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Abstract—Many facial-analysis approaches rely on robust and
accurate automatic facial landmarking to correctly function.
In this paper, we describe a statistical method for automatic
facial-landmark localization. Our landmarking relies on a parsi-
monious mixture model of Gabor wavelet features, computed in
coarse-to-fine fashion and complemented with a shape prior. We
assess the accuracy and the robustness of the proposed approach
in extensive cross-database conditions conducted on four face
data sets (Face Recognition Grand Challenge, Cohn–Kanade,
Bosphorus, and BioID). Our method has 99.33% accuracy on the
Bosphorus database and 97.62% accuracy on the BioID database
on the average, which improves the state of the art. We show that
the method is not significantly affected by low-resolution images,
small rotations, facial expressions, and natural occlusions such as
beard and mustache. We further test the goodness of the land-
marks in a facial expression recognition application and report
landmarking-induced improvement over baseline on two separate
databases for video-based expression recognition (Cohn–Kanade
and BU-4DFE).

Index Terms—Facial feature localization, facial landmarking,
factor analysis, Gabor wavelet features, mixture models, shape
prior, structural analysis.

I. INTRODUCTION

A UTOMATIC facial landmarking is an important com-
ponent for face registration, analysis, and recognition

methods. The pipeline of a facial-analysis method starts with
face detection and often proceeds by locating several fidu-
cial points on detected faces, also called anchor points, or
landmarks. The landmarks are used for aligning the faces,
also called registration, which has a significant effect on the
subsequent analysis. These include (most of the time) eye and
eyebrow corners, centers of irises, the nose tip, mouth corners,
and the tip of the chin. While a few landmarks are sufficient
for registration prior to face recognition, a greater number of
landmarks are usually required (typically between 20–60) for
expression analysis.
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Comparative studies have demonstrated that improving fa-
cial registration can have a significant impact on a face anal-
ysis system [1]. This is particularly the case for expression anal-
ysis, where the configurations of facial landmarks are indicative
of deformations caused by expressions. Subsequently, deforma-
tion analysis can reveal expression categories, provided that fa-
cial landmarks are accurately detected and contain sufficient in-
formation for the recognition of a particular facial expression.
However, facial landmarking is a challenging problem under
changing acquisition conditions, and statistical models can fail
if the variance captured during training is not rich enough to
generalize to new test settings.

One may argue that models that jointly learn shape and ap-
pearance, such as the active appearance model (AAM) and the
active shape model (ASM), sidestep the need for landmarking.
There are no theoretical constraints to necessitate a high number
of landmark annotations for these models, as the number de-
pends on the requirements of the task at hand, yet these ap-
proaches are traditionally trained with 50–60 annotated points
for face analysis [2]. Milborrow and Nicolls have proposed an
extended active shape model and have shown that the point-to-
point error doubles on the average when the number of landmark
annotations is around ten, instead of 50–60 [3]. While these ap-
proaches provide good results in many cases, training such a
system is more difficult and costly than training a landmarker for
this reason. On the other hand, methods that are based on land-
mark-specific heuristics often give good results on a particular
data set, but their reliance on various assumptions (e.g., open
eyes for contrast-based eye detection) makes them vulnerable.

The contribution of this paper is a generic statistical 2-D land-
marking method that empirically performs better than methods
reported so far in the literature. We assess the strengths and the
weaknesses of the method in the most extensive experimental
setting reported in a landmarking paper to date, and by making
our protocols available online, we hope to make possible a more
rigorous evaluation of landmarking methods in the future. Our
setup includes a large variety of imaging conditions and separate
assessment for low-resolution images, pose variations, different
facial expressions, and natural occlusions such as mustache and
beard.

Our method follows a coarse-to-fine strategy, which reduces
the computational burden and also improves the accuracy by
making the method resilient to resolution changes. Statistical
methods perform better on coarse scales, where adjacent pixels
have less correlation. The appearance of each landmark is
modeled with statistical models of Gabor wavelet features
with different scale and rotation parameters, which allows
straightforward probabilistic interpretation. To integrate fa-
cial morphology and to constrain the search, we use a novel
structural prior, based on the assumption that the input face
is frontal. Rotations will cause both shape and appearance
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problems. Subsequently, we assess our method with and
rotations and show that including even a small amount

of rotated faces in the training set will improve the methods’
resilience to these. We also contrast our statistical method
with several alternatives and demonstrate its superiority for the
present setting.

This paper is structured as follows: Section II describes
related work in landmarking, followed by Section III that
describes our statistical landmark localization algorithm. In
Section IV, we present the experimental results with discussion
of different aspects of the approach, such as the effect of res-
olution, natural occlusions, and rotation. We also contrast and
discuss several performance criteria. Section V describes an
application of facial-expression classification that demonstrates
the extent of improvement by automatic landmarking and also
illustrates the shortcomings of the approach. We conclude in
Section VI.

II. RELATED WORK IN LANDMARKING

Finding facial landmarks automatically is a difficult problem,
which faces all hurdles of face recognition in a smaller scale,
such as illumination and occlusion problems [4]. The constel-
lation of facial landmarks is different for each face image. A
part of the difference is due to the subjective morphology of the
face, as different persons have different face shapes. Even for
the same person, different images will have different configura-
tions. Another part of this difference is due to camera angle and
pose differences. There are also expression-based changes (of
which some part may be attributable to emotion) and measure-
ment noise to take into account.

The appearance of each landmark and the structural rela-
tionships between landmark points (i.e., configuration) can be
both taken into account in locating landmarks automatically.
However, both the appearance and the structure are changed
under expression variations and in different ways. If the appli-
cation involves video input, it is simpler to solve the problem
of landmarking on the neutral face and then track each land-
mark while the face is deformed under the influence of an ex-
pression. Tracking is computationally cheaper than a search for
exact landmark locations, as the latter usually requires a lot of
features for robust detection across different conditions.

The detection of facial landmarks is frequently performed
with landmark-specific heuristics that are experimentally vali-
dated on a particular data set. For instance, vertical projection
histograms of intensity values can be used to localize the eye
and mouth regions [9]. Moreover, the contrast differences in the
eye region were employed to train classifiers for eye detection
[7]. Heuristic approaches do not need extensive training sets, but
they require individual treatment of each landmark, which can
mean excessive engineering for a rich set of landmarks.

The second approach is the joint optimization of structural
relationships between landmark locations and local feature con-
straints, which are frequently conceived as distances to feature
templates [10], [11]. The landmark locations are modeled with
graph nodes (e.g., the elastic bunch graph), where the edges
characterize pairwise distances. Two popular graph-based ap-
proaches are the AAM and the ASM [12]. The ASM models tex-
tures of small neighborhoods around landmarks and iteratively

minimizes the differences between landmark points and their
corresponding models. The AAM typically looks at the texture
within the convex hull of landmarks, synthesizes a face image
from a joint appearance and shape model, and seeks to maxi-
mize similarity to the target face iteratively.

A large number of facial landmarks (typically 50–60) are used
for graph-based methods. Tong et al. [13] proposed a semisu-
pervised deformation procedure to locate large numbers of fa-
cial points with the help of a few annotated images. Fewer and
sparsely distributed landmarks produce a smaller number of
structural constraints. Our approach does not rely on a struc-
tural model and can be employed to locate a few landmarks.

Recently, Cristinacce and Cootes proposed the constrained
local model (CLM) approach, which is similar to an AAM but
uses a set of local feature templates instead of modeling the
appearance of the whole face [2]. Coarse alignment is via face
detection, and modeled templates are matched to the image
through a shape-constrained search that uses both appearance
and shape information. The CLM is shown to perform better
than the AAM for the facial-landmarking task. In [3], Mil-
borrow and Nicolls propose a number of simple extensions
to the ASM approach of Cootes et al. [14] and report further
accuracy improvement over the CLM approach [2].

A number of approaches use larger sets of landmarks to track
faces. For instance, Gu and Kanade [15] propose a generative
shape regularization model, which is applied on automatically
initialized key points to localize 83 points. In [16], Zhao et al.
use Gabor features to align 13 control points on the face, and fur-
ther 83 points are generated by constrained profile and flexible
shape models. Liu proposes an adaptive algorithm that uses a
generic AAM and a subject-specific appearance model together
for detecting 72 points [17]. During fitting, the subject-specific
model is updated by using the generic model to track the next
frames. For these approaches, the precise locations of landmarks
are less important than the coverage of the face. The neigh-
boring points often have similar nondiscriminating visual fea-
tures. Thus, the additional landmarks are not very beneficial for
precise computations such as expression analysis, and their de-
tection may have a large variance. It is also very difficult to
verify landmarking under these conditions, as the ground-truth
annotation for such large numbers of landmarks is costly to ob-
tain and is not reliable at all. Nonetheless, these approaches can
be very useful for tracking the facial boundary. In this paper,
however, our aim is to find a few well-defined landmarks with
as much precision as possible.

The independent detection of landmark points provides
robustness against missing or occluded landmarks. When the
image contains poor or wrong feature information (e.g., sun-
glasses masking the eyes or beard masking the mouth corners),
the joint estimation of landmarks (e.g., in AAM approaches)
will be problematic, unless the occlusion is detected before
optimization, and the occluded landmarks are prevented from
contributing to the appearance term. Yu et al. report about a
20% accuracy decrease for the 10% image occlusion and about
40% accuracy decrease for the 40% image occlusion under
the basic active appearance model [18]. Their solution is to
presegment the image to detect occlusion and to adapt the error
terms corresponding to appearance parameters accordingly. A
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second point is that a large number of annotations (i.e., 40–50
landmarks per face) are usually used during the training stage
of the ASM and its derivatives. This kind of ground truth is
not available in any of the major databases. Because of all
these reasons, [4] and [8] focus on the independent detection of
landmark points, and we do the same in this paper.

In [8], Vukadinovic and Pantic propose a method that uses
Gabor-feature-based boosted classifiers. In this approach, the
detected face is divided into regions of interest (ROI). Then,
individual GentleBoost templates are used to detect landmarks
within the relevant ROI independently. Modeled templates
are based on grayscale texture information and Gabor wavelet
features. The ROI sizes are heuristically determined, and they
need to be kept large enough to deal with expressive faces.
Another independent feature-point detection algorithm has
been proposed in [4], which follows a coarse-to-fine strategy.
The statistical modeling of Gabor wavelet features on the
coarse scale is complemented with a structural analysis step
and a fine-tuning step. In [4], the search for each landmark is
conducted over the whole image, whereas face detection can
greatly constrain the search through a shape prior. Unlike the
discrete segmentation of ROI-based methods, a shape prior
would provide continuous probability values for the search area.
Recently, Valstar et al. proposed a system based on the support
vector regression of Haar-like features, where the search space
is constrained by Markov random fields [5]. In this paper, we
introduce a probabilistic shape prior that is simple and fast
to compute, and show that, through such a prior, contrasted
landmarking methods become faster and more accurate.

The statistical model we employ in our approach is a mixture
of factor analyzers, which is similar to a mixture of Gaussians.
An earlier approach that uses the Gaussian mixture modeling of
Gabor features is proposed by Hamouz et al., where modeled fa-
cial features are combined for face detection but not for precise
landmarking [19]. A related approach is taken in [6], which de-
scribes a weighted vector concentration scheme combined with
models of histogram-of-oriented-gradient features.

The approach presented in this paper builds on [4], which
was the first paper to explore incremental statistical modeling
of Gabor features. This paper improves the approach presented
in [4] by adapting an efficient pyramid representation, a struc-
tural prior, and uniform features in each scale. The experimental
setup is much more extensive, as we report cross-database re-
sults, measure the influence of adverse conditions, report results
with 22 landmarks (instead of seven), report an application to
expression recognition, and compare the approach with many
results from the literature.

Table I shows the test configurations of some recent land-
marking approaches in the literature. Unfortunately, there is
no commonly adopted protocol for evaluating and comparing
landmarking methods. Therefore, we make the complete exper-
imental protocol (the training, validation, and test partitions)
for each result reported in this paper available.

III. FACIAL LANDMARKING ALGORITHM

The proposed method is a coarse-to-fine strategy for the lo-
calization of facial landmarks. The search for the points uses

TABLE I
RECENT FACIAL LANDMARKING METHODS IN THE LITERATURE

Gabor wavelet features with different scale and rotation param-
eters. A structural prior is used to integrate facial morphology.
Including shape information speeds up the system and increases
the accuracy.

A. Facial Model and Features

Our first assumption is that the face area is detected. We
use the Viola–Jones face detection algorithm [20], which re-
quires the face image to be roughly frontal (i.e., rotations up
to are acceptable). We assess the effect of rotations ex-
plicitly in Section IV-A. A histogram equalization is applied to
the face image for damping the illumination effects. Face de-
tection and illumination compensation are standard steps in fa-
cial landmarking. To reduce the computational complexity of
the search, we prepare a three-level image pyramid from the
cropped high-resolution face images. The pyramid consists of
160 224, 80 112, and 40 56 pixel images. The expected
locations for each landmark is learned with respect to the face
boundary from a training set of manually annotated images.

Since coarse-level images have lower pixel-to-pixel corre-
lation, they are much more suited for statistical modeling [4].
For instance, the nose tip in the full-resolution image is a large
area with almost identical pixel values. If we include enough
pixels to reach a sufficiently discriminative feature vector, the
dimensionality will be too large. This further complicates the
training of statistical models for obvious reasons. This is the
main reason for following a coarse-to-fine strategy. The first-
level search is performed on the 40 56 pixel image, and the
search area is constrained by the landmark occurrences in the
training set. Afterward, the detected facial feature point and its
immediate neighbors are passed on to the next stage. Only 6 6
pixels are processed in each of the second and third tiers, as
shown in Fig. 1. In the coarse-to-fine architecture, the training
time of the system and the runtime memory requirement are in-
creased because each level requires separately learned features,
but this approach dramatically reduces the time complexity of
the landmark search. The three-level search is approximately 16
times faster than using the one-shot detection on the resolution
of the third level. Moreover, experimental results (not shown
here) demonstrate that the three-level strategy localizes the land-
marks more accurately (5%–10% on average) than the one-shot
detection.
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Fig. 1. Coarse-to-fine search for landmark detection in three levels.

Within search windows, independent Gabor wavelet features
are extracted by convolving the candidate image patches with
Gabor kernels of different orientation and frequency, i.e.,

(1)

In (1), is a candidate landmark location,
defines the orientation and scale parameters of the Gabor
kernel, and is an index for different kernels. The standard
deviation of the Gaussian function is . The first factor
in the Gabor kernel represents the Gaussian envelope, and
the second factor represents the complex sinusoidal (carrier)
function. Term in the square brackets compensates for
the value.

Feature patches are extracted from around a 7 7 neighbor-
hood of each landmark candidate. Consequently, 49-D feature
vectors for each orientation and scale are obtained. These are
extracted in eight orientations, i.e., ,
and at three different scales, i.e., . Since we use a
generative method, the training uses only the positive samples of
each landmark class, obtained from ground truth. The features
are minimum–maximum normalized to the [0, 1] range before
statistical modeling. The search window constraint we introduce
greatly reduces the area over which we compute wavelet fea-
tures. Furthermore, this part of the system lends itself easily to
parallel computation.

B. Statistical Feature Modeling

We model the statistical distribution of the extracted features
with an incremental mixtures of factor analyzers (IMoFA)
algorithm that places a number of Gaussian distributions with
arbitrary covariance on the data [21]. This algorithm relies on a
factor analysis formulation of the high-dimensional covariance
matrix of each component in the mixture distribution, thereby

adapting model complexity to the data locality. Complex
models have more free parameters and consequently need
a large number of training data to appropriately generalize.
The IMoFA algorithm is favorable as it automatically finds a
tradeoff between accuracy and complexity. It also responds
to increases in the training data by an increase in complexity,
instead of a tighter fit on the training set, which means there
is less diminishing returns for increasing data volume and less
overfitting due to model complexity.

A mixture of factor analyzers is, in essence, a mixture of
Gaussians where the data are assumed to be generated in a lower
dimensional manifold. For each component of the mixture, the

covariance matrix is generated by a dimen-
sional factor matrix and a diagonal matrix , i.e.,

(2)

is called the uniqueness, and it stands for the independent
variance due to each dimension. With a small number of fac-
tors (represented with ), the model will have a much smaller
number of parameters than a full Gaussian, although the covari-
ances are modeled. In the mixture model, each distribution is
potentially multimodal as we fit an arbitrary number of factor
analysis components to each feature set.

The IMoFA algorithm adds components and factors to the
mixture one by one, while monitoring a separate validation set
for likelihood changes. Given a training set, the maximum like-
lihood estimates of the model parameters are calculated using
the expectation-maximization (EM) algorithm, which simulta-
neously places the components in the input space and also finds
the factors in each component, performing dimensionality re-
duction in each component [22]. At each step of the algorithm,
the EM is interrupted to add a component to the mixture or a
factor to an existing component in a greedy fashion.

Component addition is performed by selecting the component
that looks least unimodal and splitting it along its principal axis.
We look at a multivariate mixture kurtosis measure to decide
which component to split. We compute the sample kurtosis
for component as

(3)

where and

(4)

The component with greatest is the one that looks least like
a unimodal multivariate normal and is selected for splitting.

Factor addition is performed by finding a good initial point for
a new factor and by concatenating it to the factor loading matrix

. This new factor is obtained by first projecting the data points
under component (i.e., points for which the posterior prob-

ability of the component is largest) to the low-dimensional space
described by and by then taking the inverse projection to re-
cover feature points in the original -dimensional space. The
new factor is then selected as the one that minimizes the com-
pression error in the least square sense. At each
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iteration, one action is performed (splitting or factor addition),
and EM is run until convergence. A separate validation set is
used to control the model complexity. This set is designated as
validation in Section IV.

With this approach, the number of parameters is automat-
ically adapted to the complexity of the feature space. The
incremental approach is particularly feasible when the dimen-
sionality is high, as opposed to starting with a large number
of components and eliminating components one by one [23].
In the popular unsupervised learning approach proposed by
Figueiredo and Jain, the resulting mixture model is composed
of components with diagonal or full covariance matrices [23].
The IMoFA allows the exploration of many models that are in
between these extremes in complexity, which leads to improved
generalization capabilities. Our experiments in Section IV
show that using IMoFA results in better models compared with
Gaussian mixture models (GMMs), as proposed in [23].

C. Shape Prior

In this paper, we also introduce a shape prior to give weight
to expected locations of each landmark. We categorize the facial
feature points into two groups, i.e., as stable and unstable

landmarks, as shown in Fig. 2. The stable landmarks are
those that are relatively stable under expression- and speech-in-
duced movement. The eye corners, nose tip, and nostril land-
marks are stable. The unstable landmarks are eyebrow corners,
eye pupils, upper nose saddles, the tip of the chin, and the points
on the mouth. The instability of upper nose saddles is partly
due expressions and partly due lack of discriminative appear-
ance features, which makes their labeling noisy. The landmark
estimation starts by locating the landmarks in the stable set and
proceeds by using those to further constrain the landmarks in the
unstable set. A prior distribution is learned for each
landmark , where denotes the particular landmark model.

and can be defined as

if
if

(5)

where and denotes the relative coordinates of the landmark
within the cropped face area. For unstable landmarks, transfor-
mation parameters (scale , rotation , and translations and

) are estimated by aligning the stable landmarks of the related
sample to the mean coordinates of the corresponding landmark
learned from the training set with the Procrustes analysis [24].
Then, the shape prior for a particular landmark is approximated
with a multivariate GMM as follows:

(6)

where is an amplification parameter to control the impact of
the prior and denotes the normalized location of the land-
mark. The parameters of the mixture (number of components

, prior , mean , and covariance ), as well as an appro-
priate value (a positive integer smaller than 5) for , are learned

Fig. 2. Selected landmarks: (green marker) stable and (red marker) unstable
landmarks.

on the training set, using the validation set to control general-
ization. We have omitted subscripts from (6); one such prior is
learned for each landmark. The number of components for the
GMM is determined using the method proposed in [23]. This al-
gorithm uses a minimum-description-length-based criterion to
assess converged models with different number of full-covari-
ance components (all possibilities from one to seven compo-
nents) and selects the best.

Let denote the Gabor feature vector for a given landmark
, with denoting the orientation and the scale of the

Gabor filter, respectively. Then, the selected location for a given
landmark is selected to maximize the following:

(7)

where is a Gaussian component, defined by , and
denotes the number of components in the mixture for a given

. is the prior probability of component , and
is the probability that is generated by component . Because
of the transformation step in the shape prior estimation, stable
points are detected before the set of unstable points.

D. Structural Analysis

The shape prior introduced in (7) ensures the integrity of
the landmark constellation. The effect is graphically shown in
Fig. 3. In the absence of such a prior, the independent detec-
tion of landmarks can occasionally result in large errors. In [4],
the GOLLUM algorithm was introduced to test the structural
integrity of the landmarks. This is a very fast algorithm that
solely operates on the low-dimensional shape space (i.e., 2-D
coordinates of landmark points) and can be added as a postpro-
cessing step to any landmarking algorithm. Since the temporal
complexity is negligible, the results obtained with the proposed
method use the GOLLUM algorithm as a postprocessing step
after the first-level search. We summarize it here and refer the
reader to [4] for details.

In GOLLUM, the landmarks are separated into two groups.
The support set is a set of three correctly localized landmarks.
The remaining landmarks are tested for integrity, based on the
support set. Using the support set, the algorithm computes a
transformation, which is affine invariant. The expected locations
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Fig. 3. First-level search for outer eye corner detection on a face with glasses.
The probability map with respect to Gabor feature (a) likelihoods, (b) prior prob-
abilities, (c) combined probability map, and (d) the detected landmark on the
first-level image.

of landmarks outside the support set are learned during training
from the training set. During the operation, if any of the land-
marks are not close to their expected location, they can be de-
tected and corrected with the expected location itself. Since we
do not know which landmarks are correctly located, the algo-
rithm tests all possible support sets and selects the result with
maximum integrity.

The complete landmarking algorithm consists of the extrac-
tion of Gabor features in different scales and orientations; the
computation of a likelihood for stable and unstable landmarks,
combined with the shape prior; and the structural analysis
postprocessing. We now describe the experiments conducted to
verify the properties of the proposed scheme and discuss our
findings.

IV. EXPERIMENTAL RESULTS WITH DISCUSSION

A. Experimental Setup and Data

To fully explore the system performance, we train and test our
approach with challenging cross-database protocols. The partic-
ulars of the databases relevant to our discussion are given below.

AR [25]: The AR database consists of more than 4000
frontal face images from 126 subjects. Images of each sub-
ject were recorded in two sessions. These color images
have a resolution of 768 576 pixels and include different
facial expressions, illumination conditions, and occlusions.
In our experiments, the AR database is used as a valida-
tion set. We use 508 images (without occlusions), which
have manually annotated landmarks in the face and ges-
ture recognition research network (FGnet) project [26].
BioID [27]: The BioID database consists of 1521 roughly
frontal facial images from 23 subjects. Variations in
the BioID database include different illumination, back-
ground, and face size conditions that resemble “real world”
conditions. Images are grayscale and have a resolution

of 384 286 pixels. In our tests, we use 1482 images in
which faces can be detected with the Viola–Jones face
detection algorithm.
Bosphorus [28]: The Bosphorus database consists of
3-D faces and corresponding texture images, specifically
collected for expression analysis purposes. The subject
variation in this database comprises not only various
expressions and poses but also realistic occlusions such
as glasses, hair tassel, and hands over the face area. The
pose variations are composed of systematic rotations.
The facial expressions include six universal expressions
(happiness, surprise, fear, sadness, anger, and disgust), as
well as expressions based on facial action units (AU) of the
Facial Action Coding System [29]. There are 61 male and
44 female subjects (29 of which are professional actors
and actresses) with a total number of 5102 face images.
Frontal and - and -rotated faces are used in our
landmark localization experiments. The texture images are
of high quality and are acquired under controlled studio
light.
Cohn–Kanade [30]: The Cohn–Kanade AU-Coded Facial
Expression Database consists of approximately 500 image
sequences from 100 subjects. These image sequences in-
corporate both single AUs and AU combinations, as well
as six universal expressions. Each of these sequences starts
with a neutral/nearly neutral face. The annotation of emo-
tion-specified expressions are provided in the database.
Only frontal images are open to public use, and we only
use those. Image sequences were digitized with a resolu-
tion of 640 480 or 640 490 pixels. We use 249 image
sequences from the Cohn–Kanade database. Two different
data sets are prepared by taking the first (neutral) frame and
the most extreme expression frame of these sequences, re-
spectively.
Face Recognition Grand Challenge (FRGC) [31]: The
FRGC data set of 2-D/3-D face images was collected by
the University of Notre Dame, and it is one of the most
prominent data sets used for face recognition. For a fair
comparison with the results obtained on the Bosphorus
data set, we only use the Spring 2004 subset, which is the
most challenging setting. It contains 2114 face images
(neutral and uncontrolled expressions) from 465 subjects.
Each subject has between one to eight images. The res-
olution of images is 640 480 pixels. Facial scans are
acquired with different distances to the camera, under
challenging natural illumination conditions.
Extended M2VTS [32]: The extended M2VTS database
contains facial images, sound files, and 3-D face models
of 295 subjects. It has 2360 color images with a resolu-
tion of 432 346 pixels. Recordings of each subject were
taken in four sessions. We have excluded the images with
closed eyes, hair occlusions (on landmarks), and motion
blur. The remaining 1701 images are used as the training
set. To replicate the training protocol in [3], we have dou-
bled the size of this set by mirroring images.

All these manually annotated data sets are used in landmark
localization experiments. Fig. 4 illustrates the scale, pose,
expression, resolution, and illumination conditions across
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Fig. 4. Samples from (a) BioID, (b) Bosphorus, (c) Cohn–Kanade, and
(d) FRGC databases. (Fourth row) Difficult illumination conditions on the
FRGC (uncontrolled) set.

BioD, Bosphorus, Cohn–Kanade, and FRGC databases. We
use the AR, Bosphorus, Cohn–Kanade, FRGC, and XM2VTS
databases for training different versions of our automatic
landmarking system. The BioID database is used for the com-
parison of the proposed system with state-of-the-art methods.
For Cohn–Kanade and FRGC databases, the ground truth for
seven landmarks are manually annotated. Additionally, we have
22 landmarks for frontal images in the Bosphorus database,
20 landmarks for the BioID database, 22 landmarks for a
subset of the AR database, and 68 landmarks for the XM2VTS
database. The landmarks of the BioID, AR, and XM2VTS
databases are provided by the FGnet project [26]. The AR,
BioID, Bosphorus, FRGC, and XM2VTS sets are composed
of static images, whereas the Cohn–Kanade data set has video
sequences. All models are trained with a training partition
of the corresponding database, and the model complexity is
controlled on a validation partition. Then, results are reported
on a separate test partition. The sizes of training, validation,
and test sets for each database are given in Table II, and their
exact composition is available at the corresponding author’s
Web page. There are no subject overlaps that we are aware of
between databases.

B. Performance Measures

In our experiments, interocular distance is used for com-
puting an error measure. It is the distance between left- and
right-eye centers, and is regularly used in state-of-the-art studies
on 2-D facial landmarking. A landmark location is accepted as
correct if the distance to the ground-truth location is less than a
percentage of interocular distance. This threshold is typically
set to 10% or 20%, and we have set it to 10% in our tests,

TABLE II
ABBREVIATIONS; NUMBER OF MANUALLY ANNOTATED GROUND TRUTH FOR

LANDMARKS (GT); AND THE SIZE OF TRAINING, VALIDATION, AND TEST SETS

FOR EACH DATABASE

which is the more difficult of the two. In the absence of the
absolute metric ground truth, the interocular distance is a re-
liable measure because it provides constancy in terms of the
scale. For faces scanned by calibrated 3-D sensors, absolute dis-
tances are available. It is then possible to adapt a threshold set to
a certain absolute distance. Except for comparisons with other
state-of-the-art methods, we calculate the average performances
as the mean accuracy for the detection of the each landmark.

To compare our system with other reported results, we present
the performance of our method in terms of the error mea-
sure on the BioID database, as described in [2]. is defined
as the normalized mean distance of internal facial feature points
to their ground-truth locations. Feature points that are close to
the edge of the face (such as the tip of the chin) are ignored be-
cause they are easily affected by the rotation of the face, and
the ground-truth annotation is noisy. Instead of providing in-
dividual landmark errors, gives a mean error for the entire
system, i.e.,

(8)

where denotes the number of landmarks and values are the
Euclidean point-to-point distances for each individual landmark
location.

We report the average accuracy on the Bosphorus data set
with both measures to emphasize the difference between these
error measures.

C. Accuracy of Landmarking

We first report the accuracy of our landmarking algorithm
with the Bosphorus database, for which we have the most ex-
tensive ground truth. We use 22 landmarks [see Fig. 2(c)] rolled
into 12 groups, i.e., outer eyebrows, inner eyebrows, outer eye
corners, inner eye corners, eye pupils, nose tip, nose saddles,
nostrils, mouth corners, inner lip middles, outer lip middles, and
tip of the chin. The detailed results are reported for each land-
mark group in Table III. The proposed system has 92.21% av-
erage accuracy when accepting points within 10% of interoc-
ular distance to the ground truth. This is the most stringent cri-
terion used in the 2-D landmarking literature. If 3-D informa-
tion is available, errors can be reported using millimetric ground
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TABLE III
ACCURACY OF THE LANDMARKING ALGORITHM ON THE BOSPHORUS

DATABASE

truth. In Bosphorus and FRGC, 10% of interocular distance cor-
responds to 6.3 mm on the average. In [33], 12- and 16-mm pre-
cisions are used for successfully located inner eye corners and
nose tip, respectively. In [34], 20-mm precision is used for suc-
cessfully located landmarks. In [35], it is indicated that 99.09%
of samples are located within 10-mm precision.

Table III also shows (the bottom row) the accuracy of the pro-
posed method under the error measure . With this mea-
sure, our method reaches 99.33% accuracy on the Bosphorus
set. This demonstrates the significant change in reporting ac-
curacy for different error measures. Excluding the tip of the
chin from the results also has a significant impact on reported
accuracy.

D. Assessment of Generalization

The local features on which we base our analysis may
depend on acquisition and preprocessing conditions of a spe-
cific database, and statistical methods may be ineffective on
cross-database tests. Here, we apply cross-database tests on
the statistical models learned from the FRGC, Bosphorus,
and Cohn–Kanade databases to evaluate the generalization
capabilities of our model.

We run the proposed algorithm for seven landmarks since we
have manually annotated ground truth for only seven landmarks
on the FRGC and Cohn–Kanade data sets [see Fig. 2(a)]. Land-
marks are rolled into four groups, i.e., outer eye corners, inner
eye corners, nose tip, and mouth corners. The correct localiza-
tion accuracies for different training and test sets are given in
Table IV. The reported success rates are obtained by accepting
points within 10% of interocular distance to the ground truth,
which is much more stringent than , as we demonstrated in
the previous section. The intersubject variation of the ground
truth itself is about 5%–7% of interocular distance. Under the
same acquisition conditions (samples from the same database),
the average accuracy is 95.6% for Bosphorus and 94.5% for
FRGC databases (the first two rows). These are comparable with
reported state-of-the-art figures. The cross-database results are
given in the remaining rows of the table.

TABLE IV
CROSS-DATABASE ACCURACY OF THE LANDMARKING ALGORITHM

Fig. 5. Some failure cases of the proposed method.

We do not have sufficiently many samples in the
Cohn–Kanade set for training a system in conditions com-
parable with the FRGC and Bosphorus sets. Subsequently, we
join the neutral and extreme expressions of the Cohn–Kanade
(denoted with CK-All) and train a system to compare our results
with the system proposed in [8], which also reports results on
this database. We use the authors’ own published code, trained
on the Cohn–Kanade database. The cross-database results we
obtain with this system are 79.8% and 77.8% for the FRGC and
Bosphorus databases, respectively. Our system has 90.4% and
89.3% accuracy under similar training conditions, respectively.

The systems trained on FRGC and Bosphorus both show
about 3% accuracy decrease when we compare detection on
neutral Cohn–Kanade faces to detection on extreme expres-
sions. Most of this loss is due to mouth corners, which are,
for some extreme expressions outside, the search area con-
strained by the shape prior. When this area is enlarged, this
loss is quickly alleviated, but the computation requirement is
increased. Fig. 5 shows some failure cases of the proposed
method.

On average, the mouth corners are detected with less accuracy
than other landmarks, as they are affected more under expres-
sion changes. The variation on the training set naturally reflects
on the testing conditions. Since the FRGC data set has more
pose variations than the frontal subset of Bosphorus, the shape
prior implicates a larger area, resulting in higher accuracy. Al-
though not shown here, GOLLUM increases the accuracy by
1% on the average. In the absence of the introduced shape prior,
GOLLUM would contribute 5%–10% depending on the land-
mark. The shape prior reduces its impact by eliminating large
deviations from expected locations. For this reason, this is not a
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TABLE V
EFFECT OF STATISTICAL FEATURE MODELING AND STRUCTURAL PRIOR

Fig. 6. Effect of image resolution on landmark localization accuracy.

very surprising result. As we noted before, we retain GOLLUM
because it has negligible time complexity, both in theory (fixed)
and in practice.

E. Effect of the Model Choice

To compare the robustness of the IMoFA algorithm with
other popular methodologies, extracted Gabor feature vectors
are modeled for seven landmarks [inner/outer eye corners,
nose tip, and mouth corners, see Fig. 2(a)] with support vector
machines (SVMs), GMMs, and principal component analysis
(PCA). Both expressive and neutral Cohn–Kanade data sets
are used to train these models. For SVM, GMM, and PCA
methods, we either use a rectangular ROI constraint to focus
the search (as frequently used in the literature) or use the
proposed structural prior. For the SVM, the classifier is used
to generate distance maps, which are then weighted with shape
priors, and the maximum location is selected. To optimize the
SVM configuration, different kernels with different parameters
are tested on the validation set, and the configuration with the
minimum validation error is selected. Training sets and patch
sizes are the same for all compared methods. In the absence of
the ROI or the structural prior (hence searching the landmark
on the entire face), the results will be very poor. The same
Gabor wavelet features are modeled with both approaches. The
PCA dimensionality is selected through the screen graph by
taking sufficient eigenvectors to explain 95% of the variance.
The number of components for the GMM is automatically
determined (between 1 and 15), as proposed in [23]. Table V
shows that the IMoFA improves on the SVM, the GMM, and
the PCA, and that the proposed structural prior gives better
results than a ROI-based constraint.

The major advantage of using IMoFA is in its automatic pa-
rameter estimation and flexibility. Complex data relations are
learned with more parameters, whereas simple structures are
devoted less parameters and have better generalization. Com-
pared with standard mixtures of Gaussians, the IMoFA explores
models of intermediate complexity between a full-covariance
Gaussian and a diagonal-covariance Gaussian. As the dimen-
sionality of the feature vector is increased, the gains of such a
flexibility become more marked.

F. Effect of Resolution

To assess the effect of image resolution on landmarking accu-
racy, we use images with different resolutions. Datasets for mul-
tiresolution analysis are prepared by resizing the Bosphorus test
set. We use face images with a resolution of 30 42, 40 56,
and 160 224 pixels. Fig. 6 shows that, even when the res-
olution of the face area is drastically reduced, the feature lo-
calization scheme successfully locates the features. This is an
expected result as our multiresolution analysis starts by a res-
olution reduction; thus, the crucial first-level of analysis is not
affected at all. We exploit the fact that the coarse level is the
most adequate for statistical modeling, as pixelwise correlation
is at its lowest.

G. Effect of Expressions

To evaluate the robustness of our method with respect to
facial expressions, we inspect the effect of expressions on
the Bosphorus database, which has rich expression variations.
We group the samples in the Bosphorus database into five,
i.e., as “neutral,” “emotional expression,” “lower-face AU,”
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Fig. 7. Effect of facial expressions on landmark localization accuracy.

Fig. 8. Effect of beard/mustache on landmark localization accuracy.

“upper-face AU,” and “AU combination.” In the AU combina-
tion case, both upper and lower AUs are activated. As shown
in Fig. 7, our method provides the most accurate results with
lower and upper face AUs, although the differences are not
great. This is partly due to the larger number of samples with
lower- and upper-face AUs in the Bosphorus set. There are
fewer neutral samples in the Bosphorus data set, as compared
with expressive samples, which results in a more restrictive
shape prior for the neutral case. Among the landmarks, the tip
of chin is the most difficult one and receives the least leverage
from the shape prior for the neutral images.

H. Effect of Beard and Mustache

We also analyze the effect of the beard and the mustache on
the landmark localization accuracy. Roughly one third of im-
ages in the Bosphorus database have either a beard or a mus-
tache; thus, the training data set contains enough samples to
generalize. As shown in Fig. 8, the accuracy differences are
smaller than differences due to landmark types, even for mouth
corners and lips. We conclude that the beard and the mustache
do not deteriorate the accuracy of the proposed method, pro-
vided that the training set includes sufficiently many samples
for generalization.

I. Effect of Rotations

Both 2-D shape and landmark appearance change under
rotations. We experimented with the rotated samples of the
Bosphorus data set to see first how much our shape prior was
affected by the assumption that the face is frontal when it is
not. Since the number of rotated samples is much less, we take
windows shifted by one pixel from the manually annotated
landmark for each sample and increase the number of rotated
samples ninefold. While, under rotations, all landmarks
were located by the prior, there was minor (2.4% on the av-
erage) loss for rotations, except for the mouth corner in
the rotated side (60% loss). We did not look beyond ,
as the standard Viola–Jones cascade fails under more severe
rotations. These results strongly relate to the cascade we have
used; another cascade, derived from another training set, might
give different results by cropping the face area with different
margins. When we add the rotated training samples to the
learning set of the shape prior, all samples are located within
their expected locations.

We then look at the performance of the whole system under
these conditions. We have two conditions to learn the shape
prior, as well as to train the appearance features via the IMoFA.
The first condition is called frontal and is composed of only
frontal training samples. The second condition is both, meaning
that the rotated training samples are added to the frontal. We
measure the effect of changing just the appearance or both shape
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TABLE VI
ACCURACY OF LANDMARKING UNDER DIFFERENT ROTATION CONDITIONS

and appearance on frontal and rotated sets. Seven landmarks
(left/right outer eye corners: LOE/ROE; left/right inner eye cor-
ners: LIE/RIE; nose tip; and left/right mouth corners: LMC/
RMC) are tested for different rotation conditions in our exper-
iments. The results are summarized in Table VI. The reported
success rates are obtained by accepting points within 10% of
interocular distance to the ground truth. The table demonstrates
that our method has some capability in dealing with minor pose
variations not present in the training set, but for improved detec-
tions, it is necessary to enrich the training set. Adding the very
limited set of rotated training samples to the training set reduces
the accuracy by 2.5% on the average for frontal samples and in-
creases the accuracy by 18.9% for the -rotated samples on
the average.

J. Comparison with Other Methods

Recent landmarking results in the literature vary according
to the database employed for reporting. In [7], for instance,
85.8% average localization accuracy is reported for finding
24 landmarks on XM2VTS and UniMiDb databases, but the
acceptance condition is not given, which we have shown to
have a significant effect on the interpretation of the results. In
[2], the reported localization accuracy for 22 landmarks is 95%
(within 20% of interocular distance) for the BioID database
and 92% for the XM2VTS database. In the experimental results
presented in this paper, we use a more stringent criterion and
use 10% interocular distance as the acceptance threshold.
Kozakaya et al. report 95.1% average localization accuracy
for their weighted vector concentration approach [6] on the
facial-recognition-technology database.

BioID is the data set on which the most promising and
recent results are reported. Therefore, we conducted a study
on BioID and compared our accuracy with five recent methods
denoted as SliWiGa [8], CLM [2], AAM [2], Stacked Model
[3], and BorMaN [5]. In [8], Vukadinovic and Pantic use
boosted classifiers to model Gabor features and grayscale
texture values and constrain the search areas with the related
ROIs. In [2], Cristinacce and Cootes use boosted Haar cascades
for coarse-scale detection, fine tune the locations through a
constrained local models approach, and also report results with
active appearance models. In [3], Milborrow and Nicolls enable

Fig. 9. Cumulative error distribution of the point-to-point error measure �
for different methods on the BioID data set.

a number of simple extensions to the ASM approach in [14]
such as stacking two ASMs in series. Haar-like features are
modeled with a support vector regressor, and the search space
is constrained by Markov random fields in [5]. Fig. 9 shows the
cumulative error distribution of the point-to-point error measure

and demonstrates that the accuracy of the proposed method
(shown as 3-Level IMoFA) is good. For a fair comparison, we
exclude five points (nose saddles, lip inner middles, and the
tip of the chin) and give results for only 17 points, as reported
in these studies [see Fig. 2(b)]. Since the competing methods
use different training/validation protocols, we have included
the cumulative error distributions of our method with two
different training/validation protocols in Fig. 9. The system,
shown as 3-Level IMoFA (BOS), has been trained and validated
on the Bosphorus database. To replicate the training/validation
schema of Stacked Model [3], we have trained another system
with XM2VTS and have validated on the AR database [shown
as 3-Level IMoFA (XM2VTS, AR)]. Our method gives similar
results with different training conditions. The training on
Bosphorus provides slightly higher accuracy for low values
because the Bosphorus database has higher resolution and more
expression variations than XM2VTS and AR databases.



DIBEKLIOĞLU et al.: STATISTICAL METHOD FOR 2-D FACIAL LANDMARKING 855

Fig. 10. Cumulative error distributions of the 17 points on the Bosphorus and FRGC data sets for different methods.

Additionally, we have focused on the best competing system,
for which the training/testing software is available. Conse-
quently, we have compared our method with Stacked Model
under exactly the same experimental conditions. In this ex-
periment, we use Bosphorus training and AR validation for
both 3-Level IMoFA and Stacked Model. Fig. 10 shows the
cumulative error distributions in terms of millimeters for the
17 landmarks [see Fig. 2(b)] on the Bosphorus and FRGC data
sets. Since our method does not use any (facial) model fitting, it
optimizes the probable location of each landmark individually.
As a result, the proposed approach more accurately performs
for low errors ( 8 mm). For high error values, both methods
are very successful, and the small error they make can be due
to labeling errors or occasional poor imaging conditions (e.g.,
FRGC contains samples with motion blur, where the exact
landmark location is not perfectly indicated in the manual
annotation).

K. Speed

While we report improved accuracy over competing methods,
our current implementation is not real time. Processing speeds
of Sliwiga [8] and BorMaN [5] methods were not reported in
the related papers. Average time requirements of CLM/AAM [2]
and Stacked Model [3] (with 3-GHz Pentium, on a still image)
are given as 0.24 and 0.22 s, respectively. Our system local-
izes 22 landmark points on an image within 3.1 s (with a com-
bination of nonoptimized C++ and compiled MATLAB code,
including face detection) on an Intel Core2 Duo 3-GHz pro-
cessor with 3 GBs of random access memory. For seven land-
mark points, it requires 1.22 s per image. Real-time performance
can be achieved by multithreading and multicore programming,

Fig. 11. (a) Bézier volume model. (b) Motion units.

since parallel implementation is straightforward in our method.
The separate likelihood computations for each Gabor feature
channel can be performed in parallel. This is the most time-con-
suming step in the proposed algorithm.

V. APPLICATION: EXPRESSION CLASSIFICATION

We use the automatically located landmarks in an expression
classification application. Accurate facial landmarks are crucial
for expression analysis, and in the absence of a reliable land-
marking algorithm, expression analysis requires costly manual
initialization [36]. Automatic expression analysis received a lot
of attention in the last few years, and there is great progress in
granular methods that aim at detecting facial AUs, linking ex-
pressions to these AUs [37]. On the downside, these methods
require correspondingly granular AU annotations prepared by
experts for training.
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TABLE VII
AVERAGE TRACKING ERROR ON THE COHN–KANADE DATABASE AS A PERCENTAGE OF INTEROCULAR DISTANCE

TABLE VIII
EMOTION RECOGNITION ACCURACIES ON THE COHN–KANADE AND BU-4DFE DATABASES

Our prototype application aims at identifying the presence of
six basic emotional expression categories. The training of such
a system can be performed with a set of videos that are anno-
tated for the main expression categories in broadly defined seg-
ments. We briefly describe the main components of this appli-
cation here. Since the literature on facial-expression analysis is
extensive, we refer the reader to [38] and to a more recent work
[39] for related approaches.

A. Methodology

Our baseline method, described in [40], maintains a face
model described by 16 surface patches embedded in Bézier
volumes, as shown in Fig. 11(a). Once this model is fit to the
appearance of the face, a piecewise Bézier volume deformation
tracker is used to trace the motion of the facial features [41].
In the system described by [40], this tracker is initialized by
an average shape model, learned during the training phase. We
test the effect of our automatic landmark detection algorithm
on this system.

We use the well-known thin-plate spline (TPS) algorithm for
warping the generic face model to the detected landmark loca-
tions [42]. Since Cohn–Kanade and FRGC data sets have man-
ually annotated ground truth for only seven landmarks, we use
detected seven landmarks for warping [see Fig. 2(a)]. The defor-
mation transforms the landmarks on the model to exactly match
the detected landmarks. The rest of the points are deformed
in accordance to their proximity to the landmarks. During the
development of our algorithm, we have also tested Procrustes
alignment [24] as an alternative, but our experiments showed
that the TPS was more accurate in most cases. In general, we
expect this to be the case when the landmarks are sufficiently
accurate.

We use a simple but efficient naive Bayes classifier for cate-
gorizing expressions. One advantage of the method is that the
posterior probabilities allow a soft output of the system, usable

as a continuous input to any facial affect-based system. The clas-
sifier receives as input-quantized difference vectors extracted
from a number of locations on the model. These are called mo-
tion units, and they are not unlike AUs but simpler and tailored
toward basic expression categories [see Fig. 11(b)].

B. Database and Experiments

We use the Cohn–Kanade [30] and BU-4DFE [43] data sets
for testing the facial-expression analysis system. These data sets
have video sequences and are thus adequate for the dynamic
measurement of expressions. The BU-4DFE data set has a more
challenging nature, and the expressions are not as pronounced
and well-segmented as the Cohn–Kanade set.

We use only the texture portion of the BU-4DFE data set,
which contains facial expressions captured at a video rate of 25
fps. The database contains 606 facial-expression sequences (of
about 100 frames) captured from 101 subjects. Four hundred
ninety-five of these commence with a neutral face, and those are
used for our experiments. For each subject, there are six model
sequences showing all basic expressions. The texture video has a
resolution of 1040 1329 pixels per frame. There are 58 female
and 43 male subjects, with mixed ethnic ancestries.

We evaluate the effect of locating seven landmarks (outer eye
corners, inner eye corners, nose tip, and mouth corners) on this
application. Two hundred forty-nine image sequences from the
Cohn–Kanade database are tested with threefold cross valida-
tion. For expression classification tests on the BU-4DFE, we use
the system that is trained with the Cohn–Kanade data set.

In Table VII, we report the average tracking error on the
Cohn–Kanade database. All seven landmarks are manually an-
notated for all frames of the database. The reported error is the
average deviation of the tracked point from its ground-truth an-
notation as a percentage of the interocular distance. The first
row is the baseline error over all frames and shows an average
tracking error as 10.26% of interocular distance. As expected,
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mouth corners show the highest error. Our landmark-based ini-
tialization reduces this error by 3.47% of interocular distance on
the average. If the ground truth for landmark locations is made
available at the onset of the algorithm, there will be additional
error reduction of 0.88% of interocular distance. This indicates
that there is a room for improvement on automatic landmarking.

Finally, we report the net effect on expression classification
on Table VIII. For each test set, we report results without
landmarking (baseline) and with landmarking trained on the
FRGC, Bosphorus, or Cohn–Kanade database. Results with the
landmark ground truth are reported only for the Cohn–Kanade
data set since we do not have manually annotated ground truth
for the BU-4DFE data set. We obtain different effects for dif-
ferent expressions; happiness, fear, and disgust greatly benefit
from the improved alignment. Sadness does not because it is a
subtle expression and it mostly relies on eyebrow movements,
which is not among the detected landmarks. The results show
a 8%–16% (absolute) accuracy increase from the baseline. For
the Cohn–Kanade data set, a baseline accuracy of 70.68% is
increased to 78.86% via FRGC training. For the BU-4DFE data
set, 80.20% classification accuracy is achieved with a 16.16%
(absolute) accuracy increase from the baseline via Bosphorus
training.

VI. CONCLUSION

We have described in this paper a statistical landmark local-
ization method with good cross-database accuracy. The three-
level search for landmarks, approximately constrained by a mul-
tivariate shape prior, allows for a robust landmarking scheme.
The flexible statistical models that we have used increase the ac-
curacy of our models. Closely placed landmark points are diffi-
cult to separate with statistical landmark classification methods,
as the models need to deal with idiosyncratic variations and
noise and to thus be sufficiently “general” in admitting a land-
mark. Our paper has extensively demonstrated the possibilities
and the limits of such approaches. We have assessed our method
under different performance criteria and discussed the implica-
tions. The complete evaluation protocol has been made available
to the reader on the author’s website.

We have included additional experiments on an expression
recognition application to demonstrate the significant contribu-
tion (7%–16%) of the automatic landmarking procedure over
a coarse alignment following face detection. The expression
recognition application is not the novelty of this paper; there
are better results obtained in the literature for the much-perused
Cohn–Kanade set, although cross-database evaluations of such
methods are rarely given. We have also reported good results on
the more challenging BU-4DFE data set. Most importantly, our
expression recognition results have given a notion of the room
of improvement for further explorations.
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research interests are biologically inspired models
of learning and vision, with applications to pattern
recognition, biometrics, and human behavior under-
standing, where he has more than 50 publications

in related areas, including an edited book on computer analysis of human
behavior.

Dr. Salah was the recipient of the inaugural European Biometrics Research
Award of the European Biometrics Forum in 2006 for his work on facial feature
localization. He cochaired the 2010 eNTERFACE Workshop on Multimodal
Interfaces, as well as the International Workshop on Human Behavior Under-
standing in 2010 and 2011. He served as a guest editor for special issues in the
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, the Journal of Ambient In-
telligence and Smart Environments, and the Journal on Multimodal Interfaces.

Theo Gevers (M’01) is an Associate Professor of
computer science with the University of Amsterdam
(UvA), Amsterdam, The Netherlands, and a Full Pro-
fessor with the Computer Vision Center, Universitat
Autònoma de Barcelona, Barcelona, Spain. At the
University of Amsterdam, he is a Teaching Director
of the M.Sc. degree in Artificial Intelligence. He cur-
rently holds a VICI Award (for research excellence)
from the Dutch Organization for Scientific Research.
He is a Cofounder and the Chief Scientific Officer of
ThirdSight, a spinoff of the UvA. His main research

interests are in the fundamentals of image understanding, object recognition,
and color in computer vision. Furthermore, he is interested in different aspects
of human behavior, specifically in emotion recognition.

Prof. Gevers is the chair for various conferences and is an associate editor
for the IEEE TRANSACTIONS ON IMAGE PROCESSING. Furthermore, he is a pro-
gram committee member for a number of conferences and an invited speaker
at major conferences. He is a lecturer delivering postdoctoral courses given at
various major conferences (the IEEE Conference on Computer Vision and Pat-
tern Recognition; the International Conference on Pattern Recognition; SPIE;
and the Computer Graphics, Imaging, and Vision).


