On Determining Dodgson Winners by
Frequently Self-Knowingly Correct
Algorithms and in Average-Case
Polynomial Time*

Jorg Rothe! and Holger Spakowski

Abstract

In their study of an efficient greedy heuristic for determining Dodgson
winners, Homan and Hemaspaandra [HHO6] introduced the notion of
frequently self-knowingly correct algorithm. We show that this notion
is closely related to Impagliazzo’s notion of polynomial-time benign
algorithm scheme [Imp95], which provides a model of average-case poly-
nomial time. In particular, we show that every distributional problem
(with respect to the uniform distribution) that has a polynomial-time
benign algorithm scheme also has a frequently self-knowingly correct
algorithm. Furthermore, we discuss Homan and Hemaspaandra’s greedy
heuristic with respect to AvgP, Levin’s notion of average polynomial
time [Lev86].

Key words: Preference aggregation, election systems, Dodgson
elections, frequently self-knowingly correct algorithms, average-case
complexity.

1 Introduction

This paper studies a novel type of algorithm, called frequently self-knowingly
correct algorithm, and its relation to average-case polynomial time. Frequently
self-knowingly correct algorithms were introduced by Homan and Hemaspaan-
dra [HHO06], who designed efficient such algorithms for solving the winner prob-
lem for Dodgson elections (which is known to be hard in the worst-case com-
plexity model) with a guaranteed high frequency of success.

Before we turn to the main purpose of this paper, let us give a brief overview
of recent results on complexity-theoretic issues related to voting in order to
motivate this paper’s topic in a broader framework. For more background on
computational politics and the complexity of electoral problems, we refer to the
comprehensive surveys [FHHR06, HH00].

Preference aggregation and election systems have been studied for centuries
in social choice theory, political science, and economics, see, e.g., Arrow [Arr63],

*Supported in part by the German Science Foundation under grants RO 1202/9-1 and RO
1202/9-3.

fSupported in part by the Alexander von Humboldt Foundation in the TransCoop pro-
gram.

Black [Bla58], Brams and Fishburn [BF83], and McLean and Urken [MU95].
Recently, these topics have become the focus of attention in various areas of
computer science as well, such as artificial intelligence (especially with regard
to distributed AI in multi-agent settings), computational complexity, and op-
erations research. In the field of computational complexity, much work has
been done during the past few years on the following four important classes of
problems for various election systems.

Let £ be a given election system. The winner problem for £ asks whether
a designated candidate has won a given election under £. Bartholdi, Tovey,
and Trick [BTT89b] proved that the winner problem for both Dodgson elec-
tions [Dod76] and Kemeny elections [Kem59, KS60] is NP-hard. Hemaspaan-
dra, Hemaspaandra, and Rothe [HHR97] optimally improved the former re-
sult by proving the Dodgson winner problem complete (under polynomial-time
many-one reductions) for P1|\|IP, the class of problems solvable via parallel access
to NP. This class is known to be equal to a number of other classes (includ-
ing PNP e and PNPIl see [PZ83, Wag90]) and forms the ©F level of the
polynomial hierarchy.

Rothe, Spakowski, and Vogel [RSV03] proved that the winner problem for
Young elections [You77] is also PﬁIp—complete, and Hemaspaandra, Spakowski,
and Vogel [HSV05] obtained the analogous result for the Kemeny winner prob-
lem. Each of these three election systems is based on a certain combinatorial
optimization problem, and while each of these systems avoids the Condorcet
Paradox, it does respect the Condorcet Principle [Con85, Fis77], i.e., it selects
the Condorcet winner whenever one exists.! All the above results focus on “win-
ner problems” (which ask if the designated candidate wins regardless of whether
there are other winners as well) as opposed to “unique winner problems,” and
we also adopt the traditional model of winner problem here.?

The control problem for election system & asks whether it is feasible for
an election chair to alter the outcome of an election by changing its agenda
(see, e.g., [BTT92, HHRO05]). The manipulation problem (a.k.a. the strategic
voting problem) for £ asks whether it is feasible that the outcome of an election
can be altered by having voters strategically change their preferences (see, e.g.,
[BTT89a, BO91, CS02, CLS03, HHO5]). The bribery problem for £ (which is
somewhat related to manipulation) asks whether it is feasible that the outcome
of an election can be altered by an agent who bribes voters to change their
votes. Of course, most desirable are voting systems whose winner problem is
easy yet which resist electoral control, manipulation, and bribery.

We are concerned with the winner problem only. Since for some election
systems with otherwise useful properties the winner problem is hard (in the
worst-case complexity model), it is natural to wonder if one at least can find

1A Condorcet winner is a candidate who beats all other candidates in pairwise majority-
rule contests.

2Note, however, that Hemaspaandra, Hemaspaandra, and Rothe [HHRO06] have recently
shown that also the unique winner problems for Dodgson, Young, and Kemeny elections are

PﬂIP -complete.

a heuristic algorithm solving the problem for “most of the inputs occurring in
practice.” Examples of such heuristics are known, e.g., for the Dodgson winner
problem [HHO06] and for the web page ranking problem in close relation to the
Kemeny winner problem [DKNS01]. In particular, we study a heuristic called
GreedyWinner for the problem of determining the winners of Dodgson elections.
This heuristic is due to Homan and Hemaspaandra [HHO06], who proved that if
the number of voters greatly exceeds the number of candidates (which in many
real-world cases is a very plausible assumption), then their heuristic is a “fre-
quently self-knowingly correct algorithm,” a notion they introduced in [HHO6].
We show that this notion is closely related to average-case complexity.

This paper is organized as follows. In Section 2, we give a brief introduction
to social choice theory (and, in particular, to Dodgson elections), we present
some foundations of average-case complexity theory, and we define the notion
of frequently self-knowingly correct algorithm. Section 3 provides our main re-
sult: Every problem in AvgP has a frequently self-knowingly correct algorithm.
In Section 4, we discuss the relation of Homan and Hemaspaandra’s greedy
heuristic for finding Dodgson winners to average-case polynomial time. Finally,
in Section 5, we conclude by raising some related open questions.

2 Preliminaries

2.1 Some Background from Social Choice Theory

An election E = (C,V) is given by a set C' of candidates and a set V of
votes, where each vote is specified by a preference order on all candidates. As
is common, we assume that the underlying preference relation is strict (i.e.,
irreflexive and antisymmetric), transitive, and complete.

In this paper, we focus on Dodgson elections. In 1876, Dodgson proposed an
election system [Dod76] that is based on a combinatorial optimization problem:
An election is won by those candidates who are “closest” to being a Condorcet
winner, the unique candidate (if one exists) who defeats each other candidate
in pairwise comparison by a strict majority of votes.

More precisely, given a Dodgson election E = (C, V'), every candidate ¢ in
C is assigned a score, which is denoted by DodgsonScore(C, V, ¢) and is defined
to be the smallest number of sequential exchanges of adjacent preferences in the
voters’ preference orders needed to make ¢ a Condorcet winner with respect to
the resulting preference orders. Whoever has the lowest Dodgson score wins.

The problem DodgsonWinner is defined as follows: Given an election £ =
(C,V) and a designated candidate ¢ in C, is ¢ a Dodgson winner in E? (The
search version of this decision problem can easily be derived.) As mentioned
above, Hemaspaandra, Hemaspaandra, and Rothe [HHR97] have shown that
this problem is Pﬁlp—complete.

It certainly is not desirable to have an election system whose winner prob-
lem is hard, as only systems that can be evaluated efficiently are actually used
in practice. Fortunately, there are a number of positive results on Dodgson

elections and related systems as well. In particular, Bartholdi, Tovey, and
Trick [BTT89b] proved that for elections with a bounded number of candidates
or voters Dodgson winners are easy to determine. Fishburn [Fis77] proposed
a “homogeneous” variant of Dodgson elections that Rothe, Spakowski, and
Vogel [RSV03] proved to have a polynomial-time winner problem. McCabe-
Dansted, Pritchard, and Slinko [MDPSO06] proposed a scheme (called Dodgson
Quick) that approximates Dodgson’s rule with an exponentially fast conver-
gence. Finally, Homan and Hemaspaandra [HH06] proposed a greedy heuristic
that finds Dodgson winners with a guaranteed high frequency of success. In
particular, they introduced the notion of “frequently self-knowingly correct al-
gorithm,” which we define in Section 2.3 below, and they noted:

“The closest related concepts [...] are probably those involving
proofs to be verified, such as NP certificates and the proofs in in-
teractive proof systems.”

This statement notwithstanding, we will show that in fact it is the theory
of average-case complexity (which Homan and Hemaspaandra also mention in
their paper) that is even more closely related to their notion.

2.2 Foundations of Average-Case Complexity Theory

The theory of average-case complexity was initiated by Levin [Lev86]. A prob-
lem’s average-case complexity can be viewed a more significant measure than
its worst-case complexity in many cases, for example in cryptographic appli-
cations. We here follow Goldreich’s presentation [Gol97]. Another excellent
introduction to this theory is due to Wang [Wan97].

Fix the alphabet ¥ = {0, 1}, let £* denote the set of strings over ¥, and let
3" denote the set of all length n strings in X*. For any z,y € ¥*, x < y means
that x precedes y in lexicographic order, and x — 1 denotes the lexicographic
predecessor of x.

Intuitively, Levin observed that many hard problems—including those that
are NP-hard in the traditional worst-case complexity model—may nonetheless
be easy to solve “on the average,” i.e., for “most” inputs or for “most practically
relevant” inputs. He proposed to define the complexity of problems with respect
to some suitable distribution on the input strings.

We now define the notion of a distributional problem and the complex-
ity class AvgP. In subsequent sections, we consider two heuristic algo-
rithms: the algorithm GreedyWinner intended to solve the decision problem
DodgsonWinner, and the algorithm GreedyScore intended to compute the
Dodgson score of some given candidate. Both heuristics work well sufficiently
often, provided that the number of voters greatly exceeds the number of can-
didates.

Here, we define only distributional search problems; the definition of distri-
butional decision problems is analogous.

Definition 1 1. A distribution function p : £* — [0,1] is a nondecreas-
ing function from strings to the unit interval that converges to one (i.e.,
w(0) > 0 and p(x) < w(y) for each x < y, and lim, oo pu(x) = 1).
The density function associated with p is defined by p'(0) = w(0) and
w'(z) = p(z) — p(x — 1) for each x > 0. That is, each string x gets weight
w' (x) with this distribution.

2. A distributional (search) problem is a pair (f,pn), where f : T* — X* s
a function and p : £* — [0,1] is a distribution function.

3. A function t : ¥* — N is polynomial on the average with respect to some
distribution p if there exists a constant € > 0 such that

> W) Mo’ oo

a

4. The class AvgP consists of all distributional problems (f,u) for which
there exists an algorithm A computing f such that the running time of A
s polynomial on the average with respect to the distribution u.

In this paper, we focus on the standard uniform distribution g on ¥*, which
is defined by
1

!

WO = el + D2

That is, we first choose an input size n at random with probability 1/n(n + 1),

and then we choose an input string of that size n uniformly at random. For

each n € N, let u,, be the restriction of y to strings of length at most n.
Impagliazzo [Imp95] introduced the notion of polynomial-time benign al-

gorithm scheme to present an alternative view on the definition of average

polynomial time.

Definition 2 ([Imp95]) 1. An algorithm computes a function f with be-
nign faults if it either ouputs an element of the image of f or “?,” and if
it outputs anything other than 7, it is correct.

2. A polynomial-time benign algorithm scheme for a function f on u, is an
algorithm A(z,8) such that:

(a) A runs in time polynomial in |z| and 1/0.
(b) A computes f with benign faults.
(c) For each §, 0 < <1, and for each n € NT,

Prob, [A(z,d) = 7] <4.

2.3 A Frequently Self-Knowingly Correct Greedy Algo-
rithm

Homan and Hemaspaandra [HHO6] define the following notion.

Definition 3 ([HHO06]) 1. Let f : S — T be a function, where S and T
are sets. We say an algorithm A : S — T x { “definitely”, “maybe”} is
self-knowingly correct for f if, for each s € S and t € T, whenever A on
input s outputs (t, “definitely”) then f(s) =t.

2. An algorithm A that is self-knowingly correct for g : ¥* — T is said to be
frequently self-knowingly correct for g if
lim |{z € X" | A(z) € T x { “maybe”}}||

0.

In their seminal paper [HH06], Homan and Hemaspaandra present two
frequently self-knowingly correct polynomial-time algorithms, which they call
GreedyScore and GreedyWinner. Since GreedyWinner can easily be reduced to
GreedyScore, we focus on GreedyScore only and briefly describe the intuition
behind this algorithm; for full detail, we refer to [HHO6].

If E=(C,V) is an election and c is some designated candidate in C, we
call (C,V,c) a Dodgson triple. Given a Dodgson triple (C,V,c), GreedyScore
determines the Dodgson score of ¢ with respect to the given election (C,V).
We will see that there are Dodgson triples (C,V,¢) for which this problem is
particularly easy to solve.

For any d € C — {c}, let Deficit[d] be the number of votes ¢ needs to gain
in order to have more votes than d in a pairwise contest between ¢ and d.

Definition 4 Any Dodgson triple (C,V,c) is said to be nice if for each can-
didate d € C — {c}, there are at least Deficit[d] votes for which candidate c is
ezactly one position below candidate d.

Given a Dodgson triple (C,V,c), the algorithm GreedyScore works as fol-
lows:

1. For each candidate d € C — {c}, determine Deficit[d].

77 G

2. If (C,V,c¢) is not nice then output (“anything”,“maybe”); otherwise, out-
put
(> dgeo— {C}Deﬁcit[d], “definitely”).

Note that, for nice Dodgson triples, we have

DodgsonScore(C, V, ¢) = Z Deficit[d],
deC—{c}

It is easy to see that GreedyScore is a self-knowingly correct polynomial-
time bounded algorithm. To show that it is even frequently self-knowingly
correct, Homan and Hemaspaandra prove the following key lemma. Their proof
uses a variant of Chernoff bounds.

Lemma 5 (see Thm. 4.1(3) in [HHO06]) Let (C,V,c) be a given Dodgson
triple with n = ||V|| votes and m = ||C|| candidates, chosen uniformly at
random among all such Dodgson elections. The probability that (C,V,c) is not
nice 4s at most

2(m —1)e #m2.

Homan and Hemaspaandra [HH06] show that the heuristic GreedyWinner,
which is based on GreedyScore and which solves the winner problem for Dodg-
son elections, also is a frequently self-knowingly correct polynomial-time algo-
rithm. This result is stated formally below.

Theorem 6 ([HHO6]) For all m,n € Nt the probability that a Dodgson elec-
tion E selected uniformly at random from all Dodgson elections having m can-
didates and n votes (i.e., all (m!)™ Dodgson elections having m candidates and
n votes have the same likelihood of being selected) has the property that there
exists at least one candidate ¢ such that GreedyWinner on input (E,c) outputs
“maybe” as its second output component is less than 2(m? — m)efsm%.

3 On AvgP and Frequently Self~-Knowingly
Correct Algorithms

Our main result relates polynomial-time benign algorithm schemes to frequently
self-knowingly correct algorithms. We show that every distributional problem
(with respect to the uniform distribution) that has a polynomial-time benign
algorithm scheme must also have a frequently self-knowingly correct algorithm.
It follows that all AvgP problems have a frequently self-knowingly correct al-
gorithm.

Theorem 7 Suppose that A(z,d) is a polynomial-time benign algorithm
scheme for a distributional problem f on u,. Then there is a frequently self-
knowingly correct algorithm A’ for f.

Proof For each n € N, let §(n) = 1/n3. Define the algorithm A’ as follows:
1. On input z € ¥*, simulate A(z,§(|z|)).
2. If A(z,d(|z|)) outputs ?, then output (anything, “maybe”).
3. If A(z,6(|z|)) outputs y € T, where y # ?, then output (y, “definitely”).

By definition of “polynomial-time benign algorithm scheme,” algorithm A’
is polynomial-time bounded. It remains to show that A’ is frequently self-
knowingly correct.

Fix an arbitrary n € N. Then

|[{z € £ | A'(z) € T x {“maybe”}}||
]

Prob, [A(z,d(|z|)) = 7| |z| = n]
Prob, [A(z,d(|z])) = ? and |z| = n]
Prob,, 2] = n
Prob,, [A(a, (a])) = 7
Prob,, 2] = n

Proby, [A(z,d(]z])) = 7]
1/n(n+1)

n(n + 1) - Prob,: [A(z,d(|z])) = ?]
n(n +1) - 6(|x) (2)
n(n + 1)

n3
n+1

n2

AN

IN

Here, (1) holds because, by definition of pu,
Proby [|z| =n] > 1/n(n + 1),

and (2) is true by the definition of polynomial-time benign algorithm scheme.
We have shown that

lim [{z € =" | A'(z) € T x {“maybe”}}|| _

0,

which completes the proof. |

Corollary 8 Every distributional problem (under the standard uniform distri-
bution) that is in AvgP has a frequently self-knowingly correct algorithm.

Proof Impagliazzo proved that any distributional problem on input ensemble
[is in AvgP if and only if it has a polynomial-time benign algorithm scheme;
see Proposition 2 in [Imp95]. The claim now follows from Theorem 7. |

4 Dodgson Winners and Average-Case Polyno-
mial Time
Because of the close relationship between the notion of frequently self-knowingly

correctness and average-case complexity, one might think that Homan and
Hemaspaandra’s algorithm could be used to devise an algorithm, call it

DodgsonWinner-AverageGood, witnessing that the problem DodgsonWinner is
in AvgP (assuming the uniform probability distribution on all elections with the
same number of candidates and voters). A tempting approach towards this goal
would be as follows. Given an election, run the GreedyWinner algorithm on it.
If that fails (i.e., if GreedyWinner outputs “maybe”), then use the exhaustive
algorithm that works in time O(m™).

We now show that this approach does not work in any obvious way. The
reason is that the algorithm is not “frequently enough” self-knowingly cor-
rect. That is, DodgsonWinner-AverageGood would have to spend too much
time (namely, O(m™)) on a too large fraction of the inputs, namely,

n

2(m? —m)e” 2.

Let p'(m,n) be the probability that an election chosen randomly under
the uniform distribution has m candidates and n voters. We assume that the
elections are encoded into strings in a reasonable way. Use, for instance, the
encoding scheme given by Homan and Hemaspaandra [HH06).

To prove that DodgsonWinner is in AvgP, we would have to show that there

is an € > 0 such that .
t
Y w@) W <o,

e ||

where ¢(z) is the computation time of the algorithm DodgsonWinner-
AverageGood on input z, see Definition 1.

Let E(m,n) be the set of strings in ¥* that encode elections having m
candidates and n voters.

For any = € E(m,n),

1

p(z) = m - p'(m,m).

By Theorem 6, for fixed m and n, we obtain

> 0@ < ul - (P atmn) - @nn))

z€E(m,n) |.’L'|

where a(m,n) = 2(m? — m)e” #=2. Here, p is the polynomial that bounds the
computation time of GreedyWinner. We can clearly choose € > 0 small enough
such that p(|z|)¢/|z| contributes only a constant in the above term. However,
the crucial fact is that the term

n

a(m,n) - (em™)¢ = 2(m? — m)e” s - (cm™)¢

grows exponentially, no matter how small we choose e.
Thus, DodgsonWinner-AverageGood does not run in average-case polyno-
mial time with respect to any interesting distribution on the inputs.

5 Conclusions

Homan and Hemaspaandra [HHO06] proposed a greedy heuristic for finding
Dodgson winners, and they proved that this heuristic is a frequently self-
knowingly correct algorithm. We have shown that every distributional problem
(with respect to the standard uniform distribution) in AvgP has a frequently
self-knowingly correct algorithm. It is easy to see that the converse implica-
tion is not true. (For instance, one can define a problem L that consists only
of strings in {0}* encoding the halting problem. This problem is clearly not
in AvgP, yet it is frequently self-knowingly correct.)

Furthermore, we have argued why it might be hard to show that the prob-
lem of finding Dodgson winners—at least via Homan and Hemaspaandra’s
heuristic—can be solved in polynomial time on the average. We suspect that
this problem is hard on the average, but a rigorous proof for this claim has
eluded us so far, and we raise this as an open question. In particular, it would
be interesting to study the average-case complexity of the Dodgson winner
problem with respect to suitable distributions (see, e.g., Procaccia and Rosen-
schein [PRO6]).

Other interesting issues remain open as well. For example, one might study
the approximability of the Dodgson winner problem; some first steps in this di-
rection have been taken by McCabe-Dansted, Pritchard, and Slinko [MDPS06].
Also, one could investigate other voting systems with a hard winner prob-
lem in the worst-case model, such as the problem of determining Young win-
ners [RSV03] or the problem of determining Kemeny winners [HSV05], and seek
to find algorithms that can be shown to be frequently self-knowingly correct or
even average-case polynomial-time, or else seek to prove these problems hard
on the average.

Acknowledgments: We thank Lane A. Hemaspaandra and Chris Homan for
their interest in this work, and for many inspiring discussions on computational
issues related to voting. We also thank the COMSOC ’06 referees for their
helpful comments.

References

[Arr63] K. Arrow. Social Choice and Individual Values. John Wiley and
Sons, 1951 (revised edition 1963).

[BF83] S. Brams and P. Fishburn. Approval Voting. Birkhauser, Boston,
1983.

[Bla58] D. Black. The Theory of Committees and Elections. Cambridge
University Press, 1958.

[BO91] J. Bartholdi ITI and J. Orlin. Single transferable vote resists strategic
voting. Social Choice and Welfare, 8(4):341-354, 1991.

[BTT89a]

[BTT89b]

[BTTY2]

[CLS03]

[Con85]

[CS02]

[DKNS01]

[Dod76]

[FHHRO06]

[Fis77]

[Gol97]

J. Bartholdi III, C. Tovey, and M. Trick. The computational dif-
ficulty of manipulating an election. Social Choice and Welfare,
6(3):227-241, 1989.

J. Bartholdi III, C. Tovey, and M. Trick. Voting schemes for which
it can be difficult to tell who won the election. Social Choice and
Welfare, 6(2):157-165, 19809.

J. Bartholdi ITI, C. Tovey, and M. Trick. How hard is it to control an
election? Mathematical Comput. Modelling, 16(8/9):27-40, 1992.

V. Conitzer, J. Lang, and T. Sandholm. How many candidates are
needed to make elections hard to manipulate? In Proceedings of the
9th Conference on Theoretical Aspects of Rationality and Knowl-
edge, pages 201-214. ACM Press, 2003.

J.-A.-N. de Caritat, Marquis de Condorcet. Essai sur ’application
de ’analyse a la probabilité des décisions rendues a la pluralité des
voix. 1785. Facsimile reprint of original published in Paris, 1972,
by the Imprimerie Royale. English translation appears in I. McLean
and A. Urken, Classics of Social Choice, University of Michigan
Press, 1995, pages 91-112.

V. Conitzer and T. Sandholm. Complexity of manipulating elections
with few candidates. In Proceedings of the 18th National Conference
on Artificial Intelligence, pages 314-319. AAAT Press, 2002.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggrega-
tion methods for the web. In Proceedings of the 10th International
World Wide Web Conference, pages 613—622. ACM Press, 2001.

C. Dodgson. A method of taking votes on more than two issues.
Pamphlet printed by the Clarendon Press, Oxford, and headed “not
yet published” (see the discussions in [MU95, Bla58], both of which
reprint this paper), 1876.

P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe.
A richer understanding of the complexity of election systems. In
S. Ravi and S. Shukla, editors, Fundamental Problems in Comput-
ing: Essays in Honor of Professor Daniel J. Rosenkrantz. Springer-
Verlag, 2006. To appear.

P. Fishburn. Condorcet social choice functions. SIAM Journal on
Applied Mathematics, 33(3):469-489, 1977.

O. Goldreich. Note on Levin’s theory of average-case complexity.
Technical Report TR97-058, Electronic Colloquium on Computa-
tional Complexity, November 1997.

[HHO0]

[HHO5]

[HHO6]

[HHRO7]

[HHRO5]

[HHRO6]

[HSVO05]

[Imp95)

[Kem59]

[KS60]

[Lev86)

E. Hemaspaandra and L. Hemaspaandra. Computational politics:
Electoral systems. In Proceedings of the 25th International Sym-
posium on Mathematical Foundations of Computer Science, pages
64-83. Springer-Verlag Lecture Notes in Computer Science #1893,
2000.

E. Hemaspaandra and L. Hemaspaandra. Dichotomy for voting sys-
tems. Technical Report TR-861, University of Rochester, Depart-
ment of Computer Science, Rochester, NY, April 2005.

C. Homan and L. Hemaspaandra. Guarantees for the success fre-
quency of an algorithm for finding Dodgson-election winners. In
Proceedings of the 31st International Symposium on Mathematical
Foundations of Computer Science, pages 528-539. Springer-Verlag
Lecture Notes in Computer Science #4162, August/September
2006.

E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis
of Dodgson elections: Lewis Carroll’s 1876 voting system is com-
plete for parallel access to NP. Journal of the ACM, 44(6):806-825,
November 1997.

E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone but
him: The complexity of precluding an alternative. In Proceedings
of the 20th National Conference on Artificial Intelligence, pages 95—
101. AAAI Press, 2005.

E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Hybrid elec-
tions broaden complexity-theoretic resistance to control. Technical
Report TR-900, Department of Computer Science, University of
Rochester, Rochester, NY, June 2006. Revised, August 2006.

E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of
Kemeny elections. Theoretical Computer Science, 349(3):382-391,
December 2005.

R. Impagliazzo. A personal view of average-case complexity. In
Proceedings of the 10th Structure in Complexity Theory Conference,
pages 134-147. IEEE Computer Society Press, 1995.

J. Kemeny. Mathematics without numbers. Dedalus, 88:571-591,
1959.

J. Kemeny and L. Snell. Mathematical Models in the Social Sciences.
Ginn, 1960.

L. Levin. Average case complete problems. SIAM Journal on Com-
puting, 15(1):285-286, 1986.

[MDPS06] J. McCabe-Dansted, G. Pritchard, and A. Slinko. Approximability

[MU95]

[PRO6]

[PZ83]

[RSV03]

[Wag90]

[Wan97]

[You77]

Jorg Rothe

of Dodgson’s rule. Technical Report TR-551, Auckland University,
Department of Mathematics, Auckland, New Zealand, June 2006.

I. McLean and A. Urken. Classics of Social Choice. University of
Michigan Press, Ann Arbor, Michigan, 1995.

A. Procaccia and J. Rosenschein. Junta distributions and the
average-case complexity of manipulating elections. In Proceedings of
the 5th International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 497-504. ACM Press, May 2006.

C. Papadimitriou and S. Zachos. Two remarks on the power of
counting. In Proceedings of the 6th GI Conference on Theoretical
Computer Science, pages 269-276. Springer-Verlag Lecture Notes in
Computer Science #145, 1983.

J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of the
winner problem for Young elections. Theory of Computing Systems,
36(4):375-386, June 2003.

K. Wagner. Bounded query classes. SIAM Journal on Computing,
19(5):833-846, 1990.

J. Wang. Average-case computational complexity theory. In
L. Hemaspaandra and A. Selman, editors, Complexity Theory Ret-
rospective II, pages 295-328. Springer-Verlag, 1997.

H. Young. Extending Condorcet’s rule. Journal of Economic The-
ory, 16(2):335-353, 1977.

Institut fiir Informatik
Heinrich-Heine-Universitit Diisseldorf
40225 Diisseldorf, Germany

Email: rothe@cs.uni-duesseldorf.de

Holger Spakowski

Institut fiir Informatik
Heinrich-Heine-Universitit Diisseldorf
40225 Diisseldorf, Germany

Email: spakowsk@cs.uni-duesseldorf.de

