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Computational Color Constancy: Survey and
Experiments
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Abstract—Computational color constancy is a fundamental
prerequisite for many computer vision applications. This paper
presents a survey of many recent developments and state-of-the-art
methods. Several criteria are proposed that are used to assess
the approaches. A taxonomy of existing algorithms is proposed
and methods are separated in three groups: static methods,
gamut-based methods, and learning-based methods. Further, the
experimental setup is discussed including an overview of publicly
available datasets. Finally, various freely available methods, of
which some are considered to be state of the art, are evaluated on
two datasets.

Index Terms—Color constancy, illuminant estimation, perfor-
mance evaluation, survey.

I. INTRODUCTION

C olor can be an important cue for computer vision or
image processing related topics, like human–computer

interaction [1], color feature extraction [2], and color appear-
ance models [3]. The colors that are present in images are
determined by the intrinsic properties of objects and surfaces
as well as the color of the light source. For a robust color-based
system, these effects of the light source should be filtered out.
This ability to account for the color of the light source is called
color constancy.

Human vision has the natural tendency to correct for the
effects of the color of the light source, e.g., [4]–[8], but the
mechanism that is involved with this ability is not yet fully
understood. Early work resulted in the Retinex theory by Land
and McCann [9]–[11], after which many computational models
are derived that are based on this perceptual theory [12]–[14].
However, there still exists a discrepancy between human and
computational color constancy. Computational models cannot
fully explain the observed color constancy of human observers,
as shown by Kraft and Brainard [15]. They tested the ability
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Fig. 1. Illustration of the influence of differently colored light sources on the
measured image values. These images are adapted from [7] and show the same
scene, rendered under four different light sources.

of several computational theories to account for human color
constancy, but found that each theory leaves considerable
residual constancy. In other words, without the specific cues
corresponding to the computational models, humans are still
to some extent color constant [15]. Alternatively, observations
on human color constancy cannot be readily applied to com-
putational models: Golz and MacLeod [16], [17] showed that
chromatic scene statistics influence the accuracy of human
color constancy, but when mapped to computational models,
the influence was found to be very weak at best [18]. Therefore,
the focus in this paper is on computational color constancy
algorithms. As an example, consider the images in Fig. 1. These
images depict the same scene, rendered under four different
light sources. The goal of computational color constancy algo-
rithms is to correct the (first three) target images (under three
different colored light sources), so that they appear identical to
the (fourth) canonical image (under a white light source).

Often, computational models for color constancy are charac-
terized by the estimation of the illuminant. The corresponding
algorithms are based on the assumption that the color of the light
source is spatially uniform across the scene. Hence, after glob-
ally estimating the color of the light source, color correction can
be applied to the image to obtain a color constant image. An-
other line of research, not pursued in this paper, focuses on the
invariance that can be obtained by applying various photometric
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transformations, sometimes also referred to as color constancy
[19]–[21]. Such methods are often extended to incorporate other
forms of invariance, like invariance to highlights or shadows, but
do not result in output images that have any visual similarity to
the original input image.

The main focus of this paper is on the estimation of the il-
luminant color, more specifically the estimation of the illumi-
nant using a single image from a regular digital camera. Hence,
methods using additional images, e.g., [22]–[27], physically dif-
ferent devices, e.g., [28], [29], or video sequences, e.g., [30],
[31], are not included in this paper. When using a single image
that is taken with a regular digital camera, illuminant estima-
tion is an underconstrained problem; both the intrinsic proper-
ties of a surface and the color of the illuminant have to be esti-
mated, while only the product of the two (i.e., the actual image)
is known. Early solutions for estimating the illuminant tried to
bridge this gap by adopting linear models of lights and surfaces
[32]–[35]. Unfortunately, these approaches do not result in sat-
isfactory results for real-world images.

In this paper, state-of-the-art approaches are divided into
three types of algorithms: 1) static methods, 2) gamut-based
methods; and 3) learning-based methods methods.1 The first
type of algorithms are methods that are applied to any image
without the need for training. In other words, for a given dataset
or application, the parameter setting is kept fixed (or static).
For the second and third type of algorithms, a model needs to
be trained before the illuminant can be estimated. This is an
important distinction that partially determines the suitability
of an algorithm for applicability to real-world systems. The
criteria used in this paper to assess the computational methods
are the following:

1) the requirement of training data;
2) the accuracy of the estimation;
3) the computational runtime of the method;
4) transparency of the approach;
5) complexity of the implementation;
6) number of tunable parameters.
For evaluation of computational color constancy methods,

various datasets are currently available, ranging from
high-quality hyperspectral scenes to large-scale real-world

images. Two large datasets are selected to analyze the
performance of various publicly available methods. The results
of these experiments are available online at http://www.color-
constancy.com.

This paper is organized as follows. First, in Section II, a
formal definition of the problem is discussed, together with the
methodology explored in this paper. Then, in Sections III–V,
current approaches as well as recent developments are de-
scribed. Section VI describes the experimental setup, including
commonly used error measures and databases with ground
truth. In Section VII, two of these datasets are selected and
extensive experiments are performed using a wide range of
methods. Finally, in Section VIII, a discussion and future
directions are presented.

1Note that the classification of the methods is not absolute, which means that
some methods are, for example, both gamut-based and learning-based.

II. COLOR CONSTANCY

Color constancy can be achieved by estimating the color of
the light source, followed by a transformation of the original
image values using this illuminant estimate. The aim of this
transformation is not to scale the brightness level of the image,
as color constancy methods only correct for the chromaticity
of the light source. Section II-A will discuss the formation of
an image, while more information on the transformation is dis-
cussed in Section II-B.

A. Image Formation

The image values depend on the color
of the light source , the surface reflectance , and the
camera sensitivity function ,
where is the wavelength of the light and is the spatial coor-
dinate [36], [37]

(1)

where , is the visible spectrum, and and
are scale factors that model the relative amount of body and

specular reflectance that contribute to the overall light reflected
at location . Under the Lambertian assumption, the specular
reflection is ignored. This results in the following model:

(2)

where is the Lambertian shading. It is assumed that the
scene is illuminated by one single light source and that the
observed color of the light source depends on the color of
the light source as well as the camera sensitivity function

(3)

Without prior knowledge, both and are unknown,
and hence, the estimation of is an under-constrained problem
that cannot be solved without further assumptions. Therefore, in
practice, color constancy algorithms are based on various sim-
plifying assumptions such as restricted gamuts (limited number
of image colors which can be observed under a specific illu-
minant), the distribution of colors that are present in an image
(e.g., white patch, gray world, etc.), and the set of possible light
sources. This paper will give an overview on the assumptions
and methods that are used for the estimation of the color of the
light source.

B. Image Correction

The focus of this paper is on estimating the color of the light
source. However, in many cases, the color of the light source is
of less importance than the appearance of the input image under
a reference light (called canonical light source). Therefore, the
aim of most of the color constancy methods is to transform all
colors of the input image, taken under an unknown light source,
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to colors as they appear under this canonical light source. This
transformation can be considered to be an instantiation of chro-
matic adaptation, e.g., [3]. Chromatic adaptation is often mod-
eled using a linear transformation, which in turn can be simpli-
fied by a diagonal transformation when certain conditions are
met [38]–[40]. Other possible chromatic adaptation methods in-
clude linearized Bradford [41] and CIECAT02 [42].

In this paper, the diagonal transform or von Kries Model [43]
is used, without changing the color basis [44], [45] or applying
spectral sharpening [46], [47]. These techniques have shown
their merits of improving the quality of output images if the illu-
minant under which the original image was recorded is known.
Since the discussed methods focus on estimation of this illumi-
nant, changing color bases and spectral sharpening techniques
are omitted in this paper for simplicity. The diagonal model that
is used is given by

(4)

where is the image taken under an unknown light source, is
the same image transformed, so it appears if it was taken under
the canonical illuminant, and is a diagonal matrix which
maps colors that are taken under an unknown light source to
their corresponding colors under the canonical illuminant

(5)

Although this model is merely an approximation of illumi-
nant change and might not accurately be able to model photo-
metric changes, it is widely accepted as color correction model
[38]–[40], [48], [49] and it underpins many color constancy al-
gorithms (e.g., the gamut mapping in Section IV) and gray-
world-based methods in Section III-A. The diagonal mapping
is used throughout this paper to create output images after cor-
rection by a color constancy algorithm, where a perfect white
light, i.e., , is used as canonical illumi-
nant.

III. STATIC METHODS

The first type of illuminant estimation algorithms that is dis-
cussed in this paper are static methods, or methods that are ap-
plied to input images with a fixed parameter setting. Two sub-
types are distinguished: 1) methods that are based on low-level
statistics; and 2) methods that are based on the physics-based
dichromatic reflection model.

A. Low-Level Statistics-Based Methods

The best-known and most often used assumption of this type
is the gray-world assumption [50]: the average reflectance in
a scene under a neutral light source is achromatic. It directly
follows from this assumption that any deviation from achro-
maticity in the average scene color is caused by the effects of
the illuminant. This implies that the color of the light source
can be estimated by computing the average color in the image

(6)

where is a multiplicative constant chosen such that the illu-
minant color, , has unit length. Alterna-
tively, instead of computing the average color of all pixels, it
has been shown that segmenting the image and computing the
average color of all segments may improve the performance of
the gray-world algorithm [51], [52]. This preprocessing step can
lead to improved results because the gray world is sensitive to
large uniformly colored surfaces, as this often leads to scenes
where the underlying assumption fails. Segmenting the image
before computing the scene average color will reduce the ef-
fects of these large uniformly colored patches. Related methods
attempt to identify the intrinsic gray surfaces in an image, i.e.,
they attempt to find the surfaces under a colored light source
that would appear gray if rendered under a white light source
[53]–[55]. When accurately recovered, these surfaces contain a
strong cue for the estimation of the light source.

Another well-known assumption is the white-patch as-
sumption [10]: the maximum response in the -channels
is caused by a perfect reflectance. A surface with perfect
reflectance properties will reflect the full range of light that it
captures. Consequently, the color of this perfect reflectance is
exactly the color of the light source. In practice, the assumption
of perfect reflectance is alleviated by considering the color
channels separately, resulting in the max- algorithm. This
method estimates the illuminant by computing the maximum
response in the separate color channels

(7)

Related algorithms apply some sort of smoothing to the image,
prior to the illuminant estimation [56], [57]. This preprocessing
step has similar effects on the performance of the white-patch
algorithm as segmentation on the gray world. In this case, the
effect of noisy pixels (with an accidental high intensity) is re-
duced, improving the accuracy of the white-patch method. An
additional advantage of the local space average color method
[57] is that it can provide a pixel-wise illuminant estimate. Con-
sequently, it does not require the image to be captured under
a spatially uniform light source. An analysis of the max-
algorithm is presented in [58] and [59], where it is shown that
the dynamic range of an image, in addition to the preprocessing
strategy, can have a significant influence on the performance of
this method.

In [60], the white patch and the gray-world algorithms
are shown to be special instantiations of the more general
Minkowski framework

(8)

Substituting in (8) is equivalent to computing the average
of , i.e., , , equals the gray-
world algorithm. When , (8) results in computing the
maximum of , i.e., equals the white-patch algorithm.
In general, to arrive at a proper value, is tuned for the dataset
at hand. Hence, the optimal value of this parameter may vary
for different datasets.

The assumptions of the previous color constancy methods are
based on the distribution of colors (i.e., pixel values) that are
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present in an image. The incorporation of higher order image
statistics (in the form of image derivatives) is proposed in [61],
where a framework called gray edge is presented that incorpo-
rates the well-known methods like (8), as well as methods based
on first- and second-order derivatives

(9)

where indicates the Frobenius norm, , is the
order of the derivative and is the Minkowski-norm. Further,
derivatives are defined as convolving the images by Gaussian
derivative filters with scale parameter [62]

(10)

where denotes the convolution and . This method is
enhanced with an illuminant constraint by Chen et al. [63]. Fur-
ther, Chakrabarti et al. [64] explicitly model the spatial depen-
dencies between pixels. The advantage of this approach com-
pared to the gray edge is that it is able to learn the dependen-
cies between pixels in an efficient way, but the training phase
does rely on an extensive database of images. Finally, Gijsenij
et al. [65] note that different types of edges might contain var-
ious amounts of information. They extend the gray-edge method
to incorporate a general weighting scheme (assigning higher
weights to certain edges), resulting in the weighted gray edge.
Physics-based weighting schemes are proposed, concluding that
specular edges are favored for the estimation of the illuminant.
The introduction of these weighting schemes result in more ac-
curate illuminant estimates, but at the cost of complexity (both
in computation and implementation).

B. Physics-Based Methods

Most methods are based on the more simple Lambertian
model following (2), but some methods adopt the dichro-
matic reflection model of image formation, following (1).
These methods use information about the physical interaction
between the light source and the objects in a scene and are
called physics-based methods. These approaches exploit the
dichromatic model to constrain the illuminants. The underlying
assumption is that all pixels of one surface fall on a plane
in color space. If multiple of such planes are found,
corresponding to various different surfaces, then the color of the
light source is estimated using the intersection of those planes.
Various approaches have been proposed that use specularities
or highlights [66]–[69]. The intuition behind such methods
is that if pixels are found where the body reflectance factor

in (1) is (close to) zero, then the color of these pixels are
similar or identical to the color of the light source. However,
all these methods suffer from some disadvantages: retrieving
the specular reflections is challenging and color clipping can
occur. The latter effectively eliminates the usability of specular
pixels (which are more likely to be clipped than other pixels).

A different physics-based method is proposed by Finlayson
and Schaefer [70]. This method uses the dichromatic reflec-
tion model to project the pixels of a single surface into chro-
maticity space. Then, the set of possible light sources is mod-
eled by using the Planckian locus of black-body radiators. This

planckian locus is intersected with the dichromatic line of the
surface to recover the color of the light source. This method, in
theory, allows for the estimation of the illuminant even when
there is only one surface present in the scene. However, it does
require all pixels in the image to be segmented, so that all unique
surfaces are identified. Alternatively, the colors in an image can
be described using a multilinear model consisting of several
planes simultaneously oriented around an axis defined by the
illuminant [71], [72]. This eliminates the problem of preseg-
mentation, but does rely on the observation that a representa-
tive color of any given material can be identified. In [73], these
requirements are relaxed, resulting in a two Hough transform
voting procedure.

IV. GAMUT-BASED METHODS

The gamut mapping algorithm has been introduced by
Forsyth [74]. It is based on the assumption, that in real-world
images, for a given illuminant, one observes only a limited
number of colors. Consequently, any variations in the colors of
an image (i.e., colors that are different from the colors that can
be observed under a given illuminant) are caused by a deviation
in the color of the light source. This limited set of colors that can
occur under a given illuminant is called the canonical gamut

and it is found in a training phase by observing as many
surfaces under one known light source (called the canonical
illuminant) as possible.

The flow of the gamut mapping is illustrated in Fig. 2. In gen-
eral, a gamut mapping algorithm takes as input an image taken
under an unknown light source (i.e., an image of which the illu-
minant is to be estimated), along with the precomputed canon-
ical gamut (see blocks 1 and 2 in Fig. 2). Next, the algorithm
consists of three important steps.

1) Estimate the gamut of the unknown light source by as-
suming that the colors in the input image are representative
for the gamut of the unknown light source. So, all colors
of the input image are collected in the input gamut . The
gamut of the input image is used as feature in Fig. 2.

2) Determine the set of feasible mappings , i.e., all map-
pings that can be applied to the gamut of the input image
and that result in a gamut that lies completely within the
canonical gamut. Under the assumption of the diagonal
mapping, a unique mapping exists that converts the gamut
of the unknown light source to the canonical gamut. How-
ever, since the gamut of the unknown light source is simply
estimated by using the gamut of one input image, in prac-
tice, several mappings are obtained. Every mapping in the
set should take the input gamut completely inside the
canonical gamut

(11)

This corresponds to block 4 in Fig. 2, where the learned
model (e.g., the canonical gamut) together with the input
features (e.g., the input gamut) is used to derive an estimate
of the color of the light source.

3) Apply an estimator to select one mapping from the set of
feasible mappings (see block 5 in Fig. 2). The selected
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Fig. 2. Overview of gamut-based algorithms. The training phase consists of learning a model given the features of a wide variety of input images (see block 1),
resulting in the canonical gamut (see block 2). The testing protocol consists of applying the learned model to the computed features of the input image (see blocks
3 and 4). Finally, one illuminant estimate is selected from the feasible set of illuminants (see block 5), and this estimate is used to correct the input image.

mapping can be applied to the canonical illuminant to ob-
tain an estimate of the unknown illuminant. The original
method [74] used the heuristic that the mapping resulting
in the most colorful scene, i.e., the diagonal matrix with
the largest trace, is the most suitable mapping. Simple al-
ternatives are the average of the feasible set or a weighted
average [75].

Several extensions have been proposed. First of all, difficul-
ties in implementation are addressed in [76] and [77], where it
is shown that the gamut mapping algorithm can also be com-
puted in chromaticity space . These modifications
correspond to different feature computation in blocks 1 and 3
in Fig. 2. However, the performance of this 2-D approach is
slightly worse than the performance of the 3-D approach. It is
shown that this decrease in performance is caused by the per-
spective distortion of the possible set of illuminants (the set of
feasible mappings in step 2) that is caused by the conversion
of the original image to 2-D-chromaticity values. This can be
solved by mapping the 2-D-feasible set back to three dimensions
before selecting the most appropriate mapping [77], [78] (i.e.,
a slightly modified block 4 in Fig. 2). Alternatively, in [79], an
efficient implementation is introduced using convex program-
ming. This implementation is shown to result in similar perfor-
mance as the original method. Finally, in [80], a simpler version
of the gamut mapping is proposed using a simple cube rather
than the convex hull of the pixel values.

Another extension of the gamut mapping algorithm deals with
dependence on the diagonal model. One of the disadvantages
of the original method is that a null solution can occur if the
diagonal model fails. In other words, if the diagonal model does
not fit the input data accurately, then it is possible that no feasible
mapping can be found that maps the input data into the canon-
ical gamut with one single transform. This results in an empty
solution set. One heuristic approach to avoid such situations
it to incrementally augment the input gamut until a nonempty
feasible set is found [52], [81]. Another heuristic approach is to
extend the size of the canonical gamut. Finlayson [76] increases
the canonical gamut by 5%, while Barnard [75] systematically

enlarges the canonical gamut by learning this gamut not only
with surfaces that are illuminated by the canonical light source,
but also with surfaces that are captured under different light
sources which are mapped to the canonical illuminant using
the diagonal model. Hence, possible failure of the diagonal
model is captured by augmenting the canonical gamut. Another
strategy is to simulate specularities during computation of the
canonical gamut, potentially increasing the performance of the
gamut mapping method even in situations where there is no null
solution [82], [83]. Alternatively, to avoid this null solution, an
extension of the diagonal model called diagonal-offset model
is proposed [84]. This model allows for translation of the input
colors in addition to the regular linear transformation, effectively
introducing some slack into the model. All these modifications
are implemented in block 5 of Fig. 2.

All these variations of the gamut mapping algorithm are re-
stricted to the use of pixel values to estimate the illuminant.
Gijsenij et al. [85] extended the gamut mapping to incorporate
the differential nature of images. They analytically show that
the gamut mapping framework is able to incorporate any linear
filter output and that, if failure of the diagonal model can be
prevented by adapting the diagonal-offset model [84], deriva-
tive-based gamut mapping will not result in null solutions. Fur-
ther, they propose several combinations of different -jet-based
gamut mappings and show that the best performance is obtained
by taking the intersection of feasible sets.

The fusion strategy proposed in [85] is based on the smaller
set of possible light sources obtained when taking the inter-
section of multiple feasible sets. Another method to constrain
the feasible set is proposed by Finlayson et al. [86] and is
called gamut-constrained illuminant estimation. This method
effectively reduces the problem of illuminant estimation to
illuminant classification by considering only a limited number
of possible light sources, similar to color by correlation. One
canonical gamut is learned for every possible light source.
Then, the unknown illuminant of the input image is estimated
by matching the input gamut to each of the canonical gamuts,
selecting the best match as final estimate.
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V. LEARNING-BASED METHODS

The third type of algorithms estimate the illuminant using
a model that is learned on training data. Indeed, gamut-based
methods in Section IV can be considered learning based too, but
since this approach has been quite influential in color constancy
research, it has been discussed separately.

Initial approaches using machine learning techniques are
based on neural networks [87]. The input to the neural network
consists of a large binarized chromaticity histogram of the input
image, the output is two chromaticity values of the estimated
illuminant. Although this approach, when trained correctly, can
deliver accurate color constancy even when only a few distinct
surfaces are present, the training phase requires a large amount
of training data. Similar approaches apply support vector
regression [88]–[90] or linear regression techniques like ridge
regression and kernel regression [91]–[93] to the same type
of input data. Alternatively, thin-plate spline interpolation is
proposed in [94] to interpolate the color of the light source over
a nonuniformly sampled input space (i.e., training images).

A. Methods Using Low-Level Statistics

Color by correlation [95] is generally considered to be a dis-
crete implementation of the gamut mapping, but it is actually
a more general framework which includes other low-level sta-
tistics-based methods like gray world and white patch as well.
The canonical gamut is replaced with a correlation matrix. The
correlation matrix for a known light source is computed by
first partitioning the chromaticity space into a finite number of
cells, followed by computation of the probabilities of occur-
rence of the coordinates under illuminant . One correlation
matrix is computed for every possible illuminant that is con-
sidered. Then, the information that is obtained from the input
image matched to the information in the correlation matrices to
obtain a probability for every considered light source. The prob-
ability of illuminant indicates the likelihood that the current
input image was captured under this light source. Finally, using
these probabilities, one light source is selected as scene illumi-
nant, e.g., using maximum likelihood [95] or Kullback–Leibler
divergence [96].

Other methods using low-level statistics are based on the
Bayesian formulation. Several approaches are proposed that
model the variability of reflectance and light source as random
variables. The illuminant is then estimated from the posterior
distribution conditioned on the image intensity data [97]–[99].
However, the assumptions of independent reflectance that is
Gaussian distributed proved to be too strong (unless learned for
and applied to a specific application like outdoor object recog-
nition [100]). Rosenberg et al. [101] replace these assumptions
with nonparametric models, using the assumption that nearby
pixels are correlated. Further, Gehler et al. [102] show that
competitive results to state of the art can be obtained when
precise priors for illumination and reflectance are used.

B. Methods Using Medium- and High-Level Statistics

Despite the large variety of available methods, none of the
color constancy methods can be considered as universal. All
algorithms are based on error-prone assumptions or simplifica-
tions and none of the methods can guarantee satisfactory results

for all images. To still be able to obtain good results on a full set
of images rather than on a subset of images, multiple algorithms
can be combined to estimate the illuminant. The outline of
such approaches is illustrated using Fig. 3. The first attempts of
combining color constancy algorithms are based on combining
the output of multiple methods [103]–[105]. In [103], three color
constancy methods are combined using both linear (a weighted
average of the illuminant estimates) and nonlinear (a neural net-
work based on the estimates of the considered methods) fusion
methods are considered. It is shown that a weighted average,
optimizing the weights in a least-mean-square sense, results in
the best performance, outperforming the individual methods that
are considered. In [104], a statistics-based method is combined
with a physics-based method. Both methods return likelihoods
for a predefined set of light sources and by combining these like-
lihoods a posteriori, more accurate results are obtained. Finally,
in [105], several different combination strategies are employed.
These strategies include the mean value of all estimates, the
mean value of the two closest estimates and the mean value of all
methods excluding the most remote estimates (i.e., excluding
the estimates with the largest distance to the other estimates).
This latter strategy, excluding two out of six estimates, resulted
in the best performance. All these approaches use fixed fusion
weights in blocks 3 and 6 in Fig. 3 and the features in blocks 1
and 4 can be seen as the illuminant estimates themselves.

Instead of combining the output of multiple algorithms into
one more accurate estimate, a different strategy is proposed
by Gijsenij and Gevers [106], [107]. They use the intrinsic
properties of natural images to select the most appropriate color
constancy method for every input image. Characteristics of
natural images are captured using the Weibull parameterization
(e.g., grain size and contrast), and they show that the corre-
sponding parameters ( and ) are related to image attributes to
which color constancy methods using low-level features (e.g.,
gray world, white patch, and gray edge) are sensitive to. In
other words, they select the most appropriate color constancy
algorithm for every image, depending on the contents of the
image. For instance, if an image contains only a few edges
(corresponding to a low signal-to-noise ratio), then pixel-based
methods like gray world and white patch are preferred. On the
other hand, edge-based methods (e.g., first- and second-order
gray edge) are preferred when the signal-to-noise ratio is
medium or high. Instead of using Weibull parameterization,
various other features are explored in [108]–[111] to predict the
most appropriate algorithm for a given image. The most notable
differences between these approaches is in block 1 of Fig. 3.

C. Semantic Information

Recently, several methods have been proposed that estimate
the illuminant using some sort of semantic information. Gijsenij
and Gevers [106], [107], [112] propose to dynamically deter-
mine which color constancy algorithm should be used for a spe-
cific image, depending on the scene category. They do not dis-
cuss the actual classification of the images and how to use the
uncertainty in the classification results, but merely assume that
the scene category of an image is known. Bianco et al. [113]
propose an indoor–outdoor classifier and use the uncertainty of
the classifier to introduce an “unsure” class. Then, they learn the
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Fig. 3. Overview of several learning-based algorithms. After the input features are compared to the training features, the optimal fusion weights are determined.
These weights can be static (fixed for all input images) or dynamic (dependent on the features of the input images). After the fusion weights for the current input
image are determined, the estimated illuminants are combined into one final estimate. This combination can either by hard (one of the illuminants is selected as
final estimate) or soft (a weighted average of estimates is computed).

appropriate color constancy algorithm for each of these three
classes. However, the distinction between indoor and outdoor
classes is rather arbitrary. Therefore, Lu et al. [114], [115] pro-
pose to use a stage classifier that distinguishes medium-level se-
mantic classes [116]. This results in a color constancy method
that explicitly uses 3-D scene information for the estimation of
the color of the light source.

A different approach uses high-level visual information.
Rather than classifying images into a specific class and ap-
plying different color constancy methods depending on the
semantic category, van de Weijer et al. [117] propose to cast
illuminant hypotheses that are generated and evaluated based
on the likelihood of semantic content. Using prior knowledge
about the world, an illuminant estimate is selected that results
in colors that are consistent with the learned model of the
world. In other words, an illuminant estimate is selected that
will generate plausible images, e.g., images with a blue rather
than purple sky and green rather than reddish grass. A similar
approach is proposed in [118], where the term memory color is
used to refer to color that are specifically associated with object
categories. These object-specific colors are used to refine the
estimated illuminants.

VI. EXPERIMENTAL SETUP

Evaluation of illuminant estimation algorithms requires im-
ages with a scene illuminant that is known (ground truth). The
general experimental setup is as follows. First, a part of the data
is used for training, if the algorithm requires this. Then, the color
of the light source is estimated for every remaining image of the
database and compared to the ground truth. The comparison re-
quires some similarity or distance measure; an often used mea-
sure is the angular error

(12)

where is the dot product of the estimated illuminant
and the ground truth and is the Euclidean norm of a

vector. Alternate setups exist, depending on the application. For
instance, Funt et al. [119] describe an experiment to evaluate the
usefulness of color constancy algorithms as preprocessing step
in object recognition.

In most situations, for instance when the application is to ob-
tain an accurate reproduction of the image under a white light
source, the distance measure should be an accurate reflection
of the quality of the output image. In [120], several distance
measures are analyzed with respect to this requirement, and it
is shown that the often used angular error correlates reasonably
well with the perceived quality of the output images. However,
to optimize this correlation, a dataset specific measure, called
perceptual Euclidean distance, should be adopted.

Multiple algorithms are typically compared using a large
number of images, so the performance of every algorithm needs
to be summarized over all images. An intuitive measure would
be to simply compute the average error over the full database.
However, the error measures are often not normally distributed
but rather skewed resulting in a nonsymmetric distribution.
Hence, the mean value of the errors is a poor summary statistic
[120], [121]. More appropriate measures to summarize the
distribution are the median [121] or the trimean [120]. The
median gives an indication of the performance of the method
on the majority of the images, while the trimean also gives an
indication of the extreme values of the distribution.

In addition to these summarizing statistics, more insight into
the performance of the algorithms can be obtained by showing
box plots or by performing significance tests [120], [121]. A
box plot is used to visualize the underlying distribution of the
error metric of one color constancy method. A significance
test, like the Wilcoxon sign test, is usually performed between
two methods to show that the difference between two algo-
rithms is statistically significant [121]. Further, the obtained
improvement can only be considered to be perceptually signif-
icant if the relative difference between two methods is at least
5–6%. Below that, the difference is not noticeable to human
observers [120].
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A. Datasets

Two types of data can be distinguished that are used to eval-
uated color constancy methods: hyperspectral data and
images. Databases containing hyperspectral datasets are often
smaller (less images) and contain less variation than datasets
with images. The main advantage of hyperspectral data
is that many different illuminants can be used to realistically
render the same scene under various light sources, and con-
sequently, a systematic evaluation of the methods is possible.
However, the simulation of illuminants generally does not in-
clude real-world effects like interreflections and nonuniformity.
Consequently, the evaluation on images results in more
realistic performance evaluations. Ideally, both types of data
should be used for a thorough evaluation of color constancy
methods [52], [81].

An often used hyperspectral database was composed by
Barnard et al. [122]. This set consists of 1995 surface reflectance
spectra and 287 illuminant spectra. These reflectance and illu-
minant spectra can be used to generate an extensive range of
surfaces (i.e., values), allowing for a systematic evalu-
ation of color constancy performance. Another database that
is specifically useful for the evaluation of color constancy al-
gorithm is created by Foster et al. [123], [124]. These two sets
each contain eight natural scenes that can be converted into an
arbitrary number of images using various illuminant spectra (not
provided). Finally, a database by Párraga et al. [125] contains 29
hyperspectral images with low resolution (256 256 pixels).

Databases with images are more informative on the
performance of the algorithms under realistic circumstances.
The first step toward realistic evaluation of color constancy
methods involves isolated compositions of objects that are
illuminated by 11 different light sources [122]. The 11 different
lights include three different fluorescent lights, four different
incandescent lights, and four incandescent lights combined
with a blue filter and are selected to span the range of natural
and man-made illuminants as best as possible. The complete
database contains 22 scenes with minimal specularities, 9
scenes with dielectric specularities, 14 scenes with metallic
specularities, and 6 scenes with at least one fluorescent surface.
Often, for illuminant estimation evaluation, a subset of 31
scenes is used that only consists of the scenes with minimal
and with dielectric specularities. Even though these images en-
compass several different illuminants and scenes, the variation
of the images is limited.

A more varied database is composed by Ciurea and Funt
[126]. This dataset contains over 11 000 images, extracted from
2 h of video recorded under a large variety of imaging conditions
(including indoor, outdoor, desert, cityscape, and other settings).
In total, the images are divided into 15 different clips taken at
different locations. The ground truth is acquired by attaching
a gray sphere to the camera, that is displayed in the bottom
right corner of the image. Obviously, this gray sphere should
be masked during experiments to avoid biasing the algorithms.
Some examples of images that are in this dataset are shown in
Fig. 4(a). The main disadvantage of this set is the correlation
that exists between some of the images. Since the images are
extracted from video sequences, some images are rather similar
in content. This should especially be taken into account when

Fig. 4. Some examples of the two datasets that are used for the experiments.
(a) Example images of SFU dataset. (b) Example images of color-checker-set.

dividing the images into training and test sets. Another issue of
this dataset is that an unknown postprocessing procedure is ap-
plied to the images by the camera, including gamma correction
and compression. A similar dataset has been recently proposed
in [127]. Although the number of images in this set (83 outdoor
images) is not comparable to the previous set, the images are not
correlated and are available in format and can be consid-
ered to be of better quality. Further, an extension of the dataset is
proposed in [128], where an additional 126 images with varying
environments (e.g., forest, seaside, mountain snow, and motor-
ways) are introduced. Gehler et al. [102] introduced a database,
consisting of 568 images, both indoor and outdoor. The ground
truth of these images is obtained using a MacBeth color checker
that is placed in the scene. The main advantage of this database
is the quality of the images (which are free of correction), but the
variation of the images is not as large as the dataset containing
over 11 000 images. Some examples of images that are in this
dataset are shown in Fig. 4(b). Finally, Shi and Funt generated
a set of 105 high-dynamic-range images [58], [59]. These im-
ages use four color checkers to capture the ground truth and are
constructed from multiple exposures of the same scene.

A summary of available datasets is presented in Table I.
Generally, a distinction can be made between real-world
images and images with controlled illumination conditions.
The latter type of data, including hyperspectral images, should
mainly be used to aid the development of new algorithms and
for the systematic analysis of methods. Conclusions about the
performance with respect to existing methods based on such
datasets should be avoided as much as possible, since it is rela-
tively easy to tune any algorithm to obtain a high performance
on such datasets. The real-world images are more suited
to compare algorithms, as such data are probably the target data
of the intended application of most color constancy algorithms.
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TABLE I
SUMMARY OF DATASETS WITH ADVANTAGES AND DISADVANTAGES

VII. EVALUATION

This section consists of a large-scale evaluation of various
color constancy algorithms.2 Most methods selected are evalu-
ated using publicly available source code, ensuring the repeata-
bility of these results. Two different datasets are used for eval-
uation: the gray-ball SFU set and the color-checker-set (note
that the data used in this paper are obtained from [129]). These
sets are selected because of their size (they are the two largest
sets available to date), their nature (the sets consist of real-world
images in an unconstrained environment), and their benchmark
status (the gray-ball SFU set is widely used; the more recent
color-checker-set has the potential to become widely used).

A. Experimental Details

Both datasets contain a marker used to obtain the ground
truth. This marker is masked during all experiments. Further,
all experiments are performed on linear images, as the
color formation model in Section II-A is based on linear images.
Moreover, color constancy is generally implemented on a digital
camera prior to the conversion of the raw data to device-depen-
dent images. Hence, using linear images is basi-
cally the only logical option. The color-checker-set is available
in -format, but Shi and Funt [129] reprocessed the raw
data to obtain linear images with a higher dynamic range (14 bits
as opposed to standard 8 bits). The ground truth of the gray-ball
SFU set is obtained using the original images (color model of
these images is - ). Therefore, we recomputed the
ground truth by converting the images from - to
linear assuming . It is important to note that
recomputing the ground truth from the gamma-correction im-
ages is different from applying gamma correction to the origi-
nally provided ground truth values of the illuminants. Due to the
gamma correction, the illuminant estimation of the scenes are
more chromatic, and consequently, this leads to higher angular
errors.3 This paper is the first to apply color constancy to the
linear images of the gray-ball SFU set and the obtained results
are, therefore, not comparable to previously published results.

2All estimated illuminants can be downloaded from http://www.colorcon-
stancy.com.

3The new ground truth can be downloaded from http://www.colorconstancy.
com.

All algorithms are trained using the same setup, based on
cross validation. Training on the gray-ball SFU set is performed
by dividing the data into 15 parts, where we ensure that the cor-
related images (i.e., the images of the same scene) are grouped
in the same part. Next, the method is trained on 14 parts of
the data and tested on the remaining part. This procedure is re-
peated 15 times, so every image is in the test set exactly once
and all images from the same scene will either be in the training
set or in the test set at the same time. The color-checker-set
adopts a simpler threefold cross validation. The threefolds are
provided by the authors of the dataset and to ensure repeata-
bility of the results we did not diverge from this. This cross-val-
idation-based procedure is also adapted to learn the optimal
parameter setting for the static algorithms (optimizing and

) and the gamut-based algorithms (optimizing the filter size
). Further, the regression-based method is implemented using

LIBSVM [130] and is optimized for number of bins of the bi-
nary histogram and for the SVR parameters. Finally, all com-
bination-based methods are applied to a selected set of static
methods: using (9), we systematically generated nine methods
using pixel values, eight methods using first-order derivatives,
and seven methods using second-order derivatives. Based on the
details of the corresponding methods, the following strategies
are deployed. The No- -Max combination method [105] is ap-
plied to a subset of six methods (finding the optimal combina-
tion of six methods using the same cross-validation-based pro-
cedure), the method using high-level visual information [117]
is applied to the full set of methods (setting the number of se-
mantic topics to 30), and the method using natural image sta-
tistics [106], [107] is applied to a subset of three methods (one
pixel-based, one edge-based, and one second-order derivative-
based method, finding the optimal combination using the same
cross-validation procedure).

B. Gray-Ball SFU Set

The results4 on the SFU set are shown in Table II, and
statistical significance is demonstrated in Table IV(a). Some
example results are shown in Fig. 5. Pixel-based gamut map-
ping performs similar to the gray-edge method, but judging
from these results, simple methods like the white patch and the

4Bayesian color constancy is omitted from this table because we did not ob-
tain satisfactory results on this dataset.
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Fig. 5. Some example results of various methods applied to several test images. The angular error is shown in the bottom right corner of the images. The methods
used are, from left to right, perfect color constancy using ground truth, gray world, second-order gray edge, inverse intensity chromaticity space, and high-level
visual information.

TABLE II
PERFORMANCE OF SEVERAL METHODS ON THE LINEAR GRAY-BALL SFU SET (11 346 IMAGES)

Fig. 6. Some example results of various methods applied to several test images. The angular error is shown in the bottom right corner of the images. The methods
used are, from left to right, perfect color constancy using ground truth, white patch, first-order gray edge, pixel-based gamut mapping, and natural image statistics.

gray world are not suited for this dataset with the current pre-
processing strategy. As expected, combination-based methods
outperform single algorithms, where the difference between
illuminant estimation using high-level visual information and
using natural image statistics is negligible (i.e., not statistically
significant).

C. Color-Checker-Set

The results on this dataset are shown in Table III (see
Table IV(b) for statistical significance) and some example
results are shown in Fig. 6. On this dataset, the edge-based
methods, i.e., gray edge, spatial correlations, and edge-based
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TABLE III
PERFORMANCE OF SEVERAL METHODS ON LINEAR COLOR-CHECKER-SET (568 IMAGES)

TABLE IV
WILCOXON SIGN TEST ON THE TWO DATASETS. A POSITIVE VALUE (1) AT LOCATION ��� �� INDICATES THE MEDIAN OF METHOD � IS SIGNIFICANTLY LOWER

THAN THE MEDIAN OF METHOD � AT THE 95% CONFIDENCE LEVEL. A NEGATIVE VALUE ���� INDICATE THE OPPOSITE AND A ZERO (0) INDICATES THERE IS NO

SIGNIFICANT DIFFERENCE BETWEEN THE TWO METHODS (A) LINEAR GRAY-BALL SFU SET (B) LINEAR COLOR-CHECKER-SET

gamut mapping, perform significantly worse than pixel-based
methods like gamut mapping and general gray world. However,
it can be observed that the error on “difficult” images (i.e.,
images on which the method estimates an inaccurate illumi-
nant, the Worst-25% column) for both types of algorithms is
similar. This indicates that the performance of methods using
low-level information (either static algorithms or learning-based
methods) is bounded by the information that is present. Using
multiple algorithms is required to decrease the error of these
“difficult” images, as can be seen by the performance of com-
bination-based methods. Even though the increase in overall
performance is not very high, methods using high-level visual
information and natural image statistics are statistically similar
to the pixel-based gamut mapping; the largest improvement

in accuracy is obtained on these difficult images (the mean
angular error on the worst 25% of the images drops from 10.3
to 8.0 and 9.2 , respectively). Hence, to arrive at a robust
color constancy algorithm that is able to accurately estimate
the illuminant on any type of image, it is necessary to combine
several approaches.

VIII. DISCUSSION AND FUTURE DIRECTIONS

In this paper, an overview of often used approaches to illumi-
nant estimation is presented, together with recent developments.
Criteria that are important for computational color constancy al-
gorithms are the requirement of training data, the accuracy of
the estimation, the computational runtime of the method, the
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TABLE V
SUMMARY OF METHODS WITH ADVANTAGES AND DISADVANTAGES

transparency of the approach, the complexity of the implemen-
tation, and the number of tunable parameters. A summary of
the discussed methods is presented in Table V. In Section III-A,
methods that are based on low-level information are presented.
These methods are not dependent on training data and the pa-
rameters are not dependent on the input data and are, therefore,
called static. Existing methods include the gray world and the
white patch and recent developments extended these methods to
incorporate higher order statistics. Advantages of such methods
are a simple implementation (often, merely a few lines of code
are required) and fast execution. Further, the accuracy of the es-
timations can be quite high, provided the parameters are selected
appropriately. On the other hand, inaccurate parameter selection
can severely reduce the performance. Moreover, the selection of
the optimal parameters is quite opaque, especially without prior
knowledge on the input data. Physics-based methods discussed
in Section III-B suffer less from the parameter selection but are
also less accurate (even for properly selected parameters).

In Section IV, the gamut-based methods and an extension to
incorporate the differential nature of images are described. The
main advantages of gamut-based methods are the elegant under-
lying theory and the potential high accuracy. However, proper
implementation requires some effort and appropriate prepro-
cessing can severely influence the accuracy.

Finally, in Section V, methods that cannot operate without
training phase are discussed. Section V-A discusses methods
that learn low-level statistics, like regression techniques and
Bayesian approaches. Advantages of such methods are that they
are (relatively) simple to implement and that they can be tuned
toward specific data (like indoor or outdoor images). Disad-
vantages are that the output is often rather nonintuitive since
the model that is learned is quite opaque. On the other hand,
methods using higher level statistics and semantics discussed in
Sections V-B and V-C, like the selection algorithm using nat-
ural image statistics, are often quite intuitive since it can be pre-
dicted beforehand which method will be selected for a specific
input image. Moreover, the accuracy of such approaches has
been proven to be state of the art. However, the use of multiple
single algorithms means it is inherently slower than the single
algorithms themselves.

A. Future Directions

As explained in Section I, explanations for human color con-
stancy and computational approaches are diverging. It would be
interesting to bring the recent advances in human color con-
stancy closer to the computational level, to map the computa-
tional advancements to human explanations. For instance, Gi-
jsenij and Gevers [106], [107] suggest that the optimal compu-
tational approach that is taken for a specific image is based on
the statistics of the scene. It is unknown to what extent human
observers use a similar approach; if multiple cues are avail-
able then in what order are they processed and what weight
is given to each cue? On the other hand, recent developments
in human color constancy suggest that color memory, possibly
in addition to contextual clues, could play an important role
[131]–[134]. It is worth exploring the corresponding computa-
tional approaches, if they exist.

A first step toward convergence of human and computational
color constancy might be to adapt a new image correction
model. It is suggested that human color constancy is relational
rather than absolute and recently experiments are performed
that indicate that human observers do not explicitly judge the
color of the illuminant [135]. Mapping this to computational
methods would imply that the two-stage setup (illuminant
estimation followed by image correction) is not appropriate.
According to this theory, methods closer to human color con-
stancy are methods that learn correspondences between images
and possible illuminants [136]. This implies that the exper-
imental setup be changed, as the illuminant is not explicitly
estimated.

Finally, all methods discussed so far are based on the assump-
tion that the illuminant in the image is spatially uniform. How-
ever, in real-life scenarios, this assumption is easily violated: in-
door images can depict multiple rooms in the same image, while
all rooms can have spectrally different light sources. Further-
more, outdoor images can show parts of the scene in shadow and
other parts in bright sunlight. For simplification, such examples
are ignored by most current approaches. Only a few methods
have been proposed that consider the presence of multiple light
sources. For instance, Finlayson et al. [137] and Barnard et al.
[138] propose a Retinex-based approach that explicitly assumes
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that surfaces exist in the scene that are illuminated by mul-
tiple light sources. Another Retinex-based approach [25] uses
stereo images to derive 3-D information on the surfaces that are
present in the images, to be able to distinguish material transi-
tions from local light color changes. In [139], human interac-
tion is employed to specify locations in images that are illumi-
nated by different light sources. Finally, Ebner [57] proposes
a gray-world-like method that is based on the assumption that
the light source smoothly varies across the scene. An additional
difficulty of this line of research is the lack of ground truth. In
Section VI, several databases are described, all based on the as-
sumption that there is only one light source in the scene. Con-
sequently, before proposing new methods that depart from the
uniform assumption, new proper databases for evaluation have
to be designed.

To conclude, interesting future research directions include in-
vestigation of the relation between human and computational
color constancy theories, adopting alternate image correction
models besides the two-stage approach used in this paper and
departure of the uniform light source assumption.
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