontally) and pose (vertically) on a subject of the Multi-PIE database.

Method Accuracy Accuracy Accuracy
(e ≤ 0.05) (e ≤ 0.10) (e ≤ 0.25)

MIC 77.68% 85.32% 95.72%
MIC+MS 79.82% 88.07% 96.64%
MICs+SIFT 80.12% 86.85% 96.73%

TABLE 5
Accuracy vs. normalized error for illumination changes

on the Yale Face Database B.

To systematically evaluate the combined effect of lighting

and pose changes, the CMU Muliti-PIE database [23] is used.

The database contains images of 337 subjects, captured under

15 view points and 19 illumination conditions in four record-

ing sessions for a total of more than 750,000 images. The

database shows very challenging conditions for the proposed

method, as many subjects have closed eyes due to the natural

reaction to flashes, or the irises are occluded due to very strong

highlights on the glasses, generated by the flashes as well.

As no eye center annotation is provided with the database,

we manually annotated the eye centers and the face position

of all the subjects in the first session (249), in 5 different

poses (the ones in which both eyes are visible), under all

the different illumination conditions present in the database.

This annotation is made publicly available on the author’s

website. Figure 12 shows a qualitative sample of the database,

together with the annotation and obtained result. Table 6 and

the interpolated 3D plot in Figure 13 quantitatively show the

result of this experiment for e ≤ 0.05, using the MIC+MS
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Illumination
Pose −90◦ −75◦ −60◦ −45◦ −30◦ −15◦ 0◦ +15◦ +30◦ +45◦ +60◦ +75◦ +90◦

−30◦ 70.28% 78.71% 83.13% 82.33% 84.74% 89.56% 91.97% 94.38% 95.58% 89.56% 74.70% 58.23% 51.00%
−15◦ 66.67% 78.31% 82.73% 87.95% 88.76% 91.57% 96.39% 97.19% 97.99% 94.78% 81.12% 57.43% 52.61%

0◦ 73.09% 78.31% 83.94% 89.96% 89.16% 95.58% 93.17% 98.80% 98.80% 97.59% 89.56% 71.89% 61.45%
+15◦ 62.25% 71.89% 78.71% 91.16% 92.37% 97.19% 95.18% 96.79% 96.79% 95.18% 88.76% 77.51% 64.66%
+30◦ 36.55% 51.41% 59.84% 79.12% 84.34% 91.16% 89.96% 87.95% 90.36% 85.54% 81.53% 73.09% 68.27%

TABLE 6
Combined effect of changes in head pose and illumination in the Multi-PIE database for e ≤ 0.05, using MIC+MS.

Fig. 13. A interpolated 3D representation of the data in
Table 6.

variant. As with the YALE Face Database B, this variant

obtained better results with respect to the MICs+SIFT variant

due to the variance present in the training data, which makes

it difficult for the classifier to find a clear decision boundary

to discriminate eye centers from the rest of the features.

By analyzing the results, it is possible to derive insights

about the accuracy, the success and failures of the proposed

method: Although the frontal face with frontal illumination

is expected to achieve the best accuracy, the fact that the

flash directly reflects on subjects wearing glasses contributes

to a drop in accuracy in that specific setting. However, if the

illumination is shifted by just 15◦, the system is able to achieve

an accuracy of 98.80%, which is the best result obtained in

this experiment. Furthermore, it is possible to note that the

accuracy is higher when the face is turned towards the light.

This is because the shape of the irises in these situations will

not be affected by shadows. This behavior is very clear from

the 3D plot in Figure 13.

4.5 Robustness to Scale Changes
The system uses only two parameters: the ”scale” of the kernel

(σtotal) with which the image derivatives are computed and

the ”scale” of the Gaussian kernel with which the centermap

is convolved (i.e. how much near votes affect each other).

Figure 14(a) shows the changes in accuracy for different values

of σtotal. It can be seen that, by changing this parameter, the

curves shift vertically, therefore the value that results in the

highest curve should be selected as the best σtotal (in this case,

3). This is not the case with the graph in Figure 14(b) which

shows the effect of changing the blurring parameter of the

centermap (i.e. how near votes affect each other). In this case,

the accuracy remains basically unchanged for accurate results

(e ≤ 0.04), while selecting a proper kernel size (e.g. 16)

Fig. 15. The effect of scaling down of the images on the
BioID database, at different percentages of the original
size.

improves the bending point of the curve (i.e. the errors between

the eye centers and eye corners). In order to study the effect of

changing the scale now that the best parameters are known, the

test images are downscaled to fixed ratio values: 25%, 40%,

55%, 70%, 85% and 100% of the original image size. The

eyes are then cropped and upscaled to a reference window

size (e.g. 60x50 pixels) where the best value of the size of the

Gaussian kernel for the image derivatives is experimentally

known. The scale space isocenters pyramid is then computed

with a value of σ2 at interval i calculated by

σ2
total = σ2

i + σ2
i−1, (9)

therefore

σi =
√

σ2
total − σ2

i−1. (10)

The result of this experiment is shown in Figure 15. Note

that downscaling from 100% to 85% and to 70% does not

significantly affect the results, while the rest of the results are

still acceptable considering the downsampling artifacts and the

size of the images.

4.6 Robustness to Occlusions
Since the proposed method is based on the assumption that

the eye pattern is circular and that is visible, it is important

to evaluate the robustness of the approach to partial occlusion

which might result from eye blinking, facial expressions and

extreme eye positions. Since many subjects in the BioID

database display closed or semi-closed eyes, the obtained

overall accuracy can already give an indication that the pro-

posed approach is able to handle eye occlusion. To validate

the robustness to occlusion of the proposed method, a simple

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



12

(a) (b)

Fig. 14. The effect of changing the parameters on the average normalized error using the BioID database. Changing
the size of (a) Gaussian kernel for image derivatives (b) Gaussian kernel for the centermap.

experiment was performed on 10 subjects. The subjects were

requested to gaze at the camera and slowly close their eyes.

The system recorded the first image in which the eye center

estimation would move by more than 5% of the interocular

distance from their initial position. A sample of the results is

shown in Figure 16, where it is clear that the system is able

to handle situations in which the iris is almost completely

occluded.

To give a better overview of the behavior of our method to

progressive occlusions, we designed a procedural experiment

that simulates eye occlusions by a shifting rectangle. The color

of the rectangle was sampled from the average color of eyelids

in the database. Note that, since the rectangle’s edges are

straight (null curvature), the votes generated by the rectangle

are automatically discarded by the method and will not affect

the center detection. In order to analyze every percentage

of occlusion, a subset of the subjects displaying completely

open eyes where selected from the BioID database. In our

experiment, we define a 0% eye occlusion when the lower

side of the occluding rectangle touches the uppermost point

the iris, a 50% occlusion when it passes through the middle

of the pupil, and a 100% occlusion when is tangent to the

lowest point in of the iris. The graph in Figure 18 shows that

the proposed method can successfully detect eye centers even

if they are occluded by more than 60%. In fact, up to 50%

occlusion, the method degrades in accuracy only by less than

10% for accurate eye center location (e ≤ 0.05). An insight

that arises from this experiment is that at 100% occlusion

the system is sometimes able to locate the eye center. This

is because the closed eye region is generally darker than the

features around the eye, and therefore it can still generate votes

which fall into the pupil area. An example of the occlusion

procedure in this experiment is shown in Figure 17. Note that,

since the centermap is always normalized, it does not seem

to change significantly. However, it is possible to see that the

found MIC moves down and that the right eye corner gains

more votes as the circular iris pattern disappears.

To systematically evaluate the robustness of the proposed

approach to eye rotation, an additional experiment in which

Fig. 16. First frames in which the eye center estimations
are off by more than 5% of the interocular distance.

Fig. 17. The effect of eye occlusion on the centermap.
Other dark features gain more relevance as the eye’s
circular pattern gets occluded.

21 subjects followed a moving dot on a computer screen was

performed. In the experiment, the dot crosses key locations,

in which the frames are saved and manually annotated for

the eye location. The key locations are defined by the pixel

value in which the dot is displayed on the screen in 6x4 key

locations, starting at 50x50 pixels and ending at 1200x740

pixels, in increments of 230 pixels on the horizontal and

vertical direction, respectively. Given the size of the screen

(40 inches) and the distance of the subjects (750mm), this

value indicates a horizontal and an approximate vertical span

of 46◦ and 24◦, respectively. The subjects were requested to

keep the head as static as possible while following the dot.

However, we noted that every subject performed some slight

head movements to be able to comfortably gaze at the dot

moving at peripheral locations of the screen. This indicates that

the subjects were not comfortable to reach the peripheral key

location without moving their head. Therefore, we can argue

that these peripheral locations reached the limit of ’natural’

eye rotation. Since the built dataset was free of occlusions

(besides the occlusion caused by the eyelids when the eye is

significantly rotated), the achieved accuracy for e ≤ 0.05 was

100% in all key locations. This result proves that the proposed

method is not significantly affected by natural eye rotations,
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Fig. 18. The effect of occluding eyes at different percent-
ages on the BioID database.

Horizontal (pixels)
Vertical
(pixels)

50 280 510 740 970 1200

50 76.19% 80.95% 100% 71.43% 85.71% 80.95%
280 90.48% 85.71% 95.24% 100% 85.71% 100%
510 90.48% 85.71% 80.95% 100% 76.19% 71.43%
740 95.24% 71.43% 76.19% 71.43% 76.19% 66.67%

TABLE 7
Effect of changes in eye rotation for e ≤ 0.02, using

MIC+MS.
and therefore it is not affected by the natural occlusions from

the eyelids in extreme locations and by the change in shape of

the iris due to the rotation. Table 7, shows the average accuracy

at the selected key locations for e ≤ 0.02. At this extremely

small range, errors start to be significant when moving away

from the central area. Note that in some peripheral areas the

accuracy is still 100%. We believe that this is due to the head

movements required to gaze at the moving dot comfortably.

4.7 Discussion
As stated in the introduction, the accuracy of the proposed

system should not be compared to commercial eye-gaze

trackers. The approach discussed here is targeted to niche

applications where eye location information is useful but

constrained on low resolution imagery, for applications in

which close up view or corneal reflection is unavailable (e.g.

facebook images) and where the use of an eye-gaze tracker

would be prohibitively expensive or impractical (e.g. automatic

red eye reduction on a picture camera).

One of the advantages of the proposed approach that should

be discussed is its low computational complexity, since the

basic system (without scale space and classification) only

requires the computation of image derivatives which is linear

in the size of the image and the scale (O(σN)). This allows

for a real-time implementation while keeping a competitive

accuracy with respect to the state of the art. On a 2.4GHz

Intel Core 2 Duo, using a single core implementation, the

system was able to process ≈ 2500 eye regions per second on

a 320x240 image. Including the face detector and the mean

shift procedure, the algorithm takes 11ms per frame, which

roughly corresponds to 90 frames per second. Therefore, the

final frame rate is only limited by the web cam’s frame rate.

By using the scale space approach, the accuracy improved by

about 2% and the system benefits from improved independence

to scale conditions. In this way, the method can be applied

to different situation without needing an ad-hoc parameter

search. In our settings, the scale space MICs+SIFT variant still

achieves real time performance (≈ 29 frames per second).

Depending on the target application, a tradeoff between

the discussed increase in accuracy and the computational

complexity must be chosen. For instance, even if the best

results are obtained by the MICs+SIFT method, applying

it to video frames thirty times per second will necessarily

result in unstable estimates. However, the MIC+MS method

scales perfectly to use temporal information: the converged

position of the MS window can be kept as initialization for

the next frame, and the eye locator can be used to reinitialize

the tracking procedure when it is found to be invalid (i.e.

when the current MIC falls outside the mean shift window).

This synergy between the two components allows the tracking

system to be fast, fully autonomous and user independent,

which is preferable to the less stable, data dependent but more

accurate MICs+SIFT variant.

Given the high accuracy and low computational require-

ments, we foresee the proposed method to be successfully

adopted as a preprocessing step to other systems. In particular,

systems using classifiers (e.g. [7], [27], [42]) should benefit

from the reduction in the search and learning phases and

can focus on how to discriminate between few candidates.

Furthermore, note that our system does not involve any heuris-

tics or prior knowledge to discriminate between candidates.

We therefore suggest that it is possible to achieve superior

accuracy by integrating the discussed method into systems

using contextual information (e.g. [13], [24]).

5 CONCLUSIONS

In this paper, a new method to infer eye center location using

circular symmetry based on isophote properties is proposed.

For every pixel, the center of the osculating circle of the

isophote is computed from smoothed derivatives of the image

brightness, so that each pixel can provide a vote for its

own center. The use of isophotes yields low computational

cost (which allows for real-time processing) and robustness

to rotation and linear illumination changes. A scale space

framework is used to improve the accuracy of the proposed

method and to gain robustness to scale changes.

An extensive evaluation of the proposed approach was

performed, testing it for accurate eye location in standard low

resolution images and for robustness to illumination, pose,

occlusion, eye rotation, resolution, and scale changes. The

comparison with the state of the art suggested that our method

is able to achieve highest accuracy and can be successfully

applied do very low resolution image of eyes, but this is

somewhat bounded by the presence of at least 40% of the

circular eye pattern in the image. Given the reported accuracy

of the system, we believe that the proposed method provides

enabling technology to niche applications in which a good

estimation of the eye center location at low resolutions is

fundamental.
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[42] M. Türkan, M. Pardás, and A. Çetin. Human eye localization using edge
projection. In Comp. Vis. Theory and App., 2007.

[43] R. Valenti and T. Gevers. Accurate eye center location and tracking
using isophote curvature. In CVPR, 2008.

[44] M. van Ginkel, J. van de Weijer, L. van Vliet, and P. Verbeek. Curvature
estimation from orientation fields. In SCIA, 1999.

[45] P. Viola and M. J. Jones. Robust real-time face detection. IJCV,
57(2):137–154, 2004.

[46] J. Wang, L. Yin, and J. Moore. Using geometric properties of
topographic manifold to detect and track eyes for human-computer
interaction. TOMCCAP, 3(4), 2007.

[47] P. Wang, M. B. Green, Q. Ji, and J. Wayman. Automatic eye detection
and its validation. In IEEE Workshop on Face Recognition Grand
Challenge Experiments, page 164, 2005.

[48] P. Wang and Q. Ji. Multi-view face and eye detection using discriminant
features. CVIU, 105(2), 2007.

[49] Z. H. Zhou and X. Geng. Projection functions for eye detection. In
Pattern Recognition, pages 1049–1056, 2004.

[50] Z. Zhu and Q. Ji. Robust real-time eye detection and tracking under
variable lighting conditions and various face orientations. CVIU,
98(1):124–154, 2005.

Roberto Valenti received his M.Sc degree with
high honors at the University of Amsterdam,
The Netherlands. He is currently completing his
Ph.D. at the Intelligent Systems Lab Amsterdam
at the University of Amsterdam. His research
mainly focuses on sensing and understanding
users’ interactive actions and intentions, mul-
timodal and affective human-computer interac-
tion, the estimation of the human visual gaze and
behavior analysis. He is a co-founder and chief
technology officer of ThirdSight, a spin-off of the

University of Amsterdam, focused on the automatic analysis of faces.
He is a member of the IEEE.

Theo Gevers is an associate professor of com-
puter science with the University of Amsterdam,
The Netherlands, and a full professor at the
Computer Vision Center, Universitat Autònoma
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