
118 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 1, JANUARY 2006

Robust Photometric Invariant Features
From the Color Tensor

Joost van de Weijer, Theo Gevers, Member, IEEE, and Arnold W. M Smeulders

Abstract—Luminance-based features are widely used as
low-level input for computer vision applications, even when color
data is available. The extension of feature detection to the color
domain prevents information loss due to isoluminance and allows
us to exploit the photometric information. To fully exploit the
extra information in the color data, the vector nature of color data
has to be taken into account and a sound framework is needed to
combine feature and photometric invariance theory. In this paper,
we focus on the structure tensor, or color tensor, which adequately
handles the vector nature of color images. Further, we combine
the features based on the color tensor with photometric invariant
derivatives to arrive at photometric invariant features. We circum-
vent the drawback of unstable photometric invariants by deriving
an uncertainty measure to accompany the photometric invariant
derivatives. The uncertainty is incorporated in the color tensor,
hereby allowing the computation of robust photometric invariant
features. The combination of the photometric invariance theory
and tensor-based features allows for detection of a variety of
features such as photometric invariant edges, corners, optical flow,
and curvature. The proposed features are tested for noise char-
acteristics and robustness to photometric changes. Experiments
show that the proposed features are robust to scene incidental
events and that the proposed uncertainty measure improves the
applicability of full invariants.

Index Terms—Color image processing, edge and corner detec-
tion, optical flow, photometric invariance.

I. INTRODUCTION

D IFFERENTIAL-BASED features, such as edges, corners,
and salient points, are used abundantly in a variety of

applications such as matching, object recognition, and object
tracking [12], [21], [23]. We distinguish between feature detec-
tion and feature extraction. Feature detection aims at finding the
position of features in the images, whereas for feature extrac-
tion, a position in the images is described by a set of features,
which characterize the local neighborhood. Although the ma-
jority of images is recorded in color format nowadays, computer
vision research is still mostly restricted to luminance-based fea-
ture detection and extraction. In this paper we focus on color
information to detect and extract features.

In the basic approach to color images, the gradient is com-
puted from the derivatives of the separate channels. The deriva-
tives of a single edge can point in opposing directions for the
separate channels. DiZenzo [5] argues that a simple summation
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of the derivatives ignores the correlation between the channels.
This also happens by converting the color image to luminance
values. In the case of isoluminance of adjacent color regions, it
will lead to cancellation of the edge. As a solution to the op-
posing vector problem, DiZenzo proposes the color tensor for
color gradient computation.

The same problem as occurs for color image derivatives, ex-
ists for oriented patterns (e.g., fingerprint images). Due to the
high-frequency nature of oriented patterns, opposing derivative
vectors occur in a small neighborhood. The same solution which
was found for color image features, is used to compute features
for oriented patterns. Kass and Witkin [15] derived orientation
estimation from the structure tensor. Adaptations of the tensor
lead to a variety of features, such as circle detectors and curva-
ture estimation [3], [4], [11], [26]. Lee and Medioni [18] apply
the structure tensor within the context of perceptual grouping.

A step forward in the understanding of color images was
made by the dichromatic reflection model by Shafer [22]. The
model describes how photometric changes, such as shadows and
specularities, affect the RGB-values. On the basis of this model,
others provided algorithms invariant to various photometric
events such as shadows and specularities [8], [16]. The exten-
sion to differential photometric invariance was investigated
by Geusebroek et al. [7]. Recently, van de Weijer et al. [25]
introduced the photometric quasiinvariants which are a set of
photometric invariant derivatives with better noise and stability
characteristics compared to existing photometric invariants.
Combining photometric quasiinvariants with derivative-based
feature detectors leads to features which can identify various
physical causes, e.g., shadow corners and object corners. A
drawback of the quasiinvariants is that they can only be applied
for feature detection. In the case of feature extraction, where
the values of multiple frames are compared, full invariance is
necessary.

We propose a framework to combine the differential-based
features with the photometric invariance theory. The framework
is designed according to the following criteria. 1) Features must
target the photometric variation needed for their application.
To achieve that accidental physical events, such as shadows
and specularities, will not influence results. 2) Features must
be robust against noise and should not contain instabilities.
Especially for the photometric invariant features, instabilities
must be dissolved. 3) Physically meaningful features should
be independent of the accidental choice of the color coordinate
frame. Next to satisfying the criteria the framework should
also be generally applicable to existing features. To meet these
criteria we start from the observation that tensors are well-suited
to combine first order derivatives for color images. The first
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Subspace of measured light in the Hilbert space of possible spectra. (b) RGB coordinate system and an alternative orthonormal color coordinate system which
spans the same subspace. (Color version available online at http://ieeexplore.ieee.org.)

contribution is a novel framework that combines tensor-based
features with photometric derivatives for photometric invariant
feature detection and extraction. The second contribution is that
for feature extraction applications, for which quasiinvariants
are unsuited, we propose a new uncertainty measure which
robustifies the feature extraction. The third contribution is that
the proposed features are proven to be invariant with respect
to color coordinate transformations.

The paper is organized as follows. In Section II, the prereq-
uisites for color feature detection from tensors are discussed.
In Section III, an uncertainty measure is proposed. Based on
this uncertainty measure, robust photometric feature extraction
is derived. In Section IV, a overview of tensor-based features is
given. Section V provides several experiments, and Section VI
contains the concluding remarks.

II. TENSOR-BASED FEATURES FOR COLOR IMAGES

The extension of differential-based operations to color im-
ages can be done in various ways. The main challenge to color
feature detection is how to transform the three-dimensional
color differential structure to a representation of the presence
of a feature. In this section, we ensure that the transforma-
tion agrees with the criteria mentioned in the introduction. In
Section II-A, the invariance with respect to color coordinate
transformation is discussed. In Section II-B, the transformation
is written in tensor mathematics which links it with a set of
tensor-based features, thereby ensuring generality. In Sec-
tion II-C, the photometric invariance of the transformation is
discussed.

A. Invariance to Color Coordinate Transformations

From a physical point of view, only features make sense
which are invariant to rotation of the coordinate axes. This
starting point has been applied in the design of image geom-
etry features, resulting in, for example, gradient and Laplace
operators [6]. For the design of physically meaningful color
features, not only the invariance with respect to spatial coordi-
nate changes is desired, but also the invariance with respect to

color coordinate systems rotations. Features based on different
measurement devices which measure the same spectral space
should yield the same results.

For color images, values are represented in the RGB coor-
dinate system. In fact, the infinite-dimensional Hilbert space is
sampled with three probes which results in the red, green and
blue channels (see Fig. 1). For operations on the color coor-
dinate system to be physically meaningful, they should be in-
dependent of orthonormal transformation of the three axes in
Hilbert space. An example of an orthonormal color coordinate
system is the opponent color space [see Fig. 1(b)]. The opponent
color space spans the same subspace as the subspace defined by
the RGB axes, and, hence, both subspaces should yield the same
features.

B. Color Tensor

Simply summing differential structure of various color chan-
nels may result in cancellation even when evident structure ex-
ists in the image [5]. Rather than adding the direction informa-
tion, (defined in ) of the channels, it is more appropriate
to sum the orientation information (defined in ). Such a
method is provided by tensor mathematics for which vectors in
opposite directions reinforce one another. Tensors describe the
local orientation rather than the direction. More precisely, the
tensor of a vector and its 180 rotated counterpart vector are
equal. It is for that reason that we use the tensor as a basis for
color feature detection.

Given an image , the structure tensor is given by [4]

(1)

where the subscripts indicate spatial derivatives and the bar
indicates convolution with a Gaussian filter. Note that there
are two scales involved in the computation of the structure
tensor. First, the scale at which the derivatives are computed
and, second, the tensor-scale, which is the scale at which the
spatial derivatives are averaged. The structure tensor describes
the local differential structure of images and is suited to find
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features such as edges and corners [3], [5], [11]. For a multi-
channel image , the structure tensor is
given by

(2)

In the case that , (2) is the color tensor. For deriva-
tives which are accompanied with a weighting function, and

, which appoint a weight to every measurement in and ,
the structure tensor is defined by

(3)

In Section II-A, we discussed that physically meaningful fea-
tures should be invariant with respect to rotation of the color
coordinates axes. The elements of the tensor are known to be
invariant under rotation and translation of the spatial axes. To
prove the invariant, we use the fact that ,
where is a rotation operator

(4)

where we have rewritten the inner product according to
.

C. Photometric Invariant Derivatives

A good motivation for using color images is that photometric
information can be exploited to understand the physical nature
of features. For example, pixels can be classified as being from
the same color but having different intensities which is pos-
sibly caused by a shadow or shading change in the image. Fur-
ther, pixels differences can also indicate specular reflection. For
many applications, it is important to distinguish the scene inci-
dental information from material edges. When color images are
converted to luminance, this photometric information is lost [8].

The incorporation of photometric invariance in (2) can be
obtained by using invariant derivatives to compute the structure
tensor. In [25], we derive photometric quasiinvariant derivatives
and full invariant derivatives. Quasiinvariants differ from full
invariants by the fact that they are variant with respect to
a physical parameter. Full invariants can be computed from
quasiinvariants by the normalization with a signal dependent
scalar. The quasiinvariants have the advantage that they do not
exhibit the instabilities common to full photometric invariants.
However, the applicability of the quasiinvariants is restricted to
photometric invariant feature detection. For feature extractionm
full photometric invariance is desired.

The dichromatic model divides the reflection in the inter-
face (specular) and body (diffuse) reflection component for op-
tically inhomogeneous materials [22]. We assume white illu-
mination, i.e., smooth spectrum of nearly equal energy at all
wavelengths, and neutral interface reflection. For the validity of
the photometric assumptions, see [7] and [22]. The RGB vector

can be seen as a weighted summation of two
vectors

(5)

in which is the color of the body reflectance, the color
of the interface reflectance (i.e., specularities or highlights),
and are scalars representing the corresponding magnitudes
of reflection, and is the intensity of the light source. For matte
surfaces, there is no interface reflection and the model further
simplifies to

(6)

The photometric derivative structure of the image can be com-
puted by computing the spatial derivative of (5)

(7)

The spatial derivative is a summation of three weighted vec-
tors, successively caused by body reflectance, shading-shadow,
and specular changes. From (6), it follows that for matte sur-
faces the shadow-shading direction is parallel to the RGB vector

. The specular direction follows from the assumption that
the color of the light source is known.

For matte surfaces (i.e., ), the projection of the
spatial derivative on the shadow-shading axis yields the
shadow-shading variant containing all energy which could be
explained by changes due to shadow and shading. Subtraction
of the shadow-shading variant from the total derivative
results in the shadow-shading quasiinvariant

(8)

which does not contain derivative energy caused by shadows
and shading. The hat is used to denote unit vectors. The full
shadow-shading invariant results from normalizing the quasiin-
variant by the intensity magnitude

(9)

which is invariant for .
For the construction of the shadow-shading-specular quasiin-

variant, we introduce the hue direction which is perpendicular
to the light source direction and the shadow-shading direc-
tion

(10)

Projection of the derivative on the hue direction results in the
shadow-shading-specular quasiinvariant

(11)
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The second part of this equation is zero if we assume that
shadow-shading changes do not occur within a specularity,
since then either or .
Subtraction of the quasiinvariant from the spatial derivative

results in the shadow-shading-specular variant

(12)

The full shadow-shading invariant is computed by dividing the
quasiinvariant by the saturation. The saturation is equal to the
norm of the color-vector after the projection on the plane per-
pendicular to the light source direction (which is equal to sub-
traction of the part in the light source direction)

(13)
The expression is invariant for both and .

By projecting the local spatial derivative on three photometric
axes in the RGB cube, we have derived the photometric quasiin-
variants. These can be combined with the structure tensor of (18)
for photometric quasiinvariant feature detection. As discussed
in Section II-A, we would like features to be independent of
the accidental choice of the color coordinate frame. As a conse-
quence, a rotation of the color coordinates should result in the
same rotation of the quasiinvariant derivatives. For example, for
the shadow-shading quasivariant , this can be proven by

(14)

Similar proofs hold for the other photometric variants and quasi-
invariants. The invariance with respect to color coordinate trans-
formation of the shadow-shading full invariants follow from the
fact that . For the shadow-shading-specular full-in-
variant, the invariance is proven by the fact that the inner product
between two vectors remains the same under rotations, and,
therefore, .
Since the elements of the structure tensor are also invariant for
color coordinate transformations [see (4)], the combination of
the quasiinvariants and the structure tensor into a quasiinvariant
structure tensor is also invariant for color coordinate transfor-
mations.

III. ROBUST FULL PHOTOMETRIC INVARIANCE

In Section II-C, the quasi- and full-invariant derivatives are
described. The quasiinvariants outperform the full-invariants on
discriminative power and are more robust to noise [25]. How-
ever, the quasiinvariants are not suited for applications which
require feature extraction. These applications compare the pho-
tometric invariant values between various images and need full
photometric invariance (see Table I). A disadvantage of full pho-
tometric invariants is that they are unstable in certain areas of the
RGB-cube. For example, the invariants for shadow-shading and
specularities are unstable near the gray axis. These instabilities
greatly reduce the applicability of the invariant derivatives for

TABLE I
APPLICABILITY OF THE DIFFERENT INVARIANTS

FOR FEATURE DETECTION AND EXTRACTION

which a small deviation of the original pixel color value may
result in a large deviation of the invariant derivative. In this sec-
tion, we propose a measure which describes the uncertainty of
the photometric invariant derivatives, thereby allowing for ro-
bust full photometric invariant feature detection.

We will first derive the uncertainty for the shadow-shading
full invariant from its relation to the quasiinvariant. We assume
additive uncorrelated uniform Gaussian noise. Due to the high-
pass nature of differentiation, we assume the noise of the zero
order signal to be negligible compared to the noise on the
first order signal . In Section II-C, the quasiinvariant has
been derived by a linear projection of the derivative on the
plane perpendicular to the shadow-shading direction. Therefore,
uniform noise in will result in uniform noise in . The noise
in the full invariant can be written as

(15)

The uncertainty of the measurement of depends on the mag-
nitude of . For small , the error increases proportionally.
Therefore, we propose to weigh the full shadow-shading in-
variant with the function to robustify the color tensor
based on the chromatic invariant. For shadow-shading invari-
ance, examples of the equations used to compute the color tensor
are given in Table I.

For the shadow-shading-specular invariant, the weighting
function should be proportional with the saturation, since

(16)

This leads us to propose as the weighting function of the
hue derivative (see Fig. 2). In places where there is an edge,
the saturation drops, and with the saturation, the certainty of the
hue measurement. The quasiinvariant [see Fig. 2(d)], which is
equal to the weighted hue, is more stable than the full invariant
derivative due to the incorporation of the certainty in the mea-
surements. With the derived weighting function we can compute
the robust photometric invariant tensor (3).

The uncertainties of the full invariant by ways of error propa-
gation have also been investigated by Gevers and Stokman [9].
Our assumption of uniform noise in the RGB channels together
with the choice of invariants based on orthogonal color space
transformations leads to a simplification of the uncertainty mea-
sure. It also connects with the intuitive notion that the uncer-
tainty of the hue is depended on the saturation and the uncer-
tainty of the chromaticity (shadow-shading invariant) with the
intensity.
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Fig. 2. (a) Test image. (b) Hue derivative. (c) Saturation. (d) Quasiinvariant. (Color version available online at http://ieeexplore.ieee.org.)

IV. COLOR TENSOR-BASED FEATURES

In this section, we show the generality of the proposed
method by summing features which can be derived from the
color tensor. In Sections II-C and III, we described how to
compute invariant derivatives. Dependent on the task at hand,
we proposed to use either quasiinvariants for detection or robust
full invariants for extraction. The features in this chapter will
be derived for . By replacing the inner product of by one
of the following:

(17)

the acquired photometric invariant features are attained. In Sec-
tion IV-A, we describe features derived from the eigenvalues
of the tensor. In Section IV-B, we describe features which are
derived from an adapted version of the structure tensor, and, in
Section IV-C, we describe color optical flow.

A. Eigenvalue-Based Features

Eigenvalue analysis of the tensor leads to two eigenvalues
which are defined by

(18)

The direction of indicates the prominent local orientation

(19)

The s can be combined to give the following local descriptors.

• describes the total local derivative energy.
• is the derivative energy in the most prominent direc-

tion.
• describes the line-energy (see [20]). The deriva-

tive energy in the prominent orientation is corrected for
the energy contributed by the noise .

• describes the amount of derivative energy perpendic-
ular to the prominent local orientation which is used to
select features for tracking [23].

An often applied feature detector is the Harris corner detector
[13]. The color Harris operator can be written as a function
of the eigenvalues of the structure tensor

(20)

B. Adaptations of the Color Tensor

The same equations as DiZenzo’s equations for orientation
estimation are found by Kass and Witkin [15]. They studied
orientation estimation for oriented patterns (e.g., fingerprint
images). Oriented patterns are defined as patterns with a
dominant orientation everywhere. For oriented patterns, other
mathematics are needed than for regular object images. The
local structure of object images is described by a step edge,
whereas for oriented patterns, the local structure is described as
a set of lines (roof edges). Lines generate opposing vectors on
a small scale. Hence, for geometric operations on oriented pat-
terns, methods are needed for which opposing vectors enforce
one another. This is the same problem as encountered for all
color images, where the opposing vector problem does not only
occur for oriented patterns, but also for step edges, for which
the opposing vectors occur in the different channels. Hence,
similar equations were found in both fields. Next to orientation
estimation, a number of other estimators were proposed by
oriented pattern research [3], [11], [26]. These operation are
based on adaptations of the structure tensor and can also be
applied to the color tensor.

The structure tensor of (2) can also be seen as a local projec-
tion of the derivative energy on two perpendicular axes, namely

and

(21)
in which . From the Lie group of transfor-
mation, several other choices of perpendicular projections can
be derived [3], [11]. They include feature extraction for circle,
spiral, and star-like structures.

The star and circle detector is given as an example. It
is based on , which coin-
cide with the derivative pattern of a circular patterns and
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, which denotes the perpendic-
ular vector field, which coincides with the derivative pattern
of starlike patterns. These vectors can be used to compute the
adapted structure tensor with (21). Only the elements on the
diagonal have nonzero entries and are equal to (22), shown
at the bottom of the page. Here, describes the amount of
derivative energy contributing to circular structures and the
derivative energy which describes a starlike structure. Similar
to the proof given in (4) the elements of (22) can be proven to
be invariant under transformations of the RGB-space.

Curvature is another feature which can be derived from an
adaption of the structure tensor [26]. The fit between the local
differential structure and a parabolic model function can be
written as a function of the curvature. Finding the optimum of
this function yields an estimation of the local curvature. For
vector data, the equation for the curvature is given by (23),
shown at the bottom of the page, in which and are the
derivatives in gauge coordinates.

C. Color Optical Flow

Optical flow can also be computed from the structure tensor.
This is originally proposed by Simoncelli [24] and has been ex-
tended to color in [2] and [10]. The vector of a multichannel
point over time stays constant [14], [19]

(24)

Differentiating yields the following set of equations:

(25)

with as the optical flow. To solve the singularity problem and
to robustify the optical flow computation, we follow Simoncelli
[24] and assume a constant flow within a Gaussian window.
Solving (25) leads to the following optical flow equation:

(26)

with

(27)

and

(28)

The assumption of color optical flow based on RGB is that
RGB pixel values remain constant over time [see (24)]. A
change of brightness introduced due to a shadow, or a light
source with fluctuating brightness such as the sun results in
nonexistent optical flow. This problem can be overcome by
assuming constant chromaticity over time. For photometric
invariant optical flow, full invariance is necessary since the
optical flow estimation is based upon comparing the (extracted)
edge response of multiple frames. Consequently, photometric
invariant optical flow can be attained by replacing the inner
product of by one of the following:

(29)

V. EXPERIMENTS

The experiments test the features on the required criteria of
our framework: 1) photometric invariance and 2) robustness.
The third criterion, i.e., invariance with respect to color coor-
dinate transformations, we have already proven theoretically. In
this section, we aim to demonstrate invariance by experiment
and illustrate the generality of the experiments by the variety
of examples. For all experiments, the derivatives are computed
with a Gaussian derivative of and the color tensor scale is
computed with , except when mentioned otherwise. The
experiments are performed using a Sony 3CCD color camera
XC-003P, Matrox Corona Frame-grabber, and two Osram 18
Watt “Lumilux deLuxe daylight” fluorescent light sources.

A. Photometric Invariant Harris Point Detection

Robustness with respect to photometric changes, stability of
the invariants, and robustness to noise, are tested. Further, the
ability of invariants to detect and extract features is examined
(see also Table I). The experiment is performed with the photo-
metric invariant Harris corner detector (20) and is executed on
the Soil47 multi object set [17], which comprises 23 images [see
Fig. 3(a)].

First, the feature detection accuracy of the invariants is tested.
For each image and invariant, the 20 most prominent Harris
points are extracted. Next, Gaussian uncorrelated noise is added
to the data, and the Harris point detection is computed ten times
per image. The percentage of points which do not correspond to
the Harris points in the noiseless case are given in Table II. The
Harris point detector based on the quasiinvariant outperforms

(22)

(23)
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Fig. 3. (a) An example from Soil-47 image. (b) Shadow-shading distortion with the shadow-shading quasiinvariant Harris points superimposed. (c) Specular
distortion and the shadow-shading-specular Harris points superimposed. (Color version available online at http://ieeexplore.ieee.org.)

TABLE II
PERCENTAGE OF FALSELY DETECTED POINTS AND PERCENTAGE OF WRONGLY

CLASSIFIED POINTS. CLASSIFICATION IS BASED ON THE EXTRACTION OF

INVARIANT INFORMATION. UNCORRELATED GAUSSIAN NOISE IS ADDED

WITH STANDARD DEVIATION 5 AND 20

the alternatives. The instability within the full invariant can be
partially repaired by the robust full invariant; however, for de-
tection purposes, the quasiinvariants remain the best choice.

Next, the feature extraction for the invariants is tested. Again,
the 20 most prominent Harris points are detected in the noise
free image. For these points, the photometric invariant derivative
energy is extracted by , where is an estima-
tion of the noise which contributes to the energy in both and

. To imitate photometric variations of images we apply, the
following photometric distortion to the images [compare with
(5)]:

(30)

where is a smooth function resembling variation similar
to shading and shadow effects, is a smooth function which
imitates specular reflections, and is Gaussian noise. To test
the shadow-shading extraction, is chosen to vary between
0 and 1, and is 0. To test the shadow-shading-specular in-
variants, was chosen constant at 0.7 and varied be-
tween 0 and 50. After the photometric distortion, the derivative
energy is extracted at the same twenty points. The extraction is
considered correct if the deviation of the derivative energy be-
tween the distorted and the noise-free case is less then 10%. The
results are given in Table II. Quasiinvariants which not suited
for extraction have a hundred percent error. The full invariants
have better results but with worsening signal-to-noise ratio its

performance drops drastically. In accordance with the theory in
Section III, the robust full invariants successfully improve the
performance.

B. Color Optical Flow

Robustness of the full photometric invariance features is
tested on photometric invariant optical flow estimation. The
optical flow is estimated on a synthetical image sequence
with constant optical flow. We use the robust full photometric
structure tensor for the estimation of optical flow and compare
it with “classical” photometric optical flow as proposed by [10].
Derivatives are computed with a Gaussian derivative of
and the color tensor scale is .

The shadow-shading photometric optical flow is tested on
image with decreasing intensity [see Fig. 4(a)] which is shifted
one pixel per frame. Uncorrelated Gaussian noise with
is added to the sequence. In Fig. 4(b) and (c), the mean and
the standard deviation of the optical flow along the axis
of Fig. 4(a) are depicted. Similarly to the shadow-shading-
specular invariant, optical flow is tested on a sequence with
increasing achromaticity along the axes [see Fig. 4(d)–(f)].
The results show that robust invariant methods (red lines)
outperform the standard photometric optical flow (blue lines).
The gained robustness becomes apparent for the measurements
around the instable region, which are the black area for the
shadow-shading invariant and the achromatic and the grey area
for the shadow-shading-specular invariant optical flow.

As an example of a real-world scene, multiple frames are
taken from static objects while the light source position is
changed. This results in a violation of the brightness constraint
by changing shading and moving shadows. Since both the
camera and the objects did not move, the ground truth optical
flow is zero. The violation of the brightness constraint disturbs
the optical flow estimation based on the RGB [Fig. 5(b)]. The
shadow-shading invariant optical flow estimation is much less
disturbed by the violation of the brightness constrain [Fig. 5(c)].
However, the flow estimation is still unstable around some of
the edges. The robust shadow-shading invariant optical flow
has the best results and is only unstable in low-gradient areas
[Fig. 5(d)].

C. Color Canny Edge Detection

We illustrate the use of eigenvalue-based features by adapting
the Canny edge detection algorithm to allow for vectorial input
data. The algorithm consists of the following steps.



VAN DE WEIJER et al.: ROBUST PHOTOMETRIC INVARIANT FEATURES 125

Fig. 4. (a), (d) Frame from test sequence with constant optical flow of one pixel per frame. (b), (c) Mean and relative standard deviation mean of the optical flow
based on (black line) RGB, (dark grey line) shadow-shading invariant, and (light grey line) robust shadow-shading invariant. (e), (f) Mean and relative standard
deviation of the optical flow based on (black line) RGB, (dark grey line) shadow-shading-specular invariant, and (light grey line) robust shadow-shading-specular
invariant. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 5. (a) Frame 1 of object scene with filter size superimposed on it. (b) RGB gradient optical flow. (c) Shadow-shading invariant optical flow. (d) Robust
shadow-shading invariant optical flow. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 6. (a) Input image with Canny edge detection based on successively. (b) Luminance derivative. (c) RGB derivatives. (d) Shadow-shading quasiinvariant.
(e) Shadow-shading-specular quasiinvariant. (Color version available online at http://ieeexplore.ieee.org.)

1) Compute the spatial derivatives and combine them, if
desired, into a quasiinvariant [(8) or (11)].

2) Compute the maximum eigenvalue (18) and its orienta-
tion (19).

3) Apply nonmaximum suppression on in the prominent
direction.

In Fig. 6, the results of color Canny edge detection for sev-
eral photometric quasiinvariants is shown. The results show that
the luminance-based Canny [Fig. 6(b)] misses several edges
which are correctly found by the RGB-based method [Fig. 6(c)].

Also, the removal of spurious edges by photometric invariance
is demonstrated. In Fig. 6(d), the edge detection is robust to
shadow and shading changes and only detects material and spec-
ular edges. In Fig. 6(e), only the material edges are depicted.

D. Circular Object Detection

The use of photometric invariant orientation and curvature es-
timation is demonstrated on a circle detection example. Other
than the previous experiments, these images have been recorded
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Fig. 7. (a) Detected circles based on luminance. (b) Detected circles based on shadow-shading-specular quasiinvariant. (c) Detected circles based on
shadow-shading-specular quasiinvariant. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 8. (a) Input image. (b) The circularity coefficient C . (c) The detected circles. (Color version available online at http://ieeexplore.ieee.org.)

by the Nikon Coolpix 950, a commercial digital camera of av-
erage quality. The images have size 267 200 pixels with JPEG
compression. The digitization was done in 8 bits per color.

Circular object recognition is complicated due to shadow,
shading and specular events which influence the feature extrac-
tion. We apply the following algorithm for circle detection.

1) Compute the spatial derivatives and combine them, if
desired, into a quasiinvariant [(8) or (11)].

2) Compute the local orientation (19) and curvature (23).
3) Compute the hough space [1] , where is

the radius of the circle and and indicate the center of
the circle. The computation of the orientation and curva-
ture reduces the number of votes per pixel to one. Namely,
for a pixel at position

(31)

Every pixel votes with its the derivative energy .
4) Compute the maxima in the hough space. These maxima

indicate the circle centers and the radii of the circle.

In Fig. 7, the results of the circle detection are given. The lu-
minance-based circle detection is corrupted by the photometric
variation in the image. Nine circles had to be detected before
the five balls were detected. For the shadow-shading-specular
quasiinvariant-based method, the five most prominent peaks in
the hough space coincide with reasonable estimates of the radii

and center points of the circles. Note that, although the record-
ings do not fulfill the assumptions on which the dichromatic
model is based, such as white light source, saturated pixels
and linear camera response, the invariants still improve perfor-
mance by partially suppressing scene incidental events, such as
shadows and specularities. In Fig. 7, an outdoor example with
a shadow partially covering the objects is given.

E. Local Color Symmetry Detector

The applicability of the features derived from an adaptation of
the structure tensor (Section IV-B) is illustrated here for a sym-
metry detector. We apply the circle detector to an image con-
taining Lego blocks (Fig. 8). Because we know that the color
within the blocks remains the same, the circle detection is done
on the shadow-shading-specular variant (11). The shadow-
shading-specular variant contains all the derivative energy ex-
cept for the energy which can only be caused by a material
edge. With the shadow-shading-specular variant the circular en-
ergy and the starlike energy are computed according to
(22). Dividing the circular energy by the total energy yields a
descriptor of local circularity [see Fig. 8(b)]

(32)

The superimposed maxima of [Fig. 8(c)] give good estimation
of the circle centers.

VI. CONCLUSION

In this paper, we proposed a framework to combine tensor-
based features and photometric invariance theory. The tensor
basis of these features ensures that opposing vectors in different
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channels do not cancel out, but instead that they reinforce each
other. To overcome the instability caused by transformation to
an photometric full invariant, we propose an uncertainty mea-
sure to accompany the full invariant. This uncertainty measure
is incorporated in the color tensor to generate robust photometric
invariant features. Experiments show that: 1) the color-based
features outperform their luminance counterparts, 2) the quasi-
invariants give stable detection, and 3) the robust invariants give
better extraction results.
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