
Automated Design of Voting Rules by
Learning from Examples

Ariel D. Procaccia, Aviv Zohar, and Jeffrey S. Rosenschein

Abstract

While impossibility results have established that no perfect voting rules
exist, efficiently designing a voting rule that satisfies at least a given sub-
set of desiderata remains a difficult task. We argue that such custom-built
voting rules can be constructed by learning from examples. Specifically,
we consider the learnability of the broad, concisely-representable class of
scoring rules. Our main result asserts that this class is efficiently learn-
able in the PAC model. We also discuss the limitations of our approach,
and (along the way) we establish a lemma of independent interest regard-
ing the number of distinct scoring rules.

1 Introduction

Voting is a well-studied method of preference aggregation, in terms of its theo-
retical properties, as well as its computational aspects [3, 2]; various practical,
implemented applications exist [9, 8]. In an election, a set of n voters express
their preferences over a set of m candidates or alternatives. To be precise, each
voter is assumed to reveal linear preferences — a ranking of the candidates.
The outcome of the election is determined according to a voting rule.

1.1 Scoring Rules

The predominant — ubiquitous, even — voting rule in real-life elections is the
Plurality rule. Under Plurality, each voter awards one point to the candidate it
ranks first, i.e., its most preferred alternative. The candidate that accumulated
the most points, summed over all voters, wins the election. Another example
of a voting rule is the Veto rule: each voter “vetoes” a single candidate; the
candidate that was vetoed by the fewest voters wins the election. Yet a third
example is the Borda rule: every voter awards m − 1 points to its top-ranked
candidate, m− 2 points to its second choice, and so forth — the least preferred
candidate is not awarded any points. Once again, the candidate with the most
points is elected.

The abovementioned three voting rules all belong to an important family
of voting rules known as scoring rules. A scoring rule can be expressed by
a vector of parameters ~α = 〈α1, α2, . . . , αm〉, where each αl is a real number
and α1 ≥ α2 ≥ · · · ≥ αm. Each voter awards α1 points to its most-preferred
alternative, α2 to its second-most-preferred alternative, etc. Predictably, the
candidate with the most points wins. Under this unified framework, we can
express our three rules as:

Majority Robustness Manipulation Communication

Plurality Yes ≥ m−2

m−1
[11] P [3] Θ(n log m) [6]

Borda No ≤ 1

m
[11] NP-complete [3] Θ(nm log m) [6]

Veto No ≥ m−2

m−1
[11] NP-complete [2] ?

Table 1: Different scoring rules greatly differ in the desiderata they satisfy.

• Plurality : ~α = 〈1, 0, . . . , 0〉.

• Borda: ~α = 〈m− 1,m− 2, . . . , 0〉.

• Veto: ~α = 〈1, . . . , 1, 0〉.

1.2 Motivation

Voting rules are often compared on the basis of different criteria, which define
potentially desirable properties. We outline below several important criteria,
some theoretical, and some computational.

1. Majority : If there is a candidate that is most preferred by a majority of
voters, does this candidate win the election?

2. Robustness [11]: What is the worst-case probability of the outcome of
the election not changing as a result of a random mistake/fault in the
preferences of the voters?

3. Complexity of Manipulation: Say a coalition of voters aims to improve
its utility from the election by voting untruthfully. How computationally
difficult is it to find an optimal vote?

4. Communication Complexity : How much communication is required in
order to determine the winner of the election?

Impossibility theorems imply that one cannot expect one voting rule to
satisfy all desirable criteria simultaneously. However, different voting rules,
satisfy different subsets of criteria. In particular, scoring rules greatly differ
in this respect. To put it differently, different choices of the parameters of a
scoring rule yield significantly different voting rules in terms of their properties.
As an example, Table 1 compares Plurality, Borda, and Veto, on the basis of
the abovementioned four properties.

1.3 Our Approach

So, how would one go about designing a scoring rule with certain properties,
configuring the parameters to one’s needs? In this paper, we do so by learning
from examples. The basic setup is as follows: the designer, or teacher, is
presented with different constellations of voters’ preferences, drawn according
to a fixed distribution. For each such preference profile, the teacher answers

with the winning candidate. For example, if the designer wishes the voting
rule to satisfy the majority criterion, and is presented with a profile where a
candidate is ranked first by a majority of voters, the designer would answer
that this candidate is the winner. More generally, it is possible to consider a
setting where properties are represented by tables; for each preference profile,
the table designates the set of possible winning candidates (candidates that
do not violate the desired property). If a voting rule is to satisfy a given
combination of properties, then the winner chosen in every profile is a candidate
in the intersection of the different sets of possible winners.

Assuming that there exists a target scoring rule that meets all the require-
ments, we would like to produce a scoring rule that is as “close” as possible.
This way, the designer could in principle translate the above cumbersome rep-
resentation of possible winners using tables, to a concisely-represented voting
rule that can be easily understood and computed.

By “close” we mean close with respect to the fixed distribution over pref-
erence profiles. More precisely, we would like to construct an algorithm that
receives pairs of the form (preferences, winner) drawn according to a fixed distri-
bution D over preferences, and outputs a scoring rule, such that the probability
according to D that our scoring rule and the target rule agree is as high as pos-
sible. Some readers may have realized that, in fact, we wish to learn scoring
rules in the framework of the formal learning model — the PAC (Probably
Approximately Correct) model; a concise introduction to this model is given in
Section 2.

The dimension of a function class is a combinatorial measure of the richness
of the class. The dimension of a class is closely related to the number of ex-
amples needed to learn it. We give tight bounds on the dimension of the class
of scoring rules: an upper bound of m, and a lower bound of m − 3, where m
is the number of candidates in an election. In addition, we show that, given a
set of examples, one can efficiently construct a scoring rule that is consistent
with the examples, if one exists. Combined, these results imply that the class
of scoring rules is efficiently learnable. In other words, given a combination of
properties which is satisfied by some scoring rule, it is possible to construct a
“close” scoring rule in polynomial time.

The main weakness of our approach is that there might be cases where
there is no scoring rule that satisfies a given combination of properties, although
there is a voting rule that does. In this case, there might not exist a scoring rule
which is consistent with the given training set. We discuss the limitations of our
approach, showing the there are voting rules which cannot be “approximated”
by scoring rules. Along the way, we show that the number of distinct scoring
rules is at most exponential in the number of voters and candidates (whereas
the number of voting rules is double exponential).

1.4 Related Work

To the best of our knowledge, we are the first to study automated design of vot-
ing rules, and the first to suggest learning as a method of designing social choice
mechanisms (although learning is known to be useful in economic settings; PAC
learning has very recently been applied to computing utility functions that are
rationalizations of given sequences of prices and demands [1]).

Conitzer and Sandholm [4] have studied automated mechanism design, in
the more restricted setting where agents have numerical valuations for differ-
ent alternatives. They propose automatically designing a truthful mechanism
for every preference aggregation setting. However, they find that, under two
solution concepts, even determining whether there exists a deterministic mech-
anism that guarantees a certain social welfare is an NP-complete problem. The
authors also show that the problem is tractable when designing a randomized
mechanism. In more recent work [5], Conitzer and Sandholm put forward an
efficient algorithm for designing deterministic mechanisms, which works only in
very limited scenarios.

In short, our setting, goals, and methods are completely different — in
the general voting context, even framing computational complexity questions
is problematic, since the goal cannot be specified with reference to expected
social welfare.

1.5 Structure of the Paper

In Section 2 we give an introduction to the PAC model. In Section 3, we describe
our setting and rigorously prove that the class of scoring rules is efficiently
learnable. In Section 4, we discuss the limitations of our approach, and in
Section 5, we give our conclusions.

2 Preliminaries

In this section we give a very short introduction to the PAC model and the
generalized dimension of a function class. A more comprehensive (and slightly
more formal) overview of the model, and results concerning the dimension, can
be found in [10].

In the PAC model, the learner is attempting to learn a function f : X → Y ,
which belongs to a class F of functions from X to Y . The learner is given a
training set — a set of points in X, x1, x2, . . . , xt, which are sampled i.i.d. (in-
dependently and identically distributed) according to a distribution D over the
sample space X. D is unknown, but is fixed throughout the learning process. In
this paper, we assume the “realizable” case, where a target function f∗(x) ex-
ists, and the given training examples are in fact labeled by the target function:
{(xk, f∗(xk))}tk=1. The error of a function f ∈ F is defined as

err(f) = Pr
x∼D

[f(x) 6= f∗(x)]. (1)

ε > 0 is a parameter given to the learner that defines the accuracy of the
learning process: we would like to achieve err(h) ≤ ε. Notice that err(f∗) = 0.
The learner is also given an accuracy parameter δ > 0, that provides an upper
bound on the probability that err(h) > ε:

Pr[err(h) > ε] < δ. (2)

We now formalize the discussion above:

Definition 1.

1. A learning algorithm L is a function from the set of all training exam-
ples to F with the following property: given ε, δ ∈ (0, 1) there exists an
integer s(ε, δ) — the sample complexity — such that for any distribu-
tion D on X, if Z is a sample of size at least s where the samples are
drawn i.i.d. according to D, then with probability at least 1 − δ it holds
that err(L(Z)) ≤ ε.

2. L is an efficient learning algorithm if it always runs in time polynomial
in 1/ε, 1/δ, and the size of the representations of the target function, of
elements in X, and of elements in Y .

3. A function class F is (efficiently) PAC-learnable if there is an (efficient)
learning algorithm for F .

The sample complexity of a learning algorithm for F is closely related to a
measure of the class’s combinatorial richness known as the generalized dimen-
sion.

Definition 2. Let F be a class of functions from X to Y . We say F shatters
S ⊆ X if there exist two functions g, h ∈ F such that

1. For all x ∈ S, g(x) 6= h(x).

2. For all S1 ⊆ S, there exists f ∈ F such that for all x ∈ S1, f(x) = h(x),
and for all x ∈ S \ S1, f(x) = g(x).

Definition 3. Let F be a class of functions from a set X to a set Y . The
generalized dimension of F , denoted by DG(F), is the greatest integer d such
that there exists a set of cardinality d that is shattered by F .

The generalized dimension of a function provides both upper and lower
bounds on the sample complexity of algorithms.

Theorem 1. [10, Theorem 5.1] Let F be a class of functions from X to Y
of generalized dimension d. Let L be an algorithm such that, when given a set
of t labeled examples {(xk, f∗(xk))}k of some f∗ ∈ F , sampled i.i.d. according
to some fixed but unknown distribution over the instance space X, produces an

output f ∈ F that is consistent with the training set. Then L is an (ε, δ)-learning
algorithm for F provided that the sample size obeys:

s ≥
1

ε

(

(σ1 + σ2 + 3)DG(F) ln 2 + ln

(

1

δ

))

(3)

where σ1 and σ2 are the sizes of the representation of elements in X and Y ,
respectively.

Theorem 2. [10, Theorem 5.2] Let F be a function class of generalized di-
mension d ≥ 8. Then any (ε, δ)-learning algorithm for F , where ε ≤ 1/8 and
δ < 1/4, must use sample size s ≥ d

16ε .

3 Learning Scoring rules

Before diving in, we introduce some notation. Let N = {1, 2, . . . , n} be the set
of voters, and let C = {c1, c2, . . . , cm} be the set of candidates. Let L be the
set of linear preferences1 over C; each voter has preferences �i∈ L. We denote
the preference profile, consisting of the voters’ preferences, by �N= 〈�1,�2

, . . . ,�n〉.
Let ~α be a vector of real numbers such that αl ≥ αl+1 for all l = 1, . . . ,m−1.

Let f~α : LN → C be the scoring rule defined by the vector ~α, i.e., each voter
awards αl points to the candidate it ranks in the l’th place, and the rule elects
the candidate with the most points.

Since several candidates may have maximal scores in an election, we must
adopt some method of tie-breaking. Our method works as follows: ties are
broken in favor of the candidate that was ranked first by more voters; if several
candidates have maximal scores and were ranked first by the same number of
voters, the tie is broken in favor of the candidate that was ranked second by
more voters; and so on.2

Let Sn
m be the class of scoring rules with n voters and m candidates. Our

goal is to learn, in the PAC model, some target function f~α∗ ∈ Sn
m. To this end,

the learner receives a training set {(�N
k , f~α∗(�N

k)}k, where each �N
k is drawn

from a fixed distribution over LN ; let cjk
= f~α∗(�N

k). For the profile �N
k , we

denote by πk
j,l the number of voters that ranked candidate cj in place l. Notice

that candidate cj ’s score under the preference profile �N
k is

∑

l π
k
j,lαl.

Our main goal in this section is to prove the following theorem.

Theorem 3. For all n,m ∈ N, the class Sn
m is efficiently PAC-learnable.

By Theorem 1, in order to prove Theorem 3 it is sufficient to validate the
following two claims: that there exists an algorithm which, for any training set,
runs in time polynomial in the size of the training set and in n,m, and outputs

1A binary relation which is antisymmetric, transitive, and total.
2In case several candidates have maximal scores and identical rankings everywhere, break

ties arbitrarily — say, in favor of the candidate with the smallest index.

a scoring rule which is consistent with the training set (assuming one exists);
and that the generalized dimension of the class Sn

m is polynomial in n and m.
It is rather straightforward to construct an efficient algorithm that outputs

consistent scoring rules. Given a training set, we must choose the parameters
of our scoring rule in a way that, for any example, the score of the designated
winner is at least as large as the scores of other candidates. Moreover, if ties
between the winner and a loser would be broken in favor of the loser, then the
winner’s score must be strictly higher than the loser’s. Our algorithm, given
as Algorithm 1, simply formulates all the constraints as linear inequalities, and
solves the resulting linear program.

Algorithm 1 Given a training set, the algorithm returns a scoring rule which
is consistent with the given examples, if one exists.

for k ← 1 . . . t do

Ck ← ∅
for all j 6= jk do . cjk

is the winner in example k
~π∆ ← ~πk

jk
− ~πk

j

l0 ← min{l : π∆
l 6= 0}

if π∆
l0

< 0 then . Ties are broken in favor of cj

Ck ← Ck ∪ {cj}
end if

end for

end for

return a feasible solution ~α to the following linear program:

∀k, ∀cj ∈ Ck,
∑

l π
k
jk,lαl >

∑

l π
k
j,lαl

∀k, ∀cj /∈ Ck,
∑

l π
k
jk,lαl ≥

∑

l π
k
j,lαl

∀l = 1, . . . ,m− 1 αl ≥ αl+1

∀l, αl ≥ 0

A linear program can be solved in time that is polynomial in the number
of variables and inequalities [12]; it follows that Algorithm 1’s running time is
polynomial in n, m, and the size of the training set.

So, it remains to demonstrate that the generalized dimension of Sn
m is poly-

nomial in n and m. The following lemma shows this.

Lemma 4. The generalized dimension of the class Sn
m is at most m:

DG(Sn
m) ≤ m.

Proof. According to Definition 3, we need to show that any set of cardinality
m + 1 cannot be shattered by F . Let S = {�N

k }
m+1
k=1 be such a set, and let h, g

be the two social choice functions that disagree on all preference profiles in S.

We shall construct a subset S1 ⊆ S such that there is no scoring rule f~α that
agrees with h on S1 and agrees with g on S \ S1.

Let us look at the first preference profile from our set, �N
1 . We shall assume

without loss of generality that h(�N
1) = c1, while g(�N

1) = c2, and that in �N
1

ties are broken in favor of c1. Let ~α be some parameter vector. If we are to
have h(�N

1) = f~α(�N
1), it must hold that

m
∑

l=1

π1
1,l · αl ≥

m
∑

l=1

π1
2,l · αl, (4)

whereas if we wanted f~α to agree with g we would want the opposite:

m
∑

l=1

π1
1,l · αl <

m
∑

l=1

π1
2,l · αl (5)

More generally, we define, with respect to the profile �N
k , the vector ~πk

∆ as
the vector whose l’th coordinate is the difference between the number of times
the winner under h and the winner under g were ranked in the l’th place:3

~πk
∆ = ~πk

h(�k) − ~πk
g(�k). (6)

Now we can concisely write necessary conditions for f~α agreeing with h or g,
respectively, by writing:4

~πk
∆ · ~α ≥ 0 (7)

~πk
∆ · ~α ≤ 0 (8)

Notice that each vector ~πk
∆ has exactly m coordinates. Since we have m+1 such

vectors (corresponding to the m + 1 profiles in S), there must be a subset of
vectors that is linearly dependent. We can therefore express one of the vectors
as a linear combination of the others. W.l.o.g. we assume that the first profile’s
vector can be written as a combination of the others with parameters βk, not
all 0:

~π1
∆ =

m+1
∑

k=2

βk · ~π
k
∆ (9)

Now, we shall construct our subset S1 of preference profiles, on which f~α agrees
with h, as follows:

S1 = {k ∈ {2, . . . ,m + 1} : βk ≥ 0} (10)

3There is some abuse of notation; if h(�N
k

) = cl then by ~πk
h(�k)

we mean ~πk
l
.

4In all profiles except �N
1 , we are indifferent to the direction in which ties are broken.

Suppose, by way of contradiction, that f~α agrees with h on �N
k for k ∈ S1,

and with g on the rest. We shall examine the value of ~π1
∆ · ~α:

~π1
∆ · ~α =

m+1
∑

k=2

βk · ~π
k
∆ · ~α =

∑

k∈S1

βk · ~π
k
∆ · ~α +

∑

k/∈S1∪{1}

βk · ~π
k
∆ · ~α ≥ 0 (11)

The last inequality is due to the construction of S1 — whenever βk is neg-
ative, the sign of ~πk

∆ · ~α is non-positive (f~α agrees with g), and whenever βk is
positive, the sign of ~πk

∆ · ~α is non-negative (agreement with h).
Therefore, by equation (5), we have that f(�N

1) 6= c2 = g(�N
1). However,

it holds that 1 /∈ S1, and we assumed that f~α agrees with g outside S1 — this
is a contradiction.

Theorem 3 is thus proven. The upper bound on the generalized dimension
of Sn

m is quite tight: in the next subsection we show a lower bound of m− 3.

3.1 Lower Bound for the Generalized Dimension of Sn
m

Theorem 2 implies that a lower bound on the generalized dimension of a function
class is directly connected to the complexity of learning it. In particular, a tight
bound on the dimension gives us an almost exact idea of the number of examples
required to learn a scoring rule. Therefore, we wish to bound DG(Sn

m) from
below as well.

Theorem 5. For all n ≥ 4, m ≥ 4, DG(Sn
m) ≥ m− 3.

Proof. We shall produce an example set of size m − 3 which is shattered by
Sn

m. Define a preference profile �N
l , for l = 3, . . . ,m − 1, as follows. For all

l, the voters 1, . . . , n − 1 rank candidate cj in place in place j, i.e., they vote
c1 �

i
l c2 �

i
l · · · �

i
l cm. The preferences �n

l (the preferences of voter n in profile
�N

l) are defined as follows: candidate 2 is ranked in place l, candidate 1 is
ranked in place l + 1; the other candidates are ranked arbitrarily by voter n.
For example, if m = 5, n = 6, the preference profile �N

3 is:

�1
3 �2

3 �3
3 �4

3 �5
3 �6

3

c1 c1 c1 c1 c1 c3

c2 c2 c2 c2 c2 c4

c3 c3 c3 c3 c3 c2

c4 c4 c4 c4 c4 c1

c5 c5 c5 c5 c5 c5

Lemma 6. For any scoring rule f~α with α1 = α2 ≥ 2α3 it holds that:

f~α(�N
l) =

{

c1 αl = αl+1

c2 αl > αl+1

Proof. We shall first verify that c2 has maximal score. c2’s score is at least
(n − 1)α2 = (n − 1)α1. Let j ≥ 3; cj ’s score is at most (n − 1)α3 + α1. Thus,
the difference is at least (n− 1)(α1 − α3)− α1. Since α1 = α2 ≥ 2α3, this is at
least (n− 1)(α1/2)− α1 > 0, where the last inequality holds for n ≥ 4.

Now, under preference profile �N
l , c1’s score is (n − 1)α1 + αl+1 and c2’s

score is (n− 1)α1 + αl. If αl = αl+1, the two candidates have identical scores,
but c1 was ranked first by more voters (in fact, by n− 1 voters), and thus the
winner is c1. If αl > αl+1, then c2’s score is strictly higher — hence in this case
c2 is the winner.

Armed with Lemma 6, we prove that the set {�N
l }

m−1
l=3 is shattered by

Sn
m. Let ~α1 such that α1

1 = α1
2 ≥ 2α1

3 = α1
4 = · · · = α1

m, and ~α2 such that
α1

1 = α1
2 ≥ 2α1

3 > α1
4 > · · · > α1

m. By the lemma, for all l = 3, . . . ,m − 1,
f~α1(�N

l) = c1, and f~α2(�N
l) = c2.

Let T ⊆ {3, 4, . . . ,m − 1}. We must show that there exists ~α such that
f~α(�N

l) = c1 for all l ∈ T , and f~α(�N
l) = c2 for all l /∈ T . Indeed, configure

the parameters such that α1 = α2 > 2α3, and αl = αl+1 iff l ∈ T . The result
follows directly from Lemma 6.

4 Limitations

Heretofore, we have concentrated on trying to learn scoring rules. In particular,
we have assumed that there is a scoring rule that is consistent with given train-
ing sets. We have motivated our attention to this specific family of rules by
demonstrating that it is possible to obtain a variety of properties by adjusting
the parameters that define scoring rules.

In this section, we push the envelope by asking the following question. Given
examples that are consistent with some general voting rule, is it possible to
learn a scoring rule that is “close” to the target rule? The natural definition
of distance, in this case, would seem to be the fraction of preference profiles on
which the two rules disagree.

Definition 4. A voting rule f : LN → C is a c-approximation of a voting rule
g iff f and g agree on a c-fraction of the possible preference profiles:

|{�N∈ LN : f(�N) = g(�N)}| ≥ c · (m!)n.

In other words, the question is: given a training set {(�N
k , f(�N

j)}k, where

f : LN → C is some voting rule, how hard is it to learn a scoring rule that
c-approximates f , for c that is close to 1?

It turns out that the answer is: it is impossible. Indeed, there are voting
rules that disagree with any scoring rule on half of all preference profiles; if the
target rule f is such a rule, it is impossible to find, and of course impossible to
learn, a scoring rule that is “close” to f .

Theorem 7. Let ε > 0. For large enough values of n and m, there is a voting
rule F : Ln → {c1, . . . , cm} such that no scoring rule in Sn

m is a (1/2 + ε)-
approximation of F .

In order to prove the theorem, we require the following lemma, which may
be of independent interest.

Lemma 8. There exists a polynomial p(n,m) such that for all n,m ∈ N, |Sn
m| ≤

2p(n,m).

Proof. It is true that there is an infinite number of ways to choose the vector
~α that defines a scoring rule. Nevertheless, what we are really interested in is
the number of distinct voting rules. For instance, if ~α1 = 2~α2, then f~α1 ≡ f~α2 ,
i.e., the two vectors define the same voting rule.

It is clear that two scoring rules f~α1 and f~α2 are distinct only if the following
condition holds: there exist two candidates cj1 , cj2 ∈ C, and a preference profile
�N , such that f~α1(�N) = cj1 and f~α2(�N) = cj2 . This holds only if there exist
two candidates cj1 and cj2 and a preference profile �N such that under α1, cj1 ’s
score is strictly greater than cj2 ’s, and under α2, either cj2 ’s score is greater or
the two candidates are tied, and the tie is broken in favor of cj2 .

Now, assume �N induces rankings ~πj1 and ~πj2 . The conditions above can
be written as

∑

l

πj1,lα
1
l >

∑

l

πj2,lα
1
l , (12)

∑

l

πj1,lα
2
l ≤

∑

l

πj2,lα
2
l , (13)

where the inequality is an equality only if ties are broken in favor of cj2 , i.e., if
l0 = min{l : πj1,l 6= πj2,l}, then πj1,l < πj2,l.

5

Let ~π∆ = ~πj1 − ~πj2 . As in the proof of Lemma 4, equations (12) and (13)
can be concisely rewritten as

~π∆ · ~α
1 > 0 ≥ ~π∆ · ~α

2, (14)

where the inequality is an equality only if the first nonzero position in ~π∆ is
negative.

In order to continue, we opt to reinterpret the above discussion geometri-
cally. Each point in R

m corresponds to a possible choice of parameters ~α. Now,
each possible choice of ~π∆ is the normal to a hyperplane. These hyperplanes
partition the space into cells: the vectors in the interior of each cell agree on the
signs of dot products with all vectors ~π∆. More formally, if ~α1 and ~α2 are two
points in the interior of a cell, then for any vector ~π∆, ~π∆ ·~α

1 > 0⇔ ~π∆ ·~α
2 > 0.

By equation (14), this implies that any two scoring rules f~α1 and f~α2 , where ~α1

and ~α2 are in the interior of the same cell, are identical.

5W.l.o.g. we disregard the case where ~πj1 = ~πj2 ; the reader can verify that taking this
case into account multiplies the final result by an exponential factor at most.

What about points residing in the intersection of several cells? These vectors
always agree with the vectors in one of the cells, as ties are broken according
to rankings induced by the preference profile, i.e., according to the parameters
that define our hyperplanes. Therefore, the points in the intersection can be
conceptually annexed to one of the cells.

So, we have reached the conclusion that the number of distinct scoring rules
is at most the number of cells. Hence, it is enough to bound the number of cells;
we claim this number is exponential in n and m. Indeed, each ~π∆ is an m-vector,
in which every coordinate is an integer in the set {−n,−n + 1, . . . , n− 1, n}. It
follows that there are at most (2n + 1)m possible hyperplanes. It is known [7]
that given k hyperplanes in d-dimensional space, the number of cells is at most
O(kd). In our case, k ≤ (2n + 1)m and d = m, so we have obtained a bound of:

((2n + 1)m)
m ≤ (3n)m2

=
(

2log 3n
)m2

= 2m2 log 3n. (15)

Proof of Theorem 7. We will surround each scoring rule f~α ∈ S
n
m with a

“ball” B(~α), which contains all the voting rules for which f~α is a (1/2 + ε)-
approximation. We will then show that the union of all these balls does not
cover the entire set of voting rules. This implies that there is a voting rule for
which no scoring rule is a (1/2 + ε)-approximation.

For a given ~α, what is the size of B(~α)? As there are (m!)n possible pref-
erence profiles, the ball contains rules that do not agree with f~α on at most
(1/2− ε)(m!)n preference profiles. For a profile on which there is disagreement,
there are m options to set the image under the disagreeing rule.6 Therefore,

|B(~α)| ≤

(

(m!)n

(1/2− ε)(m!)n

)

m(1/2−ε)(m!)n

. (16)

How large is this expression? Let B′(~α) be the set of all voting rules that
disagree with f~α on exactly (1/2 + ε)(m!)n preference profiles. It holds that

|B′(~α)| =

(

(m!)n

(1/2 + ε)(m!)n

)

(m− 1)(1/2+ε)(m!)n

=

(

(m!)n

(1/2− ε)(m!)n

)

((m− 1)1+2ε)1/2(m!)n

≥

(

(m!)n

(1/2− ε)(m!)n

)

m1/2(m!)n

,

(17)

where the last inequality holds for a large enough m. But since the total number
of voting rules, m(m!)n

, is greater than the number of rules in B′(~α), we have:

m(m!)n

B(~α)
≥

B′(~α)

B(~α)
≥

(

(m!)n

(1/2−ε)(m!)n

)

m1/2(m!)n

(

(m!)n

(1/2−ε)(m!)n

)

m(1/2−ε)(m!)n
= mε(m!)n

. (18)

6This way, we also take into account voting rules that agree with f~α on more than (1/2 +
ε)(m!)n profiles.

Therefore

B(~α) ≤
m(m!)n

mε(m!)n
= m(1−ε)(m!)n

. (19)

If the union of balls is to cover the entire set of voting rules, we must have
|Sn

m| · m
(1−ε)(m!)n

≥ m(m!)n

; equivalently, it must hold that |Sn
m| ≥ mε(m!)n

.
However, Lemma 8 implies that |Sn

m| is exponential in n and m, so for large
enough values of n and m, the above condition does not hold.

5 Conclusions

We have shown that the class of scoring rules is efficiently learnable in the
PAC model. We have argued that, given properties the designer would like
a voting rule to satisfy, learning from examples allows it to efficiently (albeit
approximately) construct such a rule, if indeed one exists. Our basic assumption
was that the designer can designate winning candidates in given preference
profiles, by consulting some representation of the properties. So, the designer
essentially translates a cumbersome representation of properties to a concisely
represented voting rule which is easy to understand and apply.

We demonstrated that voting rules can capture a wide variety of properties.
However, in Section 4 we explored the limitations of our approach, and showed
that many voting rules cannot be approximated using scoring rules. This sug-
gests that for some combinations of properties, there is no scoring rule that is
close to satisfying all properties, whereas in general such a voting rule exists.
On the other hand, we may have asked for too much. We did not attempt to
characterize any of the disagreeing voting rules, and in practice they may be
very bizarre. For example, consider the rule that sets the candidate that was
most often ranked last as the winner. The abovementioned results raise two
important questions, which we intend to investigate in the future:

1. Is there a class of voting rules that is significantly broader than the class
of scoring rules, such that any voting rule in the former class can be
approximated by a scoring rule?

2. Is there a class of voting rules that is significantly broader than the class of
scoring rules, as well as efficiently learnable and concisely representable?

If the answer to one of the questions is “yes”, we would be able to circumvent
some of the alleged limitations of our approach.

References

[1] E. Beigman and R. Vohra. Learning from revealed preference. In Proceed-
ings of the 7th ACM Conference on Electronic Commerce, pages 36–42,
2006.

[2] V. Conitzer, J. Lang, and T. Sandholm. How many candidates are needed
to make elections hard to manipulate? In Proceedings of the International
Conference on Theoretical Aspects of Reasoning about Knowledge, pages
201–214, 2003.

[3] V. Conitzer and T. Sandholm. Complexity of manipulating elections with
few candidates. In Proceedings of the National Conference on Artificial
Intelligence, pages 314–319, 2002.

[4] V. Conitzer and T. Sandholm. Complexity of mechanism design. In Pro-
ceedings of the 18th Annual Conference on Uncertainty in Artificial Intel-
ligence, pages 103–110, 2002.

[5] V. Conitzer and T. Sandholm. An algorithm for automatically designing
deterministic mechanisms without payments. In Proceedings of the 3rd In-
ternational Joint Conference on Autonomous Agents and Multiagent Sys-
tems, pages 128–135, 2004.

[6] V. Conitzer and T. Sandholm. Communication complexity of common vot-
ing rules. In Proceedings of the ACM Conference on Electronic Commerce,
pages 78–87, 2005.

[7] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of
EATCS Monographs on Theoretical Computer Science. Springer, 1987.

[8] S. Ghosh, M. Mundhe, K. Hernandez, and S. Sen. Voting for movies: the
anatomy of a recommender system. In Proceedings of the Third Annual
Conference on Autonomous Agents, pages 434–435, 1999.

[9] T. Haynes, S. Sen, N. Arora, and R. Nadella. An automated meeting
scheduling system that utilizes user preferences. In Proceedings of the First
International Conference on Autonomous Agents, pages 308–315, 1997.

[10] B. K. Natarajan. Machine Learning: A Theoretical Approcach. Morgan
Kaufmann, 1991.

[11] A. D. Procaccia, J. S. Rosenschein, and G. A. Kaminka. On the robustness
of preference aggregation in noisy environments. In Proceedings of the First
International Workshop on Computational Social Choice, 2006.

[12] R. J. Vanderbei. Linear Programming: Foundations and Extensions.
Springer, 2nd edition, 2001.

Ariel D. Procaccia, Aviv Zohar, Jeffrey S. Rosenschein
School of Engineering and Computer Science
The Hebrew University of Jerusalem
Givat Ram, Jerusalem 91904, Israel
Email: {arielpro,avivz,jeff}@cs.huji.ac.il

